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ABSTRACT

A modified Stommel two-box model is considered as a minimal representation of the buoyancy-driven ocean
circulation. In the limit of fast temperature relaxation only the salinity evolves in time while the temperature
is clamped to the prescribed ambient value. The box model has no intrinsic variability: just two linearly stable
and one unstable equilibria. A finite perturbation is needed to shift the system from one stable equilibrium to
the other. The minimum amplitude and duration in time of the perturbation are calculated.

A stochastic component of the freshwater flux forcing is then added to model the effect of changes in the
global hydrological cycle due to the “weather.” The stochastic forcing is a source of extrinsic time dependence.
The salinity gradient obeys an equation analogous to the trajectory of a viscous particle in a double-welled
potential, subject to Brownian agitation. If the amplitude of the stochastic driving is above a certain threshold,
then there is a finite probability of switching from one stable equilibrium to the other. The threshold variance
and the average residence time in each equilibrium are calculated. For timescales on the order of the average
residence time or longer, the box model behaves like a random telegraph process.

The stochastic driving also induces a “rattling” around each steady equilibrium whose frequency is proportional
to the curvature of the potential well at each equilibrium. The probability of being in each well can be calculated
and, within each equilibrium, the box model behaves like an Ornstein-Uhlenbeck process.

Finally the spectrum of the salinity gradient is calculated analytically using standard approximations in
stochastic processes. The approximate analytical results are in excellent agreement with those obtained by direct
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computation.

1. Introduction

The point of view of this work is that the thermo-
haline circulation in the ocean is the result of the in-
terplay between the saline and thermal fluxes. Low
surface temperatures in the polar regions, and high
temperatures in the equatorial belt favor sinking at the
poles and upwelling at the equator. This thermal forc-
ing is opposed by the excess of precipitation and runoff
over evaporation at high latitudes, which induces a
freshwater flux opposing sinking near the poles.

Currently in the North Atlantic Ocean a deep ther-
mally direct circulation prevails, but paleoclimatic rec-
ords indicate that episodes of reduced circulation have
occurred, the most recent being during the Younger
Dryas (about 11 000 years BP) (Lehman and Keigwin
1992). One hypothesis is that the shutoff of the North
Atlantic deep circulation was triggered by a pulse of
meltwater that lasted about 1000 years (Fairbanks
1989). Numerical simulations of the thermohaline
circulation also reveal an acute sensitivity of the deep
transport, especially with respect to the freshwater flux
{Weaver et al. 1993). A variety of models, ranging from
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complex coupled ocean-atmosphere simulations
(Manabe and Stouffer 1988) to simple “box” models
(Stommel 1961; Welander 1986), has shown that the
competition between thermal and saline forcing results
in multiple equilibria. In certain parameter ranges there
are two stable solutions: one with strong and the other
with weak (or even reversed) circulation, depending
on differences in the initial conditions only.

A large body of work has shed much light on the
issue of multiple steady equilibria [cf. the review article
by Weaver and Hughes (1992)]. The question of uxn-
steady thermohaline dynamics is a richer and more
problematic one. It is useful to distinguish between in-
trinsic and extrinsic time dependence.

Intrinsic variability arises spontaneously, even when
the external forcing is steady. A simple example is We-
lander’s (1986) thermohaline loop. In certain parts of
the parameter space all of the steady solutions become
unstable and the model exhibits a limit cycle. A more
complicated example is Winton and Sarachik’s (1993)
study of centennial variability in a GCM.!

! Weaver and Sarachik (1991) document decadal variability in a
different GCM. These relatively high-frequency variations eventually
disappear and the model settles into a stable steady state, i.e., the
variability is transitory. The Lorenz equations exhibit a similar phe-
nomenology (metastable chaos).
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Extrinsic time dependence is driven by unsteady
forcing functions. An example is the centennial vari-
ability found by Mikolajewicz and Maier-Reimer
(1990) when they force a global ocean model with sto-
chastic (white noise in time) freshwater fluxes. The
variability found in the model is a 50 Sv (Sv = 10¢
m? s™!) pulsation in the transport of the circumpolar
current. The pulsation is an event whose duration is
roughly 320 years, but the time between these events
seems to be random and varies between 200 and 1000
years [see Fig. 8 in Mikolajewicz and Maier-Reimer
(1990)]. The model attenuates the high-frequency
band of the forcing and the spectrum of the response
is red, with a wide peak centered at 300 years. One
possible interpretation of these results is that the white-
noise forcing has excited a large-scale, weakly damped,
linear eigenmode of the system. Indeed the pulsation
is often characterized in these terms.

