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ABSTRACT

Starting from the assumption that the atmosphere is the primary source of variability internal to the midlatitude
atmosphere–ocean system on intraseasonal to interannual timescales, the authors construct a simple stochastically
forced, one-dimensional, linear, coupled energy balance model. The coupled system is then dissected into partially
coupled and uncoupled systems in order to quantify the effects of coupling. The simplicity of the model allows
for analytic evaluation of many quantities of interest, including power spectra, total variance, lag covariance
between atmosphere and ocean, and surface flux spectra. The model predicts that coupling between the atmosphere
and ocean in the midlatitudes will enhance the variance in both media and will decrease the energy flux between
the atmosphere and the ocean. The model also demonstrates that specification of historical midlatitude sea surface
temperature anomalies as a boundary condition for an atmospheric model will not generally lead to a correct
simulation of low-frequency atmospheric thermal variance.

This model provides a simple conceptual framework for understanding the basic aspects of midlatitude coupled
variability. Given the simplicity of the model, it agrees well with numerical simulations using a two-level
atmospheric general circulation model coupled to a slab mixed layer ocean. The simple model results are also
qualitatively consistent with the results obtained in several other studies in which investigators coupled realistic
atmospheric general circulation models to ocean models of varying complexity. This suggests that the experi-
mental design of an atmospheric model coupled to a mixed layer ocean model would provide a reasonable null
hypothesis against which to test for the presence of distinctive decadal variability.

1. Introduction

There is no doubt that the midlatitude atmosphere and
oceans form a coupled system, but how important is this
coupling on intraseasonal and longer timescales? It is
very difficult, if not impossible, to quantify from ob-
servations alone the relative importance of the atmo-
sphere and ocean in determining midlatitude low-fre-
quency variability. Any deduction of the relative im-
portance of the atmosphere and ocean will require ref-
erence (implicitly or explicitly) to an underlying
mathematical or statistical model. At the complex end
of the modeling spectrum, studies using realistic at-
mospheric general circulation models (AGCMs) have
been used to examine the impacts of coupling on the
natural climate variability in the midlatitudes (e.g.,
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Schneider and Kinter 1994; Manabe and Stouffer 1996;
Lau and Nath 1996; Bhatt et al. 1998; Bladé 1997;
Nitsche 1996). The methodology used in each of these
studies involves the comparison of two integrations of
the AGCM. First, the AGCM is integrated using a pre-
scribed sea surface temperature (SST) field (typically,
the observed annual cycle). The second integration al-
lows for interactions between the AGCM and either an
ocean general circulation model or a surface ocean
mixed layer model. Figure 1, reproduced from Manabe
and Stouffer (1996), illustrates a large, robust effect seen
in each of these studies: compared to the uncoupled
integration, the coupled model shows significant en-
hancement in the variance of the surface air temperature
(typically a doubling of the variance due to coupling),
with the increased variance arising mainly from changes
at low frequencies.

The original motivation for this paper came from the
results in Barsugli (1995, henceforth B95), which noted
the above effect on surface temperature variance in a
numerical model consisting of a two-level atmospheric
GCM with zonally symmetric boundary conditions run
with perpetual annual-mean insolation, and coupled to
a 50-m deep, global mixed layer ocean model. The mod-
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FIG. 1. The ratio of the standard deviation of the 5-yr-mean surface air temperatures from two runs
of the GFDL R15 AGCM: (fixed climatological SST)/(coupled to OGCM). [Reproduced from Manabe
and Stouffer (1996).]

el was designed to minimize variability in the Tropics
so that the variability due to intrinsic midlatitude at-
mosphere–ocean interactions could be isolated. B95
showed that the strong enhancement of thermal variance
(defined as variance in the temperature and associated
thermal wind fields) due to coupling occurs mainly for
timescales longer than the e-folding decay time for a
mixed layer temperature anomaly, tML, which is ap-
proximately 4 months for that numerical model. Here
tML can be estimated directly from the autocorrelation
function for SST anomalies, or by dividing the effective
heat capacity of the mixed layer by an empirically de-
rived coefficient relating net surface flux anomalies to
SST anomalies. Barsugli showed that coupling reduces
the overall variance of surface fluxes seen by the at-
mosphere, especially for timescales greater than tML.
Finally, B95 demonstrated that the structures of the at-
mospheric circulation and surface flux anomalies in the
midlatitudes were relatively insensitive to the atmo-
sphere–ocean feedback and argued that the primary ef-
fect of coupling was to ‘‘selectively enhance’’ the nat-
ural low-frequency variability in the midlatitude at-
mosphere through reduced thermal damping. The at-
mospheric structures most affected by coupling were
the quasi-stationary, equivalent barotropic Rossby
waves that dominate the low-frequency variability in
this model. Lau and Nath (1996) came to a similar con-
clusion regarding ‘‘selective enhancement’’ using the
GFDL AGCM [also confirmed by Bladé (1997) and
Nitsche (1996)], as do Bhatt et al. (1998) in their study
using the CCM1.

The strength and robustness of the above results from
various models lead us to ask: Can we explain the basic
effects due to coupling using a much simpler model?
This study is directed at answering that question, em-
ploying a simple, stochastically forced, coupled atmo-
sphere–ocean model. We start by reviewing the work

of Hasselmann (1976) and of Frankignoul and Hassel-
mann (1977), who considered the simplest stochastic
model of SST variability, dT/dt 5 F 2 lT. Here F
represents mixed layer forcing anomalies (with any con-
tribution by feedback removed), T the sea surface tem-
perature anomalies, and l a feedback parameter. They
assumed the power spectrum to F to be white (i.e., flat)
for frequencies lower than some high-frequency limit,
yielding a red spectrum for T. The SST spectra from
their stochastic model was shown to be a reasonable fit
to observed SST spectra in the northern Pacific Ocean
away from dynamically active regions. The term ‘‘feed-
back’’ as used in the above papers refers primarily to a
strong damping effect that surface fluxes are presumed
to have at low frequencies on an SST anomaly. Un-
ambiguous separation of the ‘‘forcing’’ from the feed-
back is a difficult matter. It is suggested in Frankignoul
and Reynolds (1983) that it is best to determine the
spectrum of F and the value of l indirectly by tuning
these parameters to fit the power spectrum of observed
SST. Nevertheless, they attempt to calculate some
‘‘known’’ terms in F directly as well. For illustrative
purposes, they then split F and l into ‘‘known’’ and
‘‘unknown’’ parts and calculate the lag-correlations be-
tween SST and the ‘‘unknown forcing,’’ from which the
feedback has not been entirely removed. Frankignoul
(1985) reviews this and other work on modeling at-
mosphere–ocean interaction in midlatitudes.

