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Abstract

Patterns of seafloor topography represent regions of geomorphological feature types and the

physiography governing the spatial distributions of benthic habitats. Topographic variability can be

considered seafloor texture and can be remotely sensed by acoustic and optical devices. Benthic

habitat delineations often involve distinctions based upon seafloor morphology and composition

based upon acoustic data maps that are ground-truthed by optical imaging tools. Habitat

delineations can be done manually, however, automation of the procedure could provide more

objectivity and reproducible map products. Recently a technique using Fourier transforms (FT) to

produce texture features called local Fourier histograms (LFH) has been used successfully to

classify standard textures in grayscale images and automatically retrieve digital images from

archives according to texture content [Zhou, F., Feng, J., Shi, Q., 2001. Texture feature based on

local Fourier transform, ICIP Conference Proceedings, IEEE 0-7803-6725-1/01.]. We implemented

a modified form of that approach by varying the spatial scales at which local Fourier histograms

were calculated. A modified LFH texture feature classification technique was applied to multibeam

echosounder (MBES) data from Piscataqua River, New Hampshire, USA, for automatic

delineation of a seafloor topographic map into regions of distinct geomorphology and apparent

benthic habitats. Automated segmentations were done by the LFH method on 1-m gridded MBES

data, applying the local Fourier transform, used to generate the LFH, at spatial scales from 1 to 5

m. Seven seafloor texture classes were identified, corresponding to the primary substrate types and

configurations in the study area as well as some previously unidentified regions and transitional

zones. The texture regions serve as a physical habitat model for the seafloor, a basis for predicting
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benthic faunal inhabitants, their areal distributions, and serving as sampling strata for ground-

truthing efforts.

D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Topographic variability of the seafloor influences benthic community structure and

ecological processes at many spatial scales (Bourget et al., 1994; Cusson and Bourget,

1997; Guichard and Bourget, 1998; Menge and Olson, 1990; Zajac, 2001). Traditionally

topographic variability has been described based upon maps constructed from acoustic

device (echosounder or sidescan sonar) data while biogenic features have been described

using optical data from still or motion imaging devices. The overriding result is a

mismatch of spatial scales between data, measurements, and interpretation of seafloor

properties. Recent developments in multibeam echosounding (MBES), however, have

resulted in detailed acoustic surveys that provide an unprecedented view of the seafloor at

a broad range of spatial scales. Using MBES data, digital elevation models (DEM) or

digital terrain maps (DTM) (two-dimensional rasterized data representing elevation of the

seafloor or depth) are produced that represent nearly continuous coverage depth measure-

ments of the seafloor and reveal distinguishable texture patterns that represent topographic

variation patterns, or geomorphological regions. In shallow water (tens of meters deep),

features with vertical dimensions of centimeters and horizontal dimensions of decimeters

to meters can generally be distinguished, such that habitat and microhabitat characteristics

are easily discriminated.

Benthic habitat delineation has recently become a worldwide ocean science priority,

and MBES data-based seafloor maps appear to provide the best basis for initial delineation

of the seafloor into geological and geomorphological regions (Mayer et al., 1999; Todd et

al., 1999; Kostylev et al., 2001). In turn, a physical habitat model developed by

interpretation of those regions can be used to model distributions of benthic biology

using any available biological or fisheries data, organism–substrate interaction models, or

direct sampling. Recent studies have utilized MBES and acoustic backscatter data to

provide geological (Todd et al., 1999) and biological habitat (Kostylev et al., 2001) maps,

but their delineations were done manually. Manual segmentation (by visual appearance)

and delineation are inherently subjective and therefore can be inaccurate. Simple

approaches to the automated segmentation based on first order statistics of topographic

data may be sufficient in some cases, but often fail to distinguish areas with different

biogeological processes, morphology or composition. Thus, there exists a need for a

robust, automated delineation approach that is accurate, unbiased, and fast, even for

datasets that can contain billions of measurements.

One possible approach to automating the delineation of seafloor regions involves

texture analysis of MBES-derived DTMs representing seafloor topography data. Some

common texture analysis techniques include grayscale co-occurrence matrices and Gabor
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functions (Ware, 2000; Zhou et al., 2001). In particular, Gabor filters were based upon

models of human vision perception of texture, thus Gabor functions can be used to detect

and segment grayscale image textures in a manner similar to how the human visual system

would (Ware, 2000). However, human perception is biased, and digital terrain models of

the seafloor can incorporate differences due to data projections or nonstandard exagger-

ations incorporated for visual effect, thus reinforcing the need for a more objective

methodology, less dependent on human perception.