The simplest model consistent with this hypothesis
is Hasselmann’s (1976): the evolution of a single vari-
able, the average temperature of the ocean, is governed
by linear relaxation to a prescribed value. This is an
attempt to parameterize the ocean—-atmosphere feed-
back. If the prescribed temperature is a random variable
with zero mean (white noise in time), then the response
has a ‘“‘red spectrum” bounded in amplitude at all fre-
quencies. In this case there are no spectral peaks and
the amplitude of the response is directly proportional
to the size of the random forcing.

A second interpretation is that the pulsation found
by Mikolajewicz and Maier-Reimer (1990) is triggered
by some particularly large fluctuation in the stochastic
forcing that pushes the system from one stable config-
uration to another; that is, the system is fundamentally
nonlinear. In this case the response depends nonlinearly
on the amplitude of the random forcing and on the
parameters of the underlying deterministic dynamics.
This perspective has been used in energy balance mod-
els of the atmosphere’s climatic state by Sutera (1981)
and Nicolis and Nicolis (1981) [cf. Ghil and Childress
(1987) for a comprehensive review]. The same point
of view is adopted here to study extrinsic nonlinear
variability in the buoyancy-driven ocean circulation.
The competing effects of heat and salt allow mulitiple
equilibria, which can be randomly sampled in time if
the fluctuations of the external forcing are large enough.

Hasselmann’s model cannot be applied to study the
evolution of randomly forced salinity concentration,
because there is no direct ocean-atmosphere feedback
that limits the value of salinity. Nonlocal exchanges
between different latitudes are necessary to avoid un-
bounded accumulation of salt. The simplest model that
illustrates how the thermohaline circulation transports
properties latitudinally is the Stommel (1961) box
model (see Fig. 1). Bryan and Hansen (1993) have
examined the response of Stommel’s box model to sto-
chastic fluctuations of the thermal and saline forcing.
The underlying deterministic system has two stable
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steady states and the random driving moves the tem-
perature and salinity away from the initial equilibrium.
In the regime considered by Bryan and Hansen (1993)
the variance of the random forcing is not large enough
to push the system to the alternate equilibrium: ex-
ponentially decaying fluctuations around the initial
steady state are excited. White-noise forcing produces
a response with a peakless red spectrum for both tem-
perature and salinity. The thermohaline circulation
ensures that the salinity spectrum is bounded at low
frequencies. The temperature spectrum is saturated by
both the ocean-atmosphere feedback and the exchange
with other latitudes.

-2. The box model

In this section we reexamine the box model of Bryan
and Hansen (1993) in the regime where the stochastic
forcing is of intermediate amplitude. Box models can
be considered as very coarse finite difference approx-
imations of the continuum system, with a box for every
grid point. They are the simplest setting to study sto-
chastically forced systems.

Figure 1 shows the coarsest possible “GCM”: the
model ocean has two grid points. It models the verti-
cally averaged circulation in a single hemisphere. More
boxes can be added to model interhemispheric ex-
changes (cf. Rooth 1982) or to “increase the resolu-
tion,” but here we consider the minimal model that
exhibits multiple equilibria. Box 1 (the low-latitude
warm water) has temperature 7,;(¢) and box 2 (the
high-latitude cold water) has temperature 7,(¢). The
salinities are .S (¢) and S,(¢), respectively. The density
is related to the temperature and salinity by the lin-

earized equation of state
plpo =1+ as(S—S) —ar(T—Tp). (2.1)

The subscript 0 denotes the reference state around
which the linearization is done. We take p, = 1029

?F(t)/z T l Ft)/2 1
Q(Ap)/2

T, =62 To=-6n2
Q(Ap)/2

FIG. 1. The two-box model of Stommel (1961). The boxes rep-
resent two control volumes at different latitudes. Box 1 is the low-
latitude box where the relaxation temperature is 6/2, and box 2 is
the high-latitude box where the relaxation temperature is —6/2.
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kg m™3, T, = 5°C, and Sy = 35 psu, and we have ag
=0.75X 102 psu~'and ar = 0.17 X 1073°C~". The
conservation equations for the temperature and salinity
are

T, = —tr_l(Tl - g) - % Q(Ap)(T) — T3)
T, = _!:l(Tz +g) ‘%Q(AP)(Tz - T)
. F
$i =20 5~ L ocan)s, — s
F(1r)

$i= =57 SH-3080)(S:— 5. (22)
The exchange of mass between the two boxes is mod-
eled with the “exchange function” denoted by Q. We
suppose that the exchange function depends only on
the density difference between the two boxes, Ap
= as(S) — $3) — ar(T, — T,). Further we suppose
that Q is positive definite so that the transport of tem-
perature, salinity, and density are all downgradient.
Specific models for Q are discussed below. The tem-
peratures are forced using relaxation conditions to a
prescribed value # with a time constant ¢,, while the
salinities are forced with a prescribed flux F(¢). The
asymmetry between heat and salt arises purely from
the difference between these linear forcing functions:
to model atmospheric feedbacks one uses relaxation
forcing for Ty and T, while the salinities are forced
with a prescribed flux that represents imbalances
between evaporation and precipitation plus runoff
over each box. The depth of the model ocean is de-
noted by H.