We approach the problem differently, creating a sto-
chastically forced coupled model, shown schematically
in Fig. 2. Our approach has several advantages. First,
as this is a coupled model, the feedback due to surface
heat fluxes will be built into the model. Second, we will
be able to consider feedback due to the atmospheric
dynamical response to SST anomalies, albeit in a very
approximate manner. Third, the coupled stochastic mod-
el can be easily configured to represent three commonly
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FIG. 2. Diagram of simple energy balance model on which Eqs. (1)
and (2) are based. See appendix A for definition of symbols.

used GCM experimental designs: coupled (slab mixed
layer), uncoupled (fixed climatological SST), and pre-
scribed time-dependent SST (from observations or a
coupled model). Finally, we have identified a plausible
candidate for a truly ‘‘white’’ forcing of the coupled
system in the nonlinear dynamical forcing of the free
atmosphere temperature equation. This forcing can be
seen in its purest form in an AGCM run with fixed
SSTs.1 We want to emphasize that the physics of the
surface heat fluxes in Frankignoul and Hasselmann
(1977) is the same as in our model, following naturally
from a linearization of the bulk formulas for surface
fluxes. However, our formulation emphasizes the role
of surface heat fluxes in reducing the internal damping
in the coupled ocean–atmosphere system at low fre-
quencies, allowing for greater thermal variance in both
the ocean and atmosphere. We will discuss the role of
surface fluxes in coupled and uncoupled models in more
detail in sections 3 and 4.

Simple coupled stochastic models are not new. For
example, Kim and North (1992) applied a coupled sto-
chastic energy balance model to study various aspects
of the coupled atmosphere–mixed layer–deep ocean sys-
tem, building on earlier work of North et al. (1983).
North and Cahalan (1981) briefly compare the expected
timescales for scenarios where an AGCM is run with
slab mixed layer, fixed SST, or surface energy balance
lower boundary conditions. Zubarev and Demchenko
(1992) use a coupled stochastic model similar to ours
to investigate the relative roles of atmospheric versus
oceanic stochastic forcing. Their formalism encom-
passes our model; however, the parameter values as-
sumed by these authors leads to excessive sensitivity to
coupling. Finally, highly idealized, deterministic un-
coupled models were used by Schopf (1985), Frankig-
noul (1985, §4), and Marotzke and Pierce (1997) to

1 Note that in one example Frankignoul and Hasselmann (1977)
use the barotropic vorticity equation to model uncoupled atmospheric
wind variability and use meridional velocity anomalies as a proxy
for anomalies in air–sea temperature difference. However, they do
not consider the role of the atmospheric dynamical response to SST
anomalies.

investigate the role of the atmospheric response to a
SST anomaly. These studies concentrate on the depen-
dence of the decay time of an SST anomaly on the
spatial scale of the anomaly. Frankignoul (1985) also
considers the quasi-steady coupled case.

The paper is structured as follows. In section 2 we
describe and analyze a stochastically forced coupled en-
ergy balance model that captures the basic effects of
coupling on low-frequency variability. In section 3 we
show power spectra of SST, atmospheric temperature
and surface fluxes, as well as lagged linear regressions
between atmospheric temperature and SST. In section 4
we present a discussion of the salient results from this
study along with their implications. In section 4c we
summarize results from several recent studies in which
coupled, uncoupled, and prescribed SST experiments
were performed using full atmospheric GCMs and dis-
cuss the results from these studies in light of the ex-
pectations from the simple model presented here. Con-
clusions are presented in section 5.

2. A simple stochastically forced energy balance
model of coupled variability

a. Model development

The model we propose to account for the basic effects
of coupling between the atmosphere and the ocean in
the midlatitudes is displayed schematically in Fig. 2. It
is a one-dimensional thermodynamic model for the up-
per (slab) ocean coupled to a graybody atmosphere. The
single spatial dimension represents a typical point in the
midlatitudes, although we also interpret the model vari-
ables in terms of individual horizontal modes of the
atmosphere–ocean system. There is an assumed random
forcing associated with the ubiquitous dynamical mo-
tions in the midlatitude atmosphere. The equations for
this model, linearized about the climatological mean
state, are as follows [see appendix A; also cf. Schopf
(1985)]:

˜dTa ˜ ˜ ˜ ˜g 5 2l (T 2 T ) 2 l T 1 F (1)a sa s o a adt

˜dTo ˜ ˜ ˜g 5 2l (T 2 T ) 2 l T . (2)o so s o o odt

Subscripts ‘‘a’’ and ‘‘o’’ refer to atmosphere and ocean
respectively; T̃ is the anomalous temperature; g the heat
capacity; ls the linearized coefficient of combined la-
tent, sensible, and longwave heat flux (values of lsa and
lso differ only slightly); and la, lo the radiative damping
of each component to space. Surface heat fluxes are
calculated using the surface air temperature T̃s. The term
F̃ represents the dynamical component of the forcing,
which we take to be stochastic.

We assume that the surface air temperature anomaly
is linearly related to the free atmosphere temperature
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TABLE 1. The standard parameter values as defined in the text and
in appendix A.

Parameter Value Parameter Value

ga

go

lsa

lso

la

lo

l

1 3 107 J m22 K21

2.0 3 108 J m22 K21

23.9 W m22 K21

23.4 W m22 K21

2.8 W m22 K21

1.9 W m22 K21

20 W m22 K21

a
b
c
d
b
|N|

z [ [
ad ad

a bc

1.12
0.5
1
1.08

20
1

2.42

anomaly, T̃s 5 cT̃a. We take the Fourier transform (t →
v) of Eqs. (1) and (2) and divide through by lsa to yield

isT 5 2aT 1 T 1 F(s) (3)a a o

ibsT 5 cT 2 dT . (4)o a o

We have made the following substitutions: s 5 gav/
lsa, a 5 la/lsa 1 c, d 5 lo/lso 1 1, b 5 (go/ga)(lsa/
lso), and F 5 F /lsa. A tilde denotes a time-domain
variable, and an unadorned variable the corresponding
Fourier transform variable. Explicit reference to the in-
dependent variables t and s will be used only for em-
phasis or to avoid confusion. The derivation of Eqs. (1)
and (2) from a more detailed energy balance model is
presented in appendix A, where reasonable values of
the model parameters are also justified. These parameter
values, shown in Table 1, will be referred to as the
‘‘standard parameters’’ and are used in the examples to
follow.

Equations (3) and (4) as they stand are not suitable
for comparing coupled and uncoupled systems because
the dynamical forcing term F includes the effects of
coupling and will differ between coupled and uncoupled
runs. To illustrate this point, we calculate the power
spectrum of Ta. From Eq. (3) we have

|(is 1 a)|2|Ta| 2 5 |F| 2 1 |To| 2 1 1 ToF*,FT*o (5)

where * denotes complex conjugation. The term |Ta| 2 is
the power spectral density for atmospheric temperature,
and is the Fourier transform of the lag-covarianceFT*o
function between F and To. The lag-covariance terms
in Eq. (5) indicate that we must account for the depen-
dence of F on To in our theory of the effects of coupling.

In the analysis that follows we will split the dynamical
forcing into an SST-forced deterministic part and a pure-
ly random part as follows: F 5 (b 2 1)To 1 N, where
b is a real constant. We have assumed that the dynamical
response is proportional to the SST anomaly at the low
frequencies of interest. We assume that the power spec-
trum of N is independent of the coupling to the ocean,
hence ‘‘inherent’’ to the atmosphere. When substituted
into Eq. (3), the total ‘‘thermal’’ and ‘‘dynamical’’ re-
sponse becomes bTo, and we will refer to b as the ‘‘at-
mospheric response parameter.’’ In actuality the tem-
perature response of the free atmosphere to diabatic
heating is accomplished largely by dynamical adjust-

ment; therefore we will focus only on the total response
in the rest of this paper.