One such approach that was recently developed for texture feature construction uses

local Fourier transforms (FT) to accurately describe the local spatial distribution of values

(Zhou et al., 2001). It has been shown that this technique provides a reliable means of

classification of grayscale texture images (Brodatz textures) as well as automatic retrieval

of images from digital archives according to texture content. The texture features produced

by the local FT technique called local Fourier histograms (LFH), performed as well or

better than grayscale co-occurrence matrix features for automatic classification of 13

Brodatz textures. In addition, Zhou et al. (2001) demonstrated that LFH texture features

performed similarly to Gabor features for automated retrieval of Brodatz texture images,

such that the average overall recognition ratio for 108 Brodatz textures was 70.56% for

LFH and 69.63% for Gabor.

A technique incorporating texture features similar to LFH, but denoted local spectral

histograms (LSH) was recently developed by Liu et al. (2001) that might be more flexible

but also more subjective in that it involves user choice of a set of filtering operations prior

to generating the texture features.

We have applied the LFH texture feature classification for automated classification and

segmentation of the seafloor. A modified form of the LFH texture feature classification

technique was implemented by varying the spatial scales from which data were used to

calculate the local Fourier transforms. The technique was applied to multibeam

echosounder (MBES) data for automatic segmentation of a seafloor elevation map into

regions of distinct geomorphology and apparent benthic habitats. The accuracy of

segmentation results was verified using historical sediment sample data and sediment

maps (Ward, 1995), as well as underwater video imagery and diver observations.

2. Study area

The study area was located in the mouth of the Piscataqua River, a well-mixed

estuary (Swift et al., 1996) flowing between New Hampshire and Maine, USA (Fig. 1)

and exchanging water with the Gulf of Maine. The freshwater supply to the Piscataqua

River originates in a watershed in southeast New Hampshire and Maine and includes

six tributaries, three of which flow first into Great Bay, however, each of the tributaries

is dammed at some point. The total watershed area is 2334 km2. In the mouth, the

channel is oriented north–south, then turns abruptly to near due west at Fort Point, NH.

The Piscataqua is a tidally dominated system, with tidal amplitudes (half of the tidal

range) of 1.3 m near the study area (Swift and Brown, 1983). Average total discharges

for all the tributaries combined is about 32 m3 s� 1 (Short, 1992). Maximum average

cross-section and time averaged current speeds near the study area are 0.5 ms� 1
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(spring) and 0.4 ms� 1 (neap) (Swift et al., 1996). However, in narrower parts of the

river upstream, current speeds can reach 2.2 ms� 1 (Swift and Brown, 1983) to 3.1 ms� 1

(Short, 1992).

Primary substrates in the Piscataqua River mouth study area were previously mapped

by sediment core sample data (Ward, 1995) and include intertidal and subtidal bedrock,

gravelly channel sediments, and a central channel sand sediment region. The sandy central

channel region was recently determined from the MBES data and by diver and video

observations to be a rippled sand wave field, consisting of 5- to 10-m wavelength, 0.5- to

1-m height sand waves composed of fine to medium sand and fine shell hash.

Fig. 1. Study area consisted of a section of subtidal waters in the Piscataqua River, between New Hampshire and

Maine, USA. The asterisk in the small map marks the area enlarged.
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3. Methods

3.1. Dataset

The dataset used for developing an automated segmentation procedure was a 1-m

gridded surface representing the bathymetry in the mouth of the Piscataqua River, New

Hampshire, USA (Fig. 2). The gridded bathymetry was constructed using data collected

Fig. 2. Bathymetric digital terrain model (DTM) from the mouth of the Piscataqua River, NH, gridded to 1 m,

UTM projection, zone 19N. Constructed from Reson 8125 multibeam echosounder data, collected by SAIC for

NOAA and UNH JHC-CCOM, July 2000.
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with a Reson 8125 multibeam echosounder, collected aboard the R/V Coastal Surveyor

(UNH) by Science Applications International (SAIC) as part of the Shallow Water Survey

2001 Common Dataset (see Mayer and Baldwin, 2001). Positioning was accomplished

using an Applanix POS MV 320 (Positioning and Orientation System for Marine Vessels).