Subtracting the equations in (2.2) gives a coupled
pair of equations for the salinity and temperature dif-
ferences between the boxes, AS = S, — S, and AT
= Tl - TZ’

dAr= —17Y(AT = 8) — Q(Ap)AT

dt
d, g FO o _
EAS— T So — Q(Ap)AS. (2.3)

The system above, together with the equation of state
(2.1) and a model for Q(Ap), is the final form of
Stommel’s two-box model.

Various models for the exchange functions are

Oi=1t7", Qy=1;"+V7qhpl,
Qs =17'+V7'q(Ap)*. (2.4)

The choice Q) corresponds to diffusion on a timescale
t4. It makes (2.3 ) linear so that, if F is constant in time,
there is a unique, steady, globally attracting solution.
The choice @, is Stommel’s original model, which is
based on a capillary tube analogy. With V the volume
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of the box, the transport of Poiseuille flow, g, is pro-
portional to the pressure difference. This nonlinear ex-
change function leads to multiple equilibria: in certain
parts of the parameter space, and with the flux F and
the control volume ¥ independent of time, (2.3) has
three steady solutions and two of these are linearly sta-
ble. In fact, all initial conditions eventually fall into
one of these two steady, stable attractors. Thus, with
the exchange function O, Stommel’s model has no in-
trinsic time dependence. The choice Qs 1s qualitatively
the same as Q,: V is the volume of the box and q is
proportional to the transport through advective pro-
cesses. If F and V are constant, then there can be three
steady equilibria, two of which are linearly stable. All
initial conditions eventually find one of these two at-
tractors, so that again there is no intrinsic time depen-
dence. The model Q3 will be used here because Cessi
and Young (1992) have shown that, in a particular
parameter range, Boussinesq convection leads to a
nonlinear exchange function with that form.

The system (2.3) is best dealt with in nondimen-
sional variables. We use the definitions

AT asAS

X==g wrd ’ t=t4'. (2.5)
Equations (2.3) become
X=—alx—1)=x[1 + p*(x — y)?]
y=p(t) =yl + p*(x - y)’]. (2.6)

We have denoted with « = 1,/1, the ratio of the diffusive
timescale and the temperature relaxation timescale.
We now estimate the order of magnitude of the non-
dimensional parameters «, u?, and p. A typical value
is t, =~ 25 days, while the diffusion time is set to be ¢,
= L?/(n%ky). [ The factor =2 arises because the gravest
solution of the continuous diffusion equation, satisfying
the condition of no lateral flux, is cos(wY/L).] With
a coefficient of horizontal diffusion «; = 1000 m® s~
and a meridional scale L = 8250 km, the diffusion
time is 219 years. This gives a ~ 3.6 X 103. The pa-
rameter u® = gt,(ar0)?/V corresponds to the ratio of
the diffusive timescale, 7,4, to the advective one, ¢!
= g(az0)?/V. The control volume is estimated as V'
= Lo, H, where 6, is the typical width of the western
boundary current. This choice is motivated by the hy-
pothesis that the western boundary current transport,
rather than the interior flow, determines the advective
timescale. The transport [in this notation given by
g(ar6)?] is taken to be that of the deep western
boundary current. With the present North Atlantic in
mind an appropriate value for the transport is 12
X 10 m®s~'. With H = 4500 m and é,, = 300 km,
the advective timescale is ¢, =~ 29 years, corresponding
to a boundary current velocity of about 0.9 X 1072
m s~!. These estimates lead to u? =~ 7.5. If the control
volume is estimated using the entire width of the North
Atlantic, the advective timescale is 1, = 320 years, that
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is, of the order of the diffusive timescale, a result at
odds with the notion that the present day transport is
dominated by advective processes.