With the above assumptions about the atmospheric
response, Eqs. (3) and (4) are in the standard form of
a two-variable linear system (with stochastic forcing
only in the atmosphere equation)2:

isT 5 2aT 1 bT 1 N (6)a a o

ibsT 5 cT 2 dT . (7)o a o

The coefficients a and d represent damping of the at-
mosphere and ocean respectively, and the coefficients
b and c represent the coupling between atmosphere and
ocean. At this point it is useful to define a coupling
coefficient

a 5 bc,

which represents the feedback due to atmosphere–ocean
coupling, and a stability parameter

z 5 ad/a,

which results from the competition between this feed-
back and damping. Note that the atmospheric damping
parameter, a, contains a dependence on the parameter c.

b. Methodology

The design of the numerical experiments in B95 will
be repeated using the simple model presented in this
paper. This design consisted of three model runs as fol-
lows.

1) Coupled: The coupled model was run first.
2) Uncoupled: (a) The atmosphere model was run with

SST fixed to be the zonal mean of the climatology
of the coupled run. (b) The slab mixed layer model
was integrated in diagnostic mode, forced with the
time history of winds and temperatures from run 2a.

3) MOGA [Midlatitude Ocean, Global Atmosphere, af-
ter Lau and Nath (1994)]: (a) The atmosphere model
was run with SST prescribed to be the time history
of SSTs from the coupled run. (b) The slab mixed
layer model was integrated in diagnostic mode,
forced with the time history of winds and temper-
atures from run 3a.

Equations (6) and (7) can be used to model the cou-
pled, uncoupled, and MOGA experiments as follows.
The ‘‘coupled’’ model (denoted by superscript C) solves
Eqs. (6) and (7) as a coupled set:

C C Cs T 5 bT 1 N (8)a a o

C Cs T 5 cT . (9)o o a

2 For illustrative purposes, an even simpler system may be con-
structed by replacing Eq. (6) with Ta 5 M 1 bTo, where M is a
stochastic process with a specified power spectrum, perhaps derived
from the output of an uncoupled GCM run.
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FIG. 3. Power spectrum of 5-day-mean vertical-mean atmospheric
potential temperature from a long run of the two-level model of B95
with fixed SSTs (thin line). Spectral estimates are the average esti-
mates from 16 records of 2500 days each, using a Hanning window.
No significance is claimed for any individual spectral peak. The thick
line is the best-fit stochastic model spectrum from Eq. (16), with
damping timescale of 2 days.

Given NC, one can solve for and . We have in-C CT Ta o

troduced the abbreviated notation sa 5 (is 1 a) and
so 5 (ibs 1 d). For the ‘‘uncoupled’’ system, denoted
by superscript U, we get the following set of equations:

U Us T 5 N (10)a a

U Us T 5 cT . (11)o o a

Equation (10) was obtained by setting To 5 0 in Eq.
(6), since SST is fixed at climatological values. Given
NU, one can solve for . Equation (11) is the diagnosticUT a

equation for a ‘‘slave ocean’’ driven by the uncoupled
atmosphere, which we solve to get . Finally, to modelUT o

the prescribed SST experiment (MOGA, denoted by su-
perscript M), we set To 5 in the atmosphere equationCT o

and use the MOGA atmosphere to force a ‘‘slave’’
mixed layer ocean, yielding the following equations:

M M Cs T 5 N 1 bT (12)a a o

M Ms T 5 cT . (13)o o a

In addition, we assume that NM and are uncorrelated.CT o

Recall that the direct effect of the prescribed SST on
the dynamical forcing, including any reorganization of
the atmospheric eddy fluxes, is accounted for by the
dynamical response term (b 2 1) . This latter as-CT o

sumption will simplify the calculation of power spectra
for the case of prescribed SST and is, in fact, central
to the success of this simple model.

We have assumed that the natural variability of the
atmosphere is unaffected by coupling to the surface.
Mathematically, N M , N U , and N C should be consid-
ered as separate realizations of the same random pro-
cess, with the same power spectra. The superscripts
on N included in Eqs. (8)–(13) only clarify the above
assumption and will be dropped for all the following
calculations. The models in Eqs. (8)–(13) are formally
equivalent to linear Markov processes. The uncoupled
system can be cast as one-dimensional Markov pro-
cesses: as a first-order process, and as a second-U UT Ta o

order process. The coupled system can be cast as a
two-dimensional, first-order Markov process, and the
MOGA system as a four-dimensional, first-order Mar-
kov process, subsuming the coupled system. However,
we have chosen to keep the models in a form that
highlights the physical parallelism between the sys-
tems.

The methodology of the coupled, uncoupled, and
MOGA experiments as expressed in Eqs. (8)–(13) il-
luminates the effect of coupling the atmosphere and
ocean in the midlatitudes. The results of the uncoup-
led experiment, along with the diagnostic SST field,
serve as the ‘‘uncoupled null hypothesis’’ against
which we test for the basic effects of thermal cou-
pling. Our analysis of the MOGA experiment has
bearing on understanding the role of midlatitude SST
anomalies in seasonal climate prediction. In addition,
the MOGA experiment aids in the interpretation of
the role of the midlatitudes in the simulations done

as part of the Atmospheric Model Intercomparison
Project (Gates 1992), in which the global historical
SST field was specified as a boundary condition for
realistic AGCMs. These diagnostic mixed layer model
experiments provide a ‘‘common currency’’ for com-
paring the atmospheric variability in the coupled, un-
coupled, and MOGA runs in terms of the effect of
the atmosphere on SST variability.

c. Comments on the stochastic forcing and the
coupling parameters

The noise forcing N(s) and the coupling parameters
b and c represent the distillation of complicated at-
mospheric dynamics and deserve further comment.
Figure 3, adapted from B95, shows that the low-fre-
quency portion of the spectrum of atmospheric tem-
perature from a long integration of the two-level mod-
el is well approximated by Eq. (16), assuming white
noise forcing and a total damping timescale of about
2 days. The salient features reproduced are the flat
spectrum at low frequencies and the drop-off toward
higher frequencies. The damping timescale is about
half that of the ‘‘standard parameters,’’ with the dis-
crepancy probably due to neglecting the dynamical
damping term discussed in appendix A, although the
choice of an effective heat capacity of the atmosphere
is also an issue. Equation (10) is not meant to be a
sophisticated model of atmospheric low-frequency
variability but only an approximate representation
that we use as a starting point to illustrate the effects
of coupling.

We reiterate that nonlinear potential vorticity dy-
namics is driving the low-frequency variability of the
atmosphere. The ‘‘noise’’ therefore results from the
nonlinearities in the equations of motion, as well as
from the representation of a multidimensional system
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in terms of one variable. For this simple model, we
focus solely on the thermal component of the potential
vorticity forcing because numerical experiments lead
us to believe that the greatest effect of coupling will
be on temperature (and associated thermal wind) vari-
ance, which we refer to as ‘‘thermal variance.’’ For
simplicity, in the analytic calculations presented in
sections 3b–d we will assume N to be white noise of
unit amplitude.