Data were cleaned and the grid was constructed using Hydrographic Information

Processing System (HIPS, copyright CARIS, New Brunswick, Canada); data are presented

on a Universal Transverse Mercator (UTM) projection, zone 19 north. The dataset covered

839 by 2034 m, where the center of the lower left corner grid cell originated at UTM

Northing 4,768,915 m, Easting 360,918 m (latitude 43.0602 North, longitude 70.707

West).

3.2. LFH texture features

We use a modified implementation of the local Fourier histogram (LFH) texture

analysis and discrimination technique described by Zhou et al. (2001). The processing

procedure involved calculating a local FT for every data point (grid cell, pixel or node).

The Fourier coefficients characterize the frequencies present in the signal, i.e. the signal’s

roughness. Zhou et al. (2001) described texture features by considering only the immediate

vicinity of a node in two-dimensional rasterized data. On a square grid, such as in

grayscale images and DTMs, that vicinity consists of eight nearest neighbors, enumerated

consecutively to form a one-dimensional signal. Fourier coefficients of this signal reflect

local isotropic roughness of the area around the node.

Eight Fourier coefficients from the eight element one-dimensional signal may be

interpreted as four magnitude and four phase values. Only magnitudes are used for the

LFH texture features. In addition, the average depth value from the block was removed

from coefficient 0 value (also known as the direct current or DC value, and representing

the mean value of the series) prior to constructing the histograms in order to eliminate

artifacts related to mean depth effects. To characterize texture for using the LFH technique,

it is required that a group of nodes be used. For all nodes in a square block 10 by 10 m

(block sizes of 5 by 5 m and 20 by 20 m were also tested), the Fourier coefficients are

calculated, then accumulated into histograms. One histogram, with eight bins each, is

developed for each magnitude coefficient. Thus, the block of nodes is described by an

LFH texture feature vector with 32 elements formed by concatenating the individual

histograms (LFH feature vector elements 0, 1,. . .7 contain the histogram for the 0th

magnitude coefficients, elements 8 through 15 contain the histogram for the 1st

coefficient, etc.).

Our implementation allows for varying radii and block size at which the local FT was

applied and LFHs were accumulated. Our modification to Zhou et al. (2001) was to

calculate the Fourier coefficients at not only the nearest neighbor data, but also data from a

larger neighborhood, combined in a manner (depth averaged for eight p/4 radian angular

sectors within a specified radial distance about each node) that maintained the same format

input signal to the FT (eight element, one-dimensional signal). LFH texture features from

the expanded neighborhood describe texture at broader scales. An alternative method for

examining multiple spatial scale texture using LFH would be to use only the eight nearest

neighbor data, but to apply the LFH to data gridded at various scales.
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3.3. Class grouping

Classes were constructed using fuzzy k-means cluster analysis (Minasny and McBrat-

ney, 2000). Seven cluster group classes (cluster groups) were chosen after examination of

results from 4 to 10 classes and showed either lack of separation of primary sedimentary

regions of Ward (1995) when too few classes were chosen, or excessive patchiness with

too many classes. The number of classes chosen was meant to provide correspondence

with substrate types for which prior knowledge existed (in the study area, there were four)

and additional configurations and transitional zones evident from visual inspection of the

DTM. Table 1 summarizes the classes, areal coverages and provides general descriptions

of the type of bottom delineated. In order to provide some assessment of what the texture

classes represented in terms of composition, beyond the geomorphological properties

apparent from visual interpretation of the acoustic data (sand waves and rock), the LFH

map was compared to an existing substrate map and substrate point data from Ward

(1995).

3.4. Representative LFH texture features

After cluster analysis classification, representative LFH texture features were con-

structed using all LFHs from each class. Initial representative LFH texture features

included data from all classes, even those determined to be misclassifications. Final

LFH representative texture features were constructed using only data from classes

determined to represent distinct regions accurately according to comparisons with Ward

(1995) samples and visual interpretation of the terrain model, such that LFHs from

apparent misclassifications were not used in construction of the representative LFHs. The

representative LFH texture feature vector was meant to represent only the clear cases

where textures clearly corresponded to particular substrate configurations.