The function

_ asSoly
" azfH

is the nondimensional freshwater flux and is decom-
posed in a time-averaged part p and a stochastic com-
ponent, p’(t), which fluctuates in time. The evaluation
of this quantity is difficult because the observations of*
precipitation and evaporation over the oceans are in-
adequate. An estimate for the present North Atlantic
freshwater flux, F, has been given by Schmitt et al.
(1989). If the contribution of the marginal seas is in-
cluded, F ~ 2.3 m yr~'. With § = 20°C, a reasonable
value is p ~ 1. The amplitude of the fluctuating part
depends on the timescale considered. Schmitt et al.
(1989), indicate that p’/p exceeds 3 on the seasonal
timescale. The amplitude on much longer timescales
is presumably smaller. However, here we will examine
the case where p’(¢) is stochastic white noise, as in
Stommel and Young (1993) and Bryan and Hansen
(1993) [both papers used the Stommel ( 1961 ) original
parametrization (J;]. This choice is certainly unreal-
istic. However, the response of simple dynamical sys-
tems to colored noise is a subject of current research
(e.g., Mannella and McClintock 1990), and would be
beyond the scope of this article.

The system (2.6) can be further simplified because
a is very large, while all the other parameters are O(1).
In this regime the temperature is approximately
clamped to the prescribed value and the solution of
(2.6a)is

F(1) (2.7)

x=1+0(a™"),
and, to a first approximation, (2.2b) becomes
=~[1+u*(y— 1D?ly+5+p' (1) + Oa™).
(2.8b)
The advantage of this limit is that, neglecting the cor-
rections of O(a), (2.8b) also describes the trajectory

of a viscous particle [with no inertia] in the double-
welled potential

(2.8a)

Y AN PN AN S

V(y)—;u(4 3Vt 2)+ 5 Py
subject to a Brownian force p’(¢). This is a classical
and well-understood problem in stochastic processes,
for example, Gardiner (1985). Its application [using
the exchange function Q,(z)] to the thermohaline
problem has been examined by Stommel and Young
(1993) in the range where the fluctuations are so strong
that all the statistical properties of y are independent
of the deterministic parameters u and p. Indeed the
expected value of y is independent of the amplitude of
p’(t): this is why this is termed a “regulating” regime.

(2.9)
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With no stochastic fluctuations, p’ = 0, the salinity
difference y always reaches one of the two stable equi-
libria located at the minima of the potential V' [see Fig.
2]. The third steady state, located at the maximum of
the potential V, is linearly unstable. In the limit of weak
stochastic fluctuations, analyzed by Bryan and Hansen
(1993), the system “rattles” around the initial equilib-
rium solution, but can never overcome the potential
barrier associated with the unstable steady state.

Here we will consider the regime where the fluctu-
ations are large enough to occasionally flip the system
from one stable equilibrium to the other, yet not so
large as to completely mask the underlying dynamical
structure of the deterministic system. Thus we examine
forcing whose stochastic component is of strength in-
termediately between that considered by Bryan and
Hansen (1993) and Stommel and Young (1993).

3. Deterministic perturbations

In this section we determine the minimum ampli-
tude and duration of a deterministic perturbation nec-
essary to shift the system, initially in a stable state, to
the alternate stable equilibrium. This is a useful exercise
before proceeding with the statistical description of the
stochastically forced system. The perturbation p’(¢) in
(2.8b) is assumed to have the simple form

0, <0
pi(ty= § A tsT (3.1)
0, t>r.

We assume that yis initially in the globally stable state,
Va4, of Fig. 2; that is, we set y(t < 0) = y,. This corre-
sponds to a state where the density difference between
the boxes, and thus the “transport,” is substantial. At
t = 0 the perturbation is switched on. In order for y to

0.00 T T T T T T

p=1
ur=62
" V-001 Yo q
Yo
Yo
-0.02 s 1 . 1 N t . 1 N 1
00 02 04 06 08 10 12

FIG. 2. The potential V defined in (2.9) as a function of the salinity
gradient y. The steady states of (2.8b) with p’ = 0 are extrema of V.
The global minimum, located at y, ~ 0.24 is linearly stable, as is
the local minimum at y, =~ 1.07. However, the latter is a metastable
equilibrium, and a generic finite amplitude perturbation will move
the system to y,. The maximum, located at y, ~ 0.69, is linearly
unstable.
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reach the alternate stable equilibrium, y,, characterized
by a weak density difference, it is sufficient that y is
just over the potential barrier at the unstable point y,
after the perturbation is switched off at t = 7. The first-
order equation (2.8b) can be integrated to give

Yb T
wip+a-y-uy- 01 = @ (32)
Ya

The integral in (3.2) gives the minimum duration of
the perturbation, 7, as a function of its amplitude, A,
and of the parameters p and . A typical graph of A
versus 7, for fixed p and g, is shown in Fig. 3. The most
important point is that there is a critical amplitude,
Ao(P, w), below which the alternate equilibrium is
never reached, even if the perturbation is applied for
an infinitely long time.