We have parameterized the atmospheric response to
an SST anomaly as bTo, which includes the linear dy-
namic and diabatic response as well as the portion of
the nonlinear response that can be linearly parameter-
ized in terms of SST. Based on B95 we expect the dy-
namical portion of the response to act generically as a
negative feedback, with atmospheric heat fluxes par-
tially offsetting the diabatic effects of an SST anomaly.
That is, we expect that 0 , b , 1. (Other possibilities
are discussed in section 4a.) The simplest measure of b
is obtained by solving the time mean of Eq. (12) for
the case of a GCM with steady SST anomaly forcing
(superscript ‘‘S’’):

5S SaT bTa o

[cf. Zubarev and Demchenko (1992), with their X̂Y

equivalent to our b, and ŶX 5 c]. In a similar vein,
one can estimate the atmospheric response from the
linear regression of the atmospheric response to time-
varying SST anomalies, choosing an appropriate mid-
latitude SST anomaly index as the basis for the re-
gression. Barsugli does just that for a two-level ide-
alized atmospheric GCM, and shows that the local
free-atmosphere temperature response is roughly 0.5
Kelvin per degree of SST anomaly. Because a ø 1,
it is reasonable to choose b ø 0.5 as a bulk measure
of the free atmosphere temperature response. A good
indication of the effects of the nonlinear dynamical
feedback in the two-level model of B95 can be ob-
tained by comparing the linear and nonlinear re-
sponses to typical SST anomalies. The linear response
to the same SST anomaly is roughly twice that of the
nonlinear response and has similar horizontal struc-
ture in the region of the largest SST forcing, indi-
cating that the nonlinearity is acting primarily as a
damping on the linear response.

The proportionality between Ta and Ts can be esti-
mated from the low-frequency variance of the uncoup-
led diagnostic ocean, Eq. (11), which is forced by the
uncoupled atmosphere:

d2| | 2 5 c2| | 2.U UT To a

Comparing the low-frequency portion of the spectra
of SST and of the vertically integrated potential tem-
perature from the two-level model of B95 indicate an
approximate value of c ø 0.8 for that measure of the
free atmosphere temperature. For simplicity of inter-
pretation, we will assume c 5 1 for the standard pa-
rameters.

In general, the coupling coefficient a will depend on
the vertical structures of the uncoupled atmospheric
variability, of the stochastic forcing, and of the diabatic
effects associated with coupling, and on how well these
project on one another. These dependencies in turn are
a function of the horizontal structure of low-frequency
variability. In light of this complexity we view a as a
characteristic coupling coefficient for the entire coupled
system. We have chosen the vertical mean temperature
as the appropriate free atmosphere temperature variable
because of the dominant role played by equivalent bar-
otropic, quasi-stationary structures in low-frequency
variability. Later we shall see how deep and shallow
atmospheric modes can be interpreted in terms of vary-
ing strengths of this coupling coefficient.

3. Solutions

a. Power spectra in the coupled, uncoupled, and
MOGA systems

As noted above, the stochastic model can be used to
interpret coupled, uncoupled, and MOGA experiments.
The stochastic model allows us to predict how coupling
affects variance (power) in the three experiments. In the
coupled case (superscript C) we solve the coupled set
of Eqs. (8) and (9) for the power spectral densities (s)CPa

5 | | 2 and (s) 5 | | 2 as follows:C C CT P Ta o o

2 2|s | |N |oCP 5 (14)a 2|s s 2 a|a o

2 2c |N |
CP 5 . (15)o 2|s s 2 a|a o

For the uncoupled (superscript U) case we solve Eq.
(10) for the atmospheric power spectrum. The power
spectrum for , the slave ocean temperature, followsUT o

from the diagnostic ocean equation (11). In that case
we get for the power spectra:

2|N |
UP 5 (16)a 2|s |a

2 2c |N |
UP 5 . (17)o 2|s s |a o

For the MOGA case (superscript M), we solve Eq. (12),
assuming that N and are uncorrelated. Thus, whenCT o

we calculate the power spectrum of the cross-termsMT a

between N and are zero. As in the uncoupled case,CT o

the MOGA atmosphere is used to force a slave mixed
layer ocean. The power spectra for the MOGA case are
as follows:

2 2|N | |a|
MP 5 1 1 (18)a 2 21 2|s | |s s 2 a|a a o

2 2 2c |N | |a|
MP 5 1 1 . (19)o 2 21 2|s s | |s s 2 a|a o a o
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FIG. 4. Power spectra of atmosphere and ocean temperature for the coupled, MOGA, and
uncoupled cases. The standard parameters (see Table 1) are used.

Plots of these quantities are shown in Fig. 4 for the
standard parameters, with N assumed to be white noise
with unit amplitude. Note that the uncoupled atmo-
sphere power is pure ‘‘red noise’’—the result of a first-
order Markov process with autocorrelation time of a21,
or in dimensional units, t a 5 ga(lsa 1 la)21. For the
standard parameters t a ø 4 days.

We are now in a position to draw some general con-
clusions about variance in coupled and uncoupled runs.
The MOGA power spectrum for either atmosphere or
ocean temperature can be expressed in terms of the re-
spective coupled and uncoupled power spectra as fol-
lows:

2|a|
M UP 5 P 1 1 (20)a,o a,o 21 2|s s 2 a|a o

2 2|s s 2 a| 1 |a|a oM CP 5 P . (21)a,o a,o 2|s s |a o

At this stage we have not assumed anything about the
shape of the spectrum of the forcing term N. We can
see that at all frequencies, both the coupled and MOGA
runs have more variance than the uncoupled run, at least
for reasonable values of a. The comparison of the
MOGA and coupled runs is more complicated. For low
frequencies, bs 2 , ad, the coupled variance exceeds
the MOGA variance. For higher frequencies, the direct
forcing by the SST anomalies exceeds the internal vari-
ance. However, due to the long timescales associated
with the ocean there is little power at these higher fre-
quencies.

It is instructive to consider the ratios of variance be-
tween different systems in the limit as s → 0 (or equiv-
alently, v → 0) as follows:

2z
C,Ud 5 (22)

2(z 2 1)

1
M,Ud 5 1 1 (23)

2(z 2 1)
2z

C,Md 5 , (24)
2(z 2 1) 1 1

where z 5 ad/a as before. We have defined the ratio
dC,U 5 PC(0)/PU(0), with the other ratios defined anal-
ogously, and have dropped the subscripts because these
ratios are the same for the atmosphere and ocean vari-
ables. (This equality of variance ratios does not nec-
essarily hold in more realistic models, as discussed in
section 4a.) The ratio of power at low frequencies de-
pends only on the stability parameter z. A plot of the
above power ratios as a function of z is shown in Fig.
5. The standard parameters correspond to z 5 2.42, and
this value is indicated by a vertical line in the plot.