Table 1

Substrate types found in each LFH class region, and total areal coverages of each LFH class

LFH

class

General description Sediment class of Ward

(1995) samples located

in each LFH class region

Raw LFH

coverage

(m2)

Majority LFH

coverage (m2)

1 Smoother sedimented bottom texture 1 sG, sG, gS, gS 111,725 92,960

2 Rougher sedimented bottom texture 1 gS, sG, mS 187,060 182,589

3 Smoother sedimented bottom texture 2 gS, msG, sG, sG 172,785 199,122

4 Sand waves S 221,360 219,995

5 Rock NR, sG, mgS 111,017 126,986

6 Rougher sedimented bottom texture 2 gS, gS, sG 185,340 216,774

7 Steep, smooth marginal slopes NA 61,819 67,438

Substrate classes were based upon sediment samples from Ward (1995), with type descriptions in terms of Folk’s

(1954) mud, sand, and gravel. Sediment classes include sandy gravel (sG), gravelly sand (gS), muddy sand (mS),

sand (S), muddy gravelly sand (mgS); within class 5 (rocky), there was one station where no samples were

recovered (NR); no samples were taken (NA) within LFH class 7. Areal coverage (rounded to nearest m2) of each

LFH texture feature class in the study area, for raw LFH results (5-m radius, 10- by 10-m block), and majority

filtered results (majority value in 30- by 30-m block around each grid cell).
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4. Results

The LFH texture feature classification segmentations of the seafloor corresponded well

with the various geomorphological and sedimentary regions mapped by Ward (1995) in

the study area. LFH classification results were robust, generating similar segmentations

across several spatial scales of application (Fig. 3). Seven cluster classes were chosen as

best representing the variety of apparent geomorphological features in the study area.

Fewer classes led to clearly different morphologies being classified as the same, more led

to subdivisions within groups (excessive patchiness).

Application of LFH to cell nearest neighbors (radius = 1 m) corresponded directly to the

procedure described by Zhou et al. (2001). The resultant map showed several regions with

mixed texture classes. Because more uniform regionalization was sought, the neighbor-

hood scales were increased. Results for radii of 1, 3, and 5 m are shown in Fig. 3a–c. With

increasing neighborhood scale (radius), more uniform regions were produced, at the

expense of potentially missing small patches of unique texture class. Using a radius of 1

m, i.e. just the eight nearest neighbors, many texture feature blocks were considered to be

misclassifications, and were particularly obvious in the sand wave field (Fig. 3a). Increase

of the scale to a radius of 3 m resulted in more consistent regions. The best balance

between regional consistency and oversimplification was produced using a radius of 5 m

for these data at this grid size. The LFH map produced using a 5-m radius was filtered to

generate more coherent regions by adopting the majority value from 30- by 30-m blocks as

the new cell value (Fig. 3). These regions also suggest sampling strata for ancillary data

collection, and produced a clean map for comparison with the DTM and analysis within

geographic information systems.

Relating the LFH texture feature classes to sediments and substrates by comparison to

point sediment sample data and sediment maps (Ward, 1995) showed that LFH class 4

corresponded to the large central channel bottom sand field. LFH class 5 corresponded to

subtidal and intertidal bedrock. Ward samples in the LFH class 5 regions revealed only

sandy gravel and muddy gravelly sand, however, other Ward samples in rocky regions

(including one in LFH class 5 region) listed no data because no sample was retrieved when

the grab sampler actually landed on rock (Table 1). Based upon the Ward (1995) map, all

the other classes would be lumped into the gravel class, however, examination of the

individual sediment samples in the LFH study area shows that the regions delineated

according to LFH class 7 were not represented by any sediment samples, only interpo-

lation. LFH classes 1, 2, 3 and 6 were represented by 11 sediment samples, primarily

composed of sandy gravel and gravelly sand (Table 1).

Fig. 3. Segmentation of Piscataqua River mouth bathymetry by local Fourier Histogram (LFH) texture feature

classification using coefficients 0 through 3 and varying spatial scales from which data were gathered (varying

neighborhood radius) to generate texture features. LFH Texture feature classes from (a) neighborhood radius of 1

m, (b) neighborhood radius of 3 m, (c) neighborhood radius of 5 m, (d) neighborhood radius of 5 m where the

original LFH class value for each cell was replaced by majority value from the surrounding 30- by 30-m block,

and LFH map draped onto bathymetric terrain model surface. Coordinates are in UTM Eastings and Northings,

zone 19 north.
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Fig. 4. Representative histograms for seven LFH texture feature (radius = 1 m, block = 10 by 10 m) classes from

cluster groups. Each successive eight bins represent the distribution of an individual local FT magnitude

coefficient. Thus, bins 1–8 represent local FT coefficient 0-mean, bins 9–16 represent coefficient 1 magnitude,

bins 17–24 represent coefficient 2 magnitude, and bins 25–32 represent coefficient 3 magnitude. Clustering was

done using fuzzy k-means method (Minasny and McBratney, 2000).
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Total areal coverages of majority filtered LFH class ranged from 67,438 m2 (class 7)

to 219,995 m2 (class 4) (Table 1). Classes 2, 3, 4, and 6 all had coverages on the order

of 200,000 m2. Classes 1, 5, and 7 had coverages on the order of 100,000 m2.