The critical amplitude Ay(p, p) is easily found by
the graphic construction shown in Fig. 4. If the system
is perturbed for an infinite time it will reach a new
steady state, y,, corresponding to the value of the
freshwater flux given by p + Ay. The new equilibrium
is at the inflection point of the potential ¥ shown in
Fig. 4. The system can just overcome the potential bar-
rier of the initial configuration, ¥ (y,) in Fig. 2, if the
new unstable equilibrium y; coincides with the per-
turbed stable state y,. In this case the potential well
has one inflection point and one minimum, y.. If A
> Ag, then the system moves past y, = y; and “rolls
down” to reach the alternate equilibrium y.. When
the forcing is switched off the minimum moves from
Ve to 3. and the system is in a stable steady state.
Straightforward algebra gives the expression for Ay:

2
P do= 2w+ (1= WP 43, (33)

Dimensional values can be restored using (2.7) for A.
The duration 7 is to be multiplied by the diffusion time,

4 18 18 20 22 24

FIG. 3. The minimum amplitude of a perturbation, as a function
of its duration, that will shift the system from the globally stable
equilibrium y, of Fig. 2 to the metastable state, y.. The perturbation
must exceed a critical amplitude, Ao, in order to displace the system
from y,, even if applied for an infinite time.
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P+A, =13
n: =862

0.0 0.3 0.8 0.9 12 16

FIG. 4. The critical perturbation, of amplitude A,, is found by
requiring that the perturbed potential, shown here as a function of
. has one minimum and one inflection point. The perturbed potential
is obtained by replacing g with 5 + A in (2.9) and requiring that the
global minimum y, of Fig. 2 becomes the inflection point y,.

taken here to be t; = 219 years. Here Ay = 0.2 corre-
sponds to a high-latitude freshwater flux of 0.4 m yr~"'.
Fairbanks (1989) estimates that the meltwater dis-
charge rate preceeding the Younger Dryas event
reached a maximum of 0.5 m yr™' (assuming that it
was uniformly distributed over half of the North At-
lantic). This value is very close to the critical pertur-
bation, A, obtained at 7 = 4.6 (corresponding to a di-
mensional value of 1000 years). Notice that Fairbank’s
estimate places the system very close to the critical am-
plitude below which no transition is possible. Thus, a
possible interpretation of the Younger Dryas event is
that a perturbation in the freshwater flux induced a
transition to an alternate equilibrium with reduced
meridional overturning [ the numerical experiments of
Wright and Stocker (1993) provide a more detailed
framework for the same hypothesis]. The calculation

“of this section indicates that the duration of the per-

turbation, as well as its amplitude, is a crucial parameter
determining whether a transition to the alternate state
occurs.

4. Statistical description of the stochastically forced
model

In this section we consider p’(¢) to be a random
number, and the response y is also a stochastic variable.
The state of the system is described in terms of its sta-
tistical properties by the probability density function
[PDF]é(y, t), which gives the fraction of salinity dif-
ferences in the interval (y, y + dy) at time ¢. Equation
(2.8b) is discretized in time with the Euler scheme,
and p’(¢) is randomly picked at every time step from
a Gaussian distribution with zero mean and variance

azs<p'2>, (4.1)

where the angle brackets indicate an ensemble average.
If dt is the size of the time step, then the autocor-
relation function is
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(1 =¢t/dt)e?, t<dl
0, t> dt.

In this way the correlation time of the stochastic forcing
is much shorter than the timescale of the deterministic
differential equation

(p'(s)p'(s+ 1)) = [ (4.2)

y=-V, (4.3)

with V given by (2.9) and the PDF ¢ evolves according
to the Fokker-Planck equation (cf. Gardiner 1985)

8¢ = 8,(V,¢) + D33 ¢. (4.4)

The diffusion coefficent, D, is determined by the sta-
tistical properties of p’, and is given by

D= J;ooafz<p’(s)p’(s +1)) =dte?/2. (4.5)

The PDF is found by solving the Fokker-Planck equa-
tion (4.4). A typical time series of the salinity difference
is shown in Fig. 5. Mostly y fluctuates in the vicinity
of the globally stable state y, or, less often, in the neigh-
borhood of the metastable state y.. For a time series
long enough to “forget” about the initial condition,
the PDF of the states is well described by the stationary
solution, ¢,, of the Fokker—Planck equation (4.4) given
by

¢s(y) = N exp(—V(y)/D). (4.6)

The normalization coefficent N is such as to make the
area under ¢,(y) equal to unity. The stationary dlistri-
bution ¢, is in good agreement with the distribution
of states obtained by direct computation (Fig. 6). Be-
cause D is much smaller than V except at the minima
of V' [cf. Fig. 2], the stationary PDF is bimodal, with
two peaks near the stable equilibria. Moreover the peak
centered at the globally stable state y, exceeds that at

LIS B SRS
p=11
i “2=62
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FIG. 5. A typical time series of y solution of (2.8b). At every time
step, of size df = 3.33 X 1073, the stochastic forcing is randomly
picked from a Gaussian distribution with zero mean and standard
deviation ¢ = 3.3. The values of pand u? are as in Fig. 2. The salinity
difference y spends most of the time in the neighborhood of the stable
states y, and y,.
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FI1G. 6. The stationary PDF (4.6) (dashed line) is in good agreement
with the PDF resulting from numerical simulation (solid line). To
estimate the “true” PDF we have binned the values of salinity dif-
ference shown in Fig. 5.

the metastable state y. by a factor of exp[(V(y.)
= V(y.))/D].