As previously mentioned, z is a stability parameter
for the coupled system. For z . 1, the coupled system
is stable, and the power in the system is maintained by
the stochastic forcing. Large values of the stability pa-
rameter, z k 1, correspond to either large damping, large
negative atmospheric feedback, or inefficient coupling
between the free atmosphere and the surface. In this
case the MOGA variance approaches the uncoupled
variance, while the coupled variance approaches the un-
coupled variance, though much more slowly. In the limit
as z → 1, which is off the scale of Fig. 5, the coupled
and MOGA variances become equal, and both approach
infinity. This limit corresponds to the unrealistic case
where positive atmospheric feedback completely coun-
teracts damping. Even in the case where we allow no
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FIG. 5. Ratio of power in SST between the coupled and uncoupled
(solid line), coupled and MOGA (dashed line), and MOGA and un-
coupled (dash–dot line) cases in the limit as the frequency v ap-
proaches zero. The thick vertical line at z 5 2.42 indicates the stan-
dard parameters.

FIG. 6. Ratio of total variance between coupled and uncoupled runs
for SST (solid line) and atmospheric temperature (dashed line) as a
function of the stability parameter z.

atmospheric dynamical feedback (i.e., we allow only
the ‘‘thermal’’ response of the atmosphere so that b 5
1, resulting in z 5 1.25 for the standard parameters),
we get excessively large ratios between coupled and
uncoupled runs. For z , 1, we have linearly unstable
atmosphere–ocean interaction for which the stochastic
model proposed here is inappropriate.

b. Integrated variance

The differing effect that coupling has on the atmo-
sphere versus the ocean can be seen if we take the in-
tegral over all frequencies in Eqs. (14)–(19) to get the
total variance. We will assume white noise forcing of
unit amplitude (i.e., |N| 5 1) to simplify the integration.
The results for the uncoupled case are the simplest (see
e.g., CRC Math Tables):

` p
UP ds 5 (25)E a 2a0

` p
UP ds 5 , (26)E o 2 ˜ ˜2b ad(a 1 d)0

where d 5 d/b. For the coupled system we will show˜
only the ratio of the total coupled power to the total
uncoupled power, where we define

` `

C,U C UD 5 P ds P dsa E a E a@
0 0

(the corresponding ratios for oceanic variance and for
the MOGA system are defined analogously). The in-
tegrals for the coupled and MOGA systems are more
complicated than for the uncoupled system. The exact

results are shown in appendix B. If we expand the exact
results in the small parameter « 5 d/(ab), keeping only
the leading order in «, we get

«
C,U 2D 5 1 1 1 O(« ), (27)a z 2 1

z
C,UD 5 (exact), (28)o z 2 1

where z is as before; is plotted as a function of zC,UDo

in Fig. 6. For the standard parameters, 5 1.03 andC,UDa

5 1.71. The parameter « is proportional to ga ,C,U 21D go o

the ratio of the effective heat capacity of the atmosphere
to that of the ocean mixed layer. Therefore, « is inversely
proportional to the mixed layer depth h. The corre-
sponding ratios for the MOGA case are as follows:

«
M,U 2D 5 1 1 1 O(« ) (29)a z(z 2 1)

1
M,UD 5 1 1 1 O(«). (30)o (2z 2 1)(z 2 1)

Because the bulk of atmospheric variability lies in
higher frequencies where coupling has little effect, the
ratio of coupled to uncoupled total atmospheric variance
is near unity. On the other hand, the bulk of model
oceanic variance is at low frequencies where the effect
of coupling is strong, so the ocean ratio is substantially
greater than 1. This reflects what happens in the two-
level model of B95, as the total atmospheric variance
is only slightly affected by coupling, but the oceanic
variance is substantially increased by coupling (see sec-
tion 4c). The effect of coupling on the total oceanic
power is strictly independent of « in the model presented
here, and thus is independent of the mixed layer depth.
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FIG. 7. Power spectra of surface flux, defined as Q 5 Ts 2 To, for coupled, MOGA, and
uncoupled cases using the standard parameters. The fluxes into the atmosphere (↑), the fluxes
into the diagnostic ocean model (↓), and the coupled fluxes (]) are shown. The symbols are
defined in section 3c.

FIG. 8. Autocorrelation function for atmospheric temperature (thick
lines) and SST (thin lines) for the coupled (dash–dot), MOGA
(dashed), and uncoupled (solid) cases.

c. Surface flux spectra

We can compute the power spectra of surface fluxes
in a straightforward manner from the model equations
(8)–(13), so the formulas are not shown here. For the
coupled system, we define [ 2 5 2C C C CQ T T cT] s o a

to be scaled symmetric surface flux. For convenience,CT o

we are neglecting the terms in the surface fluxes, that
are not proportional to the air–sea temperature differ-
ence. If these terms were included, the fluxes that force
the ocean would strictly go to zero for v → 0, but
otherwise the discrepancy is small. For the MOGA sys-
tem, there are two sets of fluxes, those that force the

atmosphere (with SSTs specified from the coupled mod-
el), 5 2 , and those that force the diagnosticM M CQ T Ts o↑
ocean, 5 2 . Likewise, for the uncoupledM M MQ T Ts o↓
system we have 5 and 5 2 . TheseU U U U UQ T Q T Ts s o↑ ↓
power spectra are plotted in Fig. 7. At low frequencies
the fluxes that force the ocean satisfy . . ,C M UQ Q Q] ↓ ↓
as in B95. Given the simplicity of our ocean model, it
is therefore not surprising that the resulting SST vari-
ance follows the same ordering. Also, at low frequencies

. . This relation is a manifestation of the reducedU CQ Q]↑
thermal damping in the coupled system, and it agrees
with the numerical model results of B95 and Bhatt et
al. (1998). Finally, . at low frequencies. ThatM UQ Q↑ ↑
is, there is a large excess of power in the low-frequency
fluxes that the MOGA atmosphere sees, compared to
those that the uncoupled and coupled atmospheres see.
This result was somewhat unexpected in the numerical
experiments of B95, particularly in light of the fact that
both the atmospheric and oceanic thermal variance of
the MOGA run were intermediate between the uncou-
pled and coupled runs. In the present model, this excess
is a direct result of assuming that a large fraction of the
‘‘natural variability’’ is independent of the prescribed
SST anomalies. The implications for one-way forced
experiments using numerical models are discussed in
section 4b.

d. Lag covariance

Figure 8 shows the autocorrelation functions for To

and Ta for the three systems with the standard param-
eters. The autocorrelation functions are simply the nor-
malized Fourier transforms of the power spectra shown



486 VOLUME 55J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 9. Lagged linear regression between Ta and To. Curve a: ,UT a

; curve b: , ; curve c: , ; curve d: , .U M M C C M CT T T T T T To a o a o a o

in Fig. 4. Clearly, coupling significantly increases per-
sistence of both atmospheric and oceanic temperature
anomalies. Likewise, the lag covariance between To and
Ta is the Fourier transform of Ta , where the asteriskT*o
denotes the complex conjugate. The derivation of for-
mulas for lag-covariance from Eqs. (8)–(13) is straight-
forward and is not shown. The lag-covariance function
can then be used to derive the lag-linear regression func-
tion, which is shown in Fig. 9. Atmospheric variance,
which is strongly dependent on averaging period, does
not appear in the denominator of the linear regression,
reducing the sensitivity of this measure to the averaging
period used.