Representative LFHs, produced using the mean of all LFHs by class, showed distinct

differences between classes according to distributions of the various FT coefficients

used (Fig. 4). The distributions of the four Fourier coefficients used to construct the

local FT maps and the LFHs were apparent in the LFHs. The seven different LFH

classes varied most by distributions of coefficients 1, 2, and 3. Variation of the

distributions of coefficient 0 was not as pronounced (Fig. 4) as the other coefficients’

distributions, in general. LFH classes 5 and 7 had broad distributions of coefficient 0,

the other classes all had narrow coefficient 0 distributions (Fig. 4, LFH bins 1 through

8). LFH classes 1 and 2 had representative LFHs similar enough to suggest

consolidation of those classes, except that the distributions of coefficient 1 were

slightly different (Fig. 4, LFH bins 9 through 17). Distinctions among the other

representative LFHs reinforce that textural differences existed between seafloor regions

segmented by LFH. No single coefficient distribution showed enough difference across

classes that have been used for separation. Regardless, when the individual histograms

were combined as the LFH feature vector, class differences were distinct. In other

words, the texture LFH features represent complex spatial variation of seafloor

topography.

5. Discussion

Geomorphological regions were discriminated with high efficiency using LFH texture

feature classification. Regions distinguished by LFH analysis were suggestive of

substrate type and sediment distributions. LFH maps showed patterns similar to the

relative backscatter intensity map (Fig. 5) and the substrate map delineated by Ward

(1995). The LFH texture feature classes from the Piscataqua River mouth were

determined to represent most simply: rock outcrops, a sand wave and ripple field, and

gravelly channel regions (Table 1). Those same regional types were delineated by Ward

(1995) based upon core and grab samples and some sidescan sonar data. In addition,

LFH texture classes existed for transitional regions and other bottom textures suggestive

of slightly different geomorphologies that were either lumped into broad substrate classes

by Ward (1995) or previously unsampled. Diver observations and underwater video

showed these to include regions of sandy sediments with large (typically >0.5 cm) shell

fragments (represented by classes 1 and 2, see Fig. 3). The apparent disparity between

seafloor type regions corresponding to LFH textures and sample data for some LFH

classes was indicative of two issues: (1) in rock outcrop regions, grab samples did not

recover the rock itself, either recovering no sample or recovering sediment interspersed

amidst the rocks, and (2) delineations and descriptions of bottom type have inherent

scale-dependent generalization attached that can affect correspondences between maps

from different sources and methodologies. In addition, substrate heterogeneity is likely to

accompany any particular seafloor texture, therefore, concise generalization to seafloor

composition is not recommended.
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Some textural differences appear to represent similar substrates with different

roughness configurations that are likely related to sediment transport, spatial and

temporal variations in hydrodynamic effects. Those are important factors to benthic

organisms, affecting benthic assemblage structure and function. A reassessment of

organism–sediment interaction (OSI) studies by Snelgrove and Butman (1994) empha-

sized the need to consider hydrodynamics and material transport in order to strengthen

OSI models. If seafloor texture patterns relate to material transport and hydrodynamic

processes, as suggested, then regions delineated by seafloor texture represent spatial

extents of the benthic physical environment within which a process occurs at particular

frequency and with certain intensity. Therefore, texture maps of the seafloor can provide

insight about the benthic biology by not only revealing physiographic constraints and

regionalization of seafloor feature types, but also by delimiting areas within with

particular hydrodynamic influences. Seafloor topographic maps analyzed for texture or

roughness distributions are subtidal analogues to the synoptic maps generated by

airborne spectrographic techniques for intertidal and shallow subtidal water. Although

biological attributes of the system and organism–sediment interactions may make more

difficult the interpretation of spectrographic data used to construct synoptic maps, those

attributes may lead to insights about how to remotely sense related processes (Paterson

and Black, 1999). Similarly, physical and biological factors influencing seafloor texture

at various spatial scales must be studied in order to accurately assess how and why

differences in texture in acoustic maps of subtidal waters indicate differences in substrate

characteristics and benthic habitats. Those efforts will likely lead to refinement of the

interpretation of acoustic-derived seafloor maps and better methods for seafloor

exploration.