Remarkably, much information about the low-fre-
quency properties of the nonstationary PDF ¢(y, ¢)
can be obtained from the stationary distribution ¢,(y).
For example, it is possible to determine how long y(?)
takes to leave the neighborhood of the left-hand well
in Fig. 2. Because most of the time that a point takes
to go from one stable equilibrium to the other is spent
overcoming the potential barrier at the unstable point,
the detailed specifications of the initial value in the
left-hand well and of the final value in the right-hand
well are unnecessary. Therefore all the points to the
left of y, can be treated as members of an ensemble
and one can meaningfully define a “‘mean escape time”
from the left-hand well to the right-hand well. It is
approximately given by

1 Vb Ve
(lamc) =~ D f_wdyqbs(y) J; dxios ()17t (4.7)

Similarly the mean escape time from the right-hand
well to the left-hand well in Fig. 2 is given by

1 @© Ve
(tewa) =~ DJ, dyés(y) fy dxo(x)17'. (4.8)

The approximations in (4.7) and (4.8) are accurate
only if D < V() (e.g., Gardiner (1985), and in this
regime the integrals are easily calculated by Laplace’s
method '

<ta—>c> ~ 27([_Vyy(ya)Vyy(yb)]—]/2
X exp[(V(ys) — V(¥a))/ D],
<tc->a> ~ 27r[_Vyy(yc)Vyy(yb)]_l/2

X exp[(V(ys) = V(¥))/D].  (4.9)

Notice the strong dependence of the mean escape times
on D, which is in turn proportional to the variance of
the stochastic forcing as in (4.5).
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The probabilities N,(¢) and N.(t) of being in the
left-hand and right-hand well, respectively, are defined
as

Vi

Ny = | dvey, 1)

Ne(1) = : dyd(y, ). (4.10)

They are approximately governed by
Na(l) = —waNo(2) + we N (1)
NA(1) = —w.N(1) + waNy(2). (4.11)

The initial condition is N,(0) = 1 [N.(0) = 1] if the
point is in the left-hand (right-hand ) well initially, and
Na(1) + N.(t) = 1. The decay rates toward the minima
of the potential are inversely proportional to the mean
escape times:

wa = ({lasc)) ™'y we=({lmap)™". (4.12)

The approximate evolution equations ( 4.11), due to
Kramers, state that the “bulk” probability to be in the
neighborhood of a stable equilibrium is governed by
the equation for a random telegraph process. It ap-
proximates the low-frequency behavior of ¢(y, ¢) with
a process where only two states are permitted: y, with
probability N,(z) or y, with probability N.(¢) = 1
= N,(?). For times much longer than either mean es-
cape times, N,(¢) approaches the stationary probability

N, given by
Vo _ <la—’c 2
o(,dy(pS(y) - <la_>c> + <tc_.a> .

Similarly N,(¢) asymptotes to the stationary distribu-
tion

Ny = (4.13)

(leva)
(lame) + lewa)

The equilibration to the stationary distributions is a
slow process for weak stochastic forcing: the mean es-
cape times (4.9) become very long if the diffusion be-
comes small. In a GCM it may not be possible to in-
tegrate for a time long enough to achieve a statistical
steady state. Box models are simple enough to be in-
tegrated until their long-term statistics are reliable.

Neg= | dys(y) = (4.14)

5. The spectrum of the solution

At low frequencies the salinity jumps between the
two equilibria as described in the discussion surround-
ing (4.11). Thus we approximate the behavior of the
system with a random telegraph process where only
the states y, and y, are allowed. The time correlation
function of the random telegraph process governed by
(4.11) is (Gardiner 1985)
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y(0y(s))
_ 2
- wawcg"_—i’:))z exp[—(w, + w)|t — 5]1. (5.1)

The spectrum of y is the Fourier transform of the time
correlation function (5.1) and is given by

2wawc(ya - yc)2
(w, + w)[(w, + wc)z + (‘)2]

S(w) = [1 + O(w,dt)].