Four curves are shown in Fig. 9. The uncoupled case
(curve a) shows strong asymmetry in lag. This asym-
metry is characteristic of a system with large thermal
inertia (the ocean), forced by a stochastic system with
a fast decorrelation time (the atmosphere), as seen in
Hasselmann (1976). The MOGA and coupled systems
(curves b and c) show a progressively larger component
that is symmetric in lag. The regression between the
prescribed SST and the MOGA atmosphere (curve d)
is almost entirely symmetric in lag. This symmetry is
the result of the assumption that the effects of SST
anomalies on the atmosphere are instantaneous. The
analogous lag correlation functions (for pentad means)
are similar in shape to those in Fig. 9, but with maximum
correlations of around 0.4 for curves a–c and 0.1 for
curve d. These curves are consistent with the lagged
linear regression maps for these four cases shown in
B95. For the standard parameters, the lag-correlation
peaks for atmosphere leading ocean by about 10 days,
a little more than twice the decorrelation time of the
atmosphere.

4. Discussion

a. General comments about coupling to slab mixed
layers

To put the effects of coupling in a larger framework,
consider an atmospheric GCM coupled to a slab mixed
layer ocean of constant depth h. The value of h deter-
mines the nature of the lower boundary condition on
the atmospheric thermodynamic equation. In the ex-
treme case of h → 0, the lower boundary condition
becomes an instantaneous surface energy balance
(SEB). The other extreme, h → `, corresponds to fixed
SST, where atmospheric temperature anomalies of all
frequencies are damped equally by surface fluxes. The
fixed SST case should exhibit the most damping due to
surface fluxes, and the SEB case the least. For inter-
mediate values of h the coupling acts to damp only high-
frequency atmospheric temperature anomalies. For
timescales longer than tML, the SST can adjust to at-
mospheric temperature anomalies and the surface fluxes
are reduced to near zero. As h → 0, the timescale of
the mixed layer becomes comparable to or shorter than

the synoptic timescale in the atmosphere. Because bar-
oclinic conversion is the ultimate source for much of
midlatitude variability, the entire spectrum of variability
may be affected. Therefore, we have avoided consid-
eration of the SEB case. Instead we chose the other
extreme, h → ` (the ‘‘uncoupled’’ system, with fixed
SST) as the basis for comparison with the other systems.

In the coupled and uncoupled cases, Eqs. (8)–(11),
the stochastic dynamics of the atmosphere is the only
source for low-frequency variability in the coupled mod-
el. In the MOGA framework however, the prescribed
SST anomalies act as an additional external forcing at
low frequencies [see Eqs. (12) and (13)], so we expect
that the MOGA run will have more variance than the
uncoupled run with its fixed, zonally symmetric SST.
The question is ‘‘How much more?’’ It seems reasonable
to assume, as we have done, that the bulk of the mid-
latitude nonlinear atmospheric variability is uncorrelat-
ed with the prescribed SST anomalies, at least for SST
anomalies of modest amplitude. Evidence of this in a
more realistic model is seen, for example, in the pre-
dictability study of Miller and Roads (1990), where in-
clusion of actual SST anomalies in midlatitudes did little
to enhance predictability. Hence, it is not surprising that
the MOGA atmosphere temperature variance is less than
the coupled model variance. For example, Eq. (24) with
the standard values for the parameters indicates that the
low-frequency variance should be 1.93 times greater in
the coupled framework than in the MOGA framework.

Barsugli (1995) argues that large responses to SST
anomalies are not generic to atmosphere–ocean cou-
pling, but rather depend on the special circumstances
involving such factors as the climatological mean sta-
tionary waves, the position of the SST anomalies, or
land–ocean temperature contrasts. Two commonly seen
responses of realistic AGCMs to prescribed SST anom-
alies are a surface-trapped low over a warm SST anom-
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aly and an equivalent barotropic high downstream from
a warm SST anomaly (Palmer and Sun 1985; Peng et
al. 1995). Both of these responses are consistent with
the simple model presented in this paper, provided that
the interaction is stable. A large barotropic response
would indicate that SST anomalies couple effectively
to natural barotropic variability of the atmosphere, prob-
ably through precipitation or eddy fluxes, resulting in a
large effective value of b. Some models (e.g., Latif and
Barnett 1994; Palmer and Sun 1985) show evidence of
a large positive feedback; that is, a . ad. Such a linearly
unstable system is not amenable to treatment by the
present stochastic model and, like any linearly unstable
system, requires a mechanism for (statistical) equilibra-
tion in order to be a complete theory. The instability in
the above experiments appears to arise largely because
of a strong atmospheric response to SST anomalies. One
would expect to see two phenomena in the presence of
such strong upward coupling, which, as far as we know,
are not present in the observations: First, lag–lead cor-
relations between SST and the free atmosphere would
be largely symmetric about zero lag. Second, prescrip-
tion of midlatitude SST anomalies would significantly
enhance predictability of the atmosphere in hindcast
studies.

b. One-way forced experiments and spurious surface
fluxes

In Fig. 7 we show that atmospheric models with pre-
scribed SST can have large spurious surface fluxes at
low frequencies. The largest spurious fluxes, defined as

/ , occur for small values of b and for values ofM CQ Q]↑
a near the stability boundary (i.e., a ø ad). These spu-
rious fluxes do not present a serious problem for making
short-term forecasts, as these forecast models are ini-
tialized with the correct atmospheric state from the cou-
pled system (i.e., from observations). However, a prob-
lem may arise for seasonal predictions where SST is
specified, whether specified as strict persistence of ob-
served SST anomalies or whether these anomalies are
damped back to climatology over some empirical mixed
layer timescale. Specifying midlatitude SST anomalies
constrains the amplitude of atmospheric temperature
anomalies through the spurious (damping) surface flux-
es. It would be better to make seasonal forecasts using
an ensemble of runs of AGCMs coupled to mixed layer
models than to use fixed boundary conditions.

The same problem arises in climate simulation studies
in which the history of global SSTs is specified, or in
establishing ‘‘control run’’ statistics for studies of de-
cadal variability. The true variability in the coupled sys-
tem is not necessarily well approximated by forcing the
atmosphere with realistic SSTs for models with small
or moderate values of the atmospheric response param-
eter b.

Numerical experiments in which atmospheric quan-
tities are prescribed as the forcing for an ocean model

suffer from a different problem. The merits of specifying
surface air temperatures and winds versus specifying
surface heat fluxes has been debated in the literature.
Both methods suffer from problems, as both surface
fluxes and air temperature are strongly coupled to the
ocean temperature. If the flux forcing comes from an
uncoupled or MOGA experiment, then extreme SST
variance at low frequencies will result because of spu-
rious surface fluxes. The excessive low-frequency flux
forcing is often compensated by applying an arbitrary
feedback term proportional to the SST anomaly. Ne-
glecting wind-forced surface flux variance, this method
is linearly equivalent to specifying surface air temper-
atures and winds, as long as the correct value of the
feedback is chosen. This is seen in the following ex-
tension of Eq. (2):

˜dTo U˜ ˜ ˜ ˜ ˜g 5 l (T 2 T ) 2 l T 5 Q 2 (l 1 l )T .o so s o o o ↑ so o odt

However, GCM boundary layer formulations usually
contain a strong nonlinear dependence on the static sta-
bility of the boundary layer. Computing the forcing from
atmospheric surface air temperature and wind, using a
sophisticated nonlinear surface flux parametrization
avoids the assumption of linearity, but the complexity
of some GCM boundary layer formulations may make
this an undesirable choice in practice.