Because of the resolution of the Piscataqua River dataset, discrimination of region types

by LFH was done to much finer scales than previous sediment type delineations based

primarily upon interpolation of sparse point data; such is the strength of MBES-derived

bathymetry data. Although the apparent associations exist between LFH classes and

substrate types, LFH classes are not simply representative of substrate alone; they

represent bottom texture which, in a dynamic estuarine environment such as the

Piscataqua, is driven by interactions between existing substrate composition, newly

delivered sediments, fluid dynamics, and biological modifications.

Representative LFHs from correctly classified data, determined by the investigators,

provide feature vectors that can then be applied to other data. Thus, representative LFHs

can serve as training features representative of particular geomorphologies, and can be

used to directly determine the bottom texture and type for new data.

The spatial scales of feature variation were important and did cause some apparent

misclassifications, the most apparent were the areas within the rock regions that were

classified the same as the sand wave field. The geometry of the rocks and sand waves was

Fig. 5. Acoustic backscatter mosaic image covering part of the study area. The backscatter mosaic consists of data

from a Klein 5000 and a Konsberg-Simrad EM3000 system, mosaiced separately, gridded to 1 m (Klein) and 5 m

(K-S), then combined and gray levels adjusted.
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similar enough in those cases to inhibit distinction by LFH analysis. The term apparent

misclassifications was used because there may have been a physical or biological basis for

the apparent misclassifications: sediments may have accumulated in the depressions

among rocks, or soft-bodied animals and plants may have covered the rocks, thereby

affecting the morphology.

6. Conclusions

We have developed an automated, objective method for delineating physical benthic

habitats that can be used to model biological habitats, prior to sampling the biology, using

historical biological data and assumptions about organism–substrate associations. LFH

texture feature classification served that purpose, and was automated, except for the

choices of number of classes and texture spatial scale. The appropriate scales of

application of LFH should be determinable by optimization procedures, allowing more

automation and generalization of the procedures. In addition, despite the good initial

results of LFH texture feature segmentation of seafloor topography, alternative segmenta-

tion techniques and comparisons to quantitative measures of roughness should be

implemented. Areas with apparent misclassifications should be examined directly to

determine their character. When applying the segmentation procedure to new data, an

‘‘unknown’’ or ‘‘new’’ class should be introduced to allow for textures that do not

correspond to the existing LFH texture features. That will allow exploration and

classification of new areas without restricting descriptions to only known types.

The LFH segmentations serve to regionalize seafloor texture patterns and therefore

geomorphological, sediment and hydrodynamic interaction regions. Therefore, LFH

segmentations result in a predicted physical habitat model for the seafloor. That, in turn

can be used to predict the initial benthic biological habitat model, particularly

distributions of primary benthic community constituents or functional group types,

dependent upon the detail of prior knowledge of the biological assemblages in the

study area. One of the strengths of segmentations made using LFH on MBES-derived

bathymetry lies in their ability to provide a context for detailed in situ seafloor

investigation data. On the other hand, interpretations about the ecosystem made using

MBES should incorporate such detailed data, otherwise the descriptions are still as

coarse as the data resolution. Thus, there are limits to interpretations made using only the

MBES seafloor topography data that should be addressed by rigorous, accurately

georeferenced, and innovative ground truthing methods. In particular, we seek methods

that can provide information about types and rates of changes occurring in the transitions

between regions segmented using LFH, and determine the true local variability of

seafloor textures that might represent habitat patchiness. The majority-filtered map

provided a clean and easy to interpret regionalization of the seafloor in the study area,

however, the apparently noisy representations might be valid for certain attributes.

Determination of small spatial scale variability could not be done using the Ward (1995)

sediment map or sparse samples, therefore, we suggested a simplified depiction of

seafloor region types in order not to speculate without supportive data. For new seafloor

explorations, it is likely that even less supportive or ground-truthing data will be
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available, therefore, we believe that maintaining a simple initial model is a practical

approach.
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