(5.2)

The approximate spectrum (5.2) is shown in Fig. 7
(dashed line) and, for small frequencies, is in excellent
agreement with that obtained from direct computations
(solid line).

Of course the random telegraph process is not a good
approximation of the details of the fluctuations around
the equilibrium states, but this “rattling” can be ap-
proximated by linearizing around each equilibrium.
This is the approach of Bryan and Hansen ( 1993).
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FIG. 7. The solid line shows the spectrum of y resulting from the
average of 20 numerical solutions of (2.8b) for different realizations
of the stochastic forcing. For each realization the parameters are the
same as in Fig. 5. At low frequencies the evolution of the salinity
difference is well approximated by a random telegraph process jump-
ing between the two stable states y = Y. and y = y. with average
escape rates given in (4.12). For the parameters used here, the escape
rates from the left-hand and right-hand well of Fig. 2 are w, = 1.07
X 1072 and w, = 3.20 X 1072, respectively. The analytic spectrum
for this approximation is plotted as a dashed line. At high frequencies
the salinity fluctuates around the equilibrium Y. with probability N,
[given in (4.13)] and around y, with probability (1 — N,). The
decay rate toward the equilibria is calculated by linearizing around
the steady states, and the spectrum is a weighted sum of the resulting
Ornstein-Uhlenbeck processes (shown here as a dotted line). The
decay rates toward the equilibria are Viy(¥a) = 2.32 and V,,(y.)
= 1.94,
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The fluctuations around the equilibrium y, can be
approximated by an Ornstein~Uhlenbeck process:
V="Vu(¥)y —ya) + p'(1), (5.3)
while near the state y,, the salinity evolves according
to
y= _Vyy(yc)(y_'yc) +p'(1). (54)
The spectra of the linear equations (5.3) and (5.4) are
easily calculated, as in Hasselmann (1976). Call §,(w)
the spectrum associated with the solution of (5.3).
Then
cldt
w?+ Vyy(ya)2 ]
Similarly, the spectrum associated with the fluctuations
around the equilibrium y,, &, is given by
oldt
w?+ Vyy(yc)2 )
Thus, for frequencies of the order of the linear decay

rates V,,(y,) and V,,(y.), the spectrum of y(¢) is ap-
proximately

Salw) = (5.5)

S(w) = (5.6)

§ =~ N8, + NS, (5.7)

where N, and N, are defined in (4.13) and (4.14).
Notice that the spectrum that results from considering
the fluctuations within each potential well has been
weighted by the stationary probability of being in that
well in order to find the total spectrum. The spectrum
(5.7) is plotted as a dotted line in Fig. 7 and for fre-
quencies w > O( 1) it agrees very well with the spectrum
obtained from the numerical solutions of (2.8b) (solid
line).

Notice that both (5.2) and (5.7) are “red spectra”
proportional to (22 + w?)™!. However, they are the
results of very different processes. At large frequencies
the forcing excites fluctuations that decay exponentially
in time and well described by the linearized Ornstein-
Uhlenbeck equations (5.3) and (5.4). Indeed the spec-
trum in this range is proportional to the amplitude of
the forcing. Low frequencies are dominated by a fun-
damentally nonlinear process and the dependence of
the spectrum on the amplitude of the forcing is given
by the factor ww.(w, + w:)~> in (5.2). The variance
o2, proportional to the diffusion D [cf. (4.5)], deter-
mines the height of the spectrum at low frequencies
through the relation

S ~ www, + w) 3

= (<la—>c><l0—>a>)2(<ta—>c> + <tc—-a>)—3, (58)

where the expressions for the mean escape times are
given in (4.9). For weak diffusion, D, the dependence
of the mean escape times is ~ exp(4/D), and the
amplitude of the spectrum increases as the diffusion
decreases. As the variance of the random forcing de-

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 24

creases the analytic approximation obtained by
“patching” (5.2) to (5.7) becomes more accurate. At
the same time numerical solutions of (2.8b) are very
demanding because the saturation frequencies decrease
rapidly as the diffusion D decreases. In Fig. 8 we show
the analytic predictions for the spectrum when the
variance o is half (dotted line) and twice (dashed line)
of that used in Fig. 7 (shown again as a solid line). At
high frequencies the amplitude of the spectrum scales
linearly with o2. However in the low-frequency range,
where nonlinearity is important, the amplitude of the
spectrum increases when the variance decreases. Notice
also that the saturation frequency increases by a factor
of approximately 23 when the variance is halved.

The analytic approximation obtained by patching
(5.2) and (5.7) fails when V' (y,)/D is of order 1 or
smaller. In that regime the jumps between equilibria
to the other are frequent and the double-well structure
of the potential is obscured. This is the regulating re-
gime studied by Stommel and Young (1993).