The power spectrum of surface fluxes used to force
a slab mixed layer model must tend toward zero at low
frequencies, or else the temperature variance would be
unacceptably large. If a more complicated ocean model
is forced with spurious low-frequency fluxes, this forc-
ing will be compensated by other oceanic processes—
entrainment, advection, convection, diffusion—at these
timescales. In fact, substantial low-frequency surface
flux variance in a coupled model or in observations is
a signature of such processes.

A potentially serious problem arises if one uses sur-
face fluxes diagnosed from observations to force ocean
models. Observational errors, which project onto all fre-
quencies, can lead to potentially large errors in low-
frequency temperature variance (e.g., Ronca and Battisti
1997). Adding a simple linear relaxation term, as dis-
cussed above, is not entirely satisfactory, as there exists
some frequency below which the temperature variance
is determined primarily by the error variance in the sur-
face fluxes. In effect, random (uncorrelated in time) ob-
servational error in surface fluxes results in a low-fre-
quency limit below which one is unable to model tem-
perature variance reliably.

c. Comparison with more complete atmosphere and
ocean models

Barsugli (1995) performed uncoupled, MOGA, and
coupled integrations in which the atmosphere was mod-
eled by the global, two-level primitive equations with
parameterized convection and radiation [similar to the
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TABLE 2. Enhancement of power in the simple stochastic model
with the standard parameter values and in the two-level model of
B95. Quantities in italics are determined using the average power for
periods longer than 625 days. u denotes the vertical mean potential
temperature in the two-level atmosphere.

Ratio (Eq. in text)
Stochastic

model
Two-level GCM

SST (u)

dC,U (22)
dM,U (23)
dC,M (24)
D (27)C,U

a

D (28)C,U
o

D (29)M,U
a

D (30)M,U
o

DC,M
a

DC,M
o

2.91
1.50
1.93
1.03
1.71
1.01
1.18
1.01
1.45

2.69 (1.80)
2.00 (1.38)
1.34 (1.30)
1.03
1.87
1.01
1.50
1.02
1.24

FIG. 10. (a) As in Fig. 4 but for power spectra of SST and at-
mospheric vertical mean potential temperature from integrations of
the two-level model of B95. (b) As in Fig. 7 but for power spectra
of total surface fluxes from the two-level model.

model of Held and Suarez (1978)]. SST was either pre-
scribed or simulated using a 50-m slab ocean model.
The model geometry was idealized to be a global ocean.
The coupled stochastic model qualitatively reproduces
the ratio of total variance between coupled, MOGA, and
uncoupled runs in B95, as shown in Table 2. The spectra
of ocean and atmosphere temperature fields and surface
flux fields from B95 are reproduced in Fig. 10. These
are qualitatively consistent with the results from the
stochastic energy balance model, as seen in a compar-
ison of Fig. 10a to Fig. 4, and Fig. 10b to Fig 7.

The results from the three experiments in B95 support
the hypothesis for the twofold effects of coupling: the
reduction of thermal damping at low frequencies and
the relatively weak direct effect of forcing by SST
anomalies. There are, however, two major discrepancies
between the variance ratios predicted by Eqs. (22)–(24)
from the stochastic coupled model and those calculated
from the two-level GCM of B95. First, the low-fre-
quency variance enhancement in the atmosphere is gen-
erally less than that of the ocean (see Table 2), and the
enhancement decreases as one passes from the surface
to 250 mb (not shown). Clearly, in the two-level model
there can exist variability with a vertical structure that
has no signature in surface temperature, and thus does
not participate in coupling. This additional atmospheric
variability dilutes the enhancement of variance one
would expect from a univariate model such as we have
presented. The second major discepancy is seen in the
wavenumber-frequency spectra of B95—enhancement
of variance is a strong function of zonal wavenumber.
The explanation lies in the modal structure of variability
in the two-level model. There are two horizontal modes
that participate strongly in the coupling, a deep, equiv-
alent barotropic mode with zonal wavenumber k 5 4,
and a shallow k 5 1 mode. The former is the dominant
mode of low-frequency variability in the uncoupled case
and is merely enhanced by the coupling to the mixed
layer. The latter appears strongly in the coupled run but
only very weakly in the uncoupled run, and can be
explained as a surface-trapped advective, coupled mode
(Frankignoul 1985; B95). The k 5 1 mode also appears

strongly in the MOGA run spectrum, suggesting a large
value of a associated with this mode. These discrep-
ancies, and the associated dynamical reasons for them,
are indicative of what to expect from the analysis of
more realistic models.

Manabe and Stouffer (1996) present results from the
GFDL R15 AGCM in which the AGCM was (i) inte-
grated using the prescribed annual cycle of SST and (ii)
coupled to a 50-m slab mixed layer, and (iii) coupled
to an ocean GCM. They found that coupling acted to
enhance the variance of SST and surface air temperature
in the midlatitudes, with the greatest increase occurring
at lowest frequencies (see their Figs. 1–5). In Fig. 1 we
have reproduced their Fig. 4b, showing the ratio of stan-
dard deviations between their coupled GCM and fixed
SST runs. The coarse contour interval in their figures
makes it difficult to determine quantitatively the extent
of the agreement between their GCM and the stochastic
model. However, their figures indicate that the ratio of
coupled-to-uncoupled variance (derived by squaring
their standard deviations) in surface air temperature in
midlatitudes is roughly 2.5 for 5-yr averaged fields,
whereas the stochastic model yields a ratio between 2.4
(period 5 yr) and 2.9 (period infinity). Significantly, the
ratios of variance between the models with the ocean
GCM and the slab mixed layer are near unity over much
of the open oceans (their Fig. 4a). Furthermore, the
GFDL coupled AGCM/OCGM yields midlatitude spec-
tra of surface air temperature and SST (their Fig. 12)
that are remarkably similar in structure to that from the
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simple stochastic model. However, the GFDL model
yields slightly more variance in SST than in surface air
temperature (unlike the stochastic model) for periods
greater than about 20 years, presumably due to vari-
ability associated with changes in the oceanic thermo-
haline circulation.

Bladé (1997) used the same atmosphere GCM as in
Manabe and Stouffer (1996) to examine the effect of
midlatitude coupling on the variability in the midlatitude
atmosphere. In this study, the control integration was
compared to an integration in which the atmosphere was
coupled to a 50-m slab ocean in the midlatitudes of both
hemispheres; both integrations featured perpetual Jan-
uary solar forcing. Bladé reported that the influence of
midlatitude coupling significantly enhanced the mid-
latitude lower tropospheric temperature and circulation
variance at the lowest frequencies. For example, the
ratio of coupled-to-uncoupled power in the 850-mb air
temperature over the midlatitude oceans at lowest fre-
quencies is approximately 1.6. Bladé (1997) further-
more noted that the effect of midlatitude coupling in the
full GFDL GCM was quantitatively similar to that found
in the idealized two-level GCM studies of B95.