6. Conclusions

A thermohaline box model driven by prescribed
temperature and freshwater flux has been examined.

10°

10

FI1G. 8. The approximate analytic spectrum obtained by patching
(5.2) and (5.7) for different values of the variance of the random
forcing, o2. The solid line shows the spectrum for o = 3.3, the same
value used in Fig. 7. The dotted line is the spectrum for ¢ = 3.3/ Va:
the escape rates from the lefti-hand and right-hand well are w, = 4.61
X 10™* and w, = 4.50 X 1073, respectively. The smallest of the two
determines the saturation frequency of the spectrum. The dashed
line is the spectrum obtained for ¢ = 3.3v2: the escape rates are w,
=5.2 X 1072 and w, = 8.5 X 1072, In the high-frequency range, the
amplitude of the spectrum increases linearly with the variance, while
in the low-frequency range of the spectrum it decreases nonlinearly
as the variance is decreased.
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The dynamics are essentially the same as Stommel’s
(1961) model: the system always reaches one of two
possible stable equilibria. A finite amplitude pertur-
bation of the freshwater flux can shift the system into
the alternate state, and the minimum amplitude de-
pends on the duration of the disturbance. However,
the disturbance must be above a critical amplitude,
regardless of its duration, for a transition to occur. Us-
ing values of the parameters appropriate for the Youn-
ger Dryas event, the system can be switched from a
state with substantial overturning to a mode with very
weak transport. The suggestion that the Younger Dryas
event can be characterized as a transition between
equilibria has been advanced by Broecker et al. (1985)
and has been documented in GCM experiments (e.g.,
Wright and Stocker 1993). The virtue of the box model
is that the dependence on the parameters is easily es-
tablished. The results of section 3 indicate that the
freshwater perturbation preceding the Younger Dryas
event [as estimated by Fairbanks (1989)] was of the
same order of magnitude as the threshold below which
no transition is possible.

We have then considered the forcing to have a sto-
chastic component that induces occasional transitions
from one equilibrium to the other, as well as fluctua-
tions around each state. The evolution of the salinity
gradient is analogous to the trajectory of a viscous par-
ticle in a double-well potential and subject to Brownian
motion. This is a classical and well-understood problem
in stochastic processes when the spectrum of the fluc-
tuating forcing is white.

Not surprisingly the spectrum of salinity differences
does not exhibit a peak at any frequency. Because the
system does not have any intrinsic variability the white-
noise forcing induces a red spectrum saturated at low
frequencies. This does not necessarily imply that the
underlying deterministic dynamics is /inear, as in the
cases examined by Hasslemann (1976 ) and Bryan and
Hansen (1993). For low frequencies the nonlinear dy-
namics of the underlying deterministic system are im-
portant and the model behaves as a random telegraph
process. In this range the spectrum is proportional to
w™2. At high frequencies the deterministic system is
essentially linear and again the spectrum has a w2
range. The two ranges are differentiated by the depen-
dence on the amplitude of the stochastic forcing, a.

At low frequencies the nonlinearity of the system is
most important and the amplitude of the spectrum
is proportional to the mean escape time ()
~ exp(4c7?). For small amplitude of the random
forcing the mean escape time becomes very long and
this is a timescale that GCMs may not afford to resolve.
In the high-frequency range, where the system is es-
sentially linear, the spectrum’s dependence on the ran-
dom forcing’s variance is linear. This proportionality
dependence can be studied with GCMs.

In the example presented here the stochastic fluc-
tuations are taken to be of the same amplitude at all
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frequencies and quite large: o/p = 3. Because the spec-
trum of freshwater fluxes anomalies is certainly colored,
it is not possible to determine what value should be
used for comparison with present day data. However,
the analytic approximations for the mean escape times
can be evaluated for any value of o. Indeed the ap-
proximation (4.9) becomes more accurate as ¢ — Q.
For the parameters used in Fig. 7 the dimensional mean
escape times can be obtained through multiplication
by the diffusion time, estimated in section 2 to be ¢,
= 219 years. They are (f.,) X tq ~ 6840 years and
(tgwcy X tq =~ 20 470 years. As noted earlier the mean
escape times depend very strongly on the variance of
the stochastic forcing. If o2 is decreased by a factor of
2 and all the other parameters are left unchanged,
{tewqy increases by a factor of 7 and {,-..) by a factor
of 23.

Determining the relation between the spectrum and
the amplitude of the stochastic forcing in the low-fre-
quency range requires long integrations with different
values of the driving. This program is not feasible with
GCMs, and the sources of uncertainty are numerous
when analyzing observations. At present, simplified
models of limited complexity may be the only viable
tool to study the long-term statistical properties of ran-
domly forced flows.
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