Bhatt et al. (1998) examined the differences in the
atmospheric circulation anomalies that result from cou-
pling the NCAR CCM1 R15 AGCM to the variable-
depth mixed layer model of the North Atlantic Ocean.
Both coupled and control integrations were 35 yr long
and include a seasonal cycle. Compared to the control
integration, the variance of the wintertime averaged sur-
face air temperature in the coupled integration increased
by a factor of about 2.3. The net surface heat fluxes
decreased by a factor of about 0.6. Coupling also en-
hanced the persistence of the principal mode of vari-
ability in the atmosphere. These results are in agreement
with predictions from the stochastic model.

While the simple model we present was developed
to explain enhancement of internally generated mid-
latitude low-frequency variability, it is also applicable
to externally forced variability. Lau and Nath (1996)
reported the results from a series of experiments with
the GFDL R15 AGCM on the effect of midlatitude cou-
pling on tropically forced midlatitude variability. In
these experiments they examined the portion of the mid-
latitude variability in the ocean and atmosphere that is
associated with ENSO via atmospheric teleconnections
(‘‘the atmospheric bridge’’) by prescribing observed
tropical Pacific SST anomalies under the AGCM. The
effect of the coupling in the midlatitudes on the ENSO-
forced midlatitude variability was determined by ex-
amining differences between two ensembles of integra-
tions: the first ensemble held midlatitude SST fixed at
climatological values (TOGA), while the second ensem-
ble allowed the midlatitude atmosphere to interact with
a 50-m slab ocean (TOGA-ML). The principal results
of Lau and Nath’s study are qualitatively consistent with
the stochastic model results. Specifically, the ENSO-
related variance in the surface air temperature over the

North Pacific Ocean, which is predominantly at low
frequencies, increased about fourfold due to coupling.3

The variance and persistence of the 500-mb and surface
atmospheric circulation anomalies associated with the
ENSO were also enhanced by the midlatitude atmo-
sphere–ocean coupling, consistent with the enhance-
ment in the temperature variance via the thermal-wind
relation. The structure of the midlatitude ENSO-related
anomalies was found to be insensitive to midlatitude
coupling.

In a similar investigation to Lau and Nath (1996),
Alexander (1992) concluded that ‘‘air–sea interaction
primarily acts to damp ocean anomalies,’’ whereas we
come to the opposite conclusion. The resolution of this
seeming contradiction is that he compared his coupled
SSTs to SSTs from an ocean model forced by surface
fluxes from his uncoupled atmosphere integrations (dTo/
dt 5 in our notation). As discussed in section 3c,UQ↑
this latter methodology produces spuriously large SST
variability, and does not serve to illuminate the basic
role of coupling. In fact, what Alexander (1992) calls
‘‘partially coupled’’ SST is equivalent to our ‘‘uncou-
pled SST,’’ and indeed shows about half the temperature
signal compared to his coupled SST away from the con-
tinents in winter, thus confirming our viewpoint.

d. Caveat concerning the use of this model to
interpret GCM results

The main virtues of the model in Eqs. (8)–(13) are
its simplicity and flexibility. One is tempted to use it to
quantitatively diagnose output from atmospheric GCMs
coupled to slab mixed layer oceans. Caveat emptor: the
model as it stands is oversimplified in several important
aspects, making it unsuitable to use for quantitative di-
agnosis. We believe that the major oversimplifications
are as follows: the assumption of a first-order Markov
process for an uncoupled atmosphere model, the as-
sumption of purely thermal coupling, and the neglect
of modal structure in the atmosphere. We will discuss
these below.

The uncoupled atmosphere model of Eq. (10) does
not generally capture the spectrum of low-frequency
variability in more realistic GCMs. However, the exact
form taken by the uncoupled atmosphere equation is not
critical to understanding the basic effects of atmo-
sphere–ocean coupling. For example, the 850-mb tem-
perature power spectrum from and uncoupled run of the
GFDL R15 AGCM (Bladé 1997), taken at grid points
over the North Pacific Ocean, cannot be fit by Eq. (10).
However, an ad hoc fit to the GCM spectrum may be
obtained using Eq. (10) with an 8-day damping time-

3 This enhancement was estimated by comparing the squares of the
linear regression coefficients at the ‘‘bull’s-eye’’ in the North Pacific
(Figs. 3c and 12c of Lau and Nath) for the TOGA and TOGA-ML
runs.
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scale, assuming that there is an additional background
white noise variance. The qualitative results of this pa-
per still hold in this case, and the quantitative calcu-
lations may be carried through with only slight modi-
fications.

While purely thermal effects seem to explain much
of the phenomenology of atmosphere–ocean coupling
in realistic GCM experiments, it is not the whole story,
even if the ocean is a slab mixed layer. Low-frequency
surface wind variability and nonlinear moisture vari-
ability may modulate surface fluxes independent of the
air–sea temperature difference. If these effects play a
significant role, then the surface temperature (and mois-
ture) variability will differ substantially from SST vari-
ability at low frequencies. Wind variability also drives
Ekman currents in the ocean, which we have neglected.
These effects are discussed in Liu (1993) and Miller
(1992) and provide a complementary approach to ours.

Finally, atmospheric variability has vertical and hor-
izontal structure. A single variable is at best a crude
representation of what is inherently a multivariate sys-
tem. It is tempting to interpret the single atmospheric
temperature variable in Eqs. (8)–(13) as representing a
single mode of atmospheric variability. Indeed we have
done so in this paper in interpreting the results of B95.
However, it must be kept in mind that the total vari-
ability (say, at a grid point) may be the amalgam of
modes with widely differing behavior under coupling.
In addition, atmosphere–ocean coupling may allow for
interaction between ‘‘uncoupled’’ atmospheric modes
through diabatic or nonlinear heating anomalies asso-
ciated with SST anomalies.

5. Conclusions

The primary purpose of this simple stochastic model
is heuristic: to interpret the results from more realistic
models in a simple framework. The stochastic model
can be interpreted as representing the variability at a
characteristic location in midlatitudes, or as representing
a dominant mode of midlatitude variability. The phys-
ical mechanism that this model presents is that coupling
between atmosphere and ocean reduces the internal
damping of temperature anomalies due to surface heat
fluxes. Reduced damping in the presence of a constant
level of stochastic forcing in the atmosphere leads to
greater thermal variance of the coupled atmosphere and
ocean compared to the uncoupled atmosphere and to the
uncoupled ‘‘slave’’ ocean. The MOGA (specified SST)
model is generally unable to reproduce the coupled
model variance because of the stochastic (unpredictable)
component of the midlatitude circulation. These results
have major implications for midlatitude predictability
studies and for the interpretation of AMIP runs (see
section 4b).

We have introduced an atmospheric response param-
eter that roughly characterizes the atmospheric response
to SST anomalies. We have assumed that free atmo-

sphere variability is linked to surface air temperature
variability by a proportionality constant. These two ef-
fects combine to form the coupling coefficient a. De-
spite the great simplification involved in reducing the
atmospheric dynamics to one parameter, this parameter
can be an extremely useful tool to characterize the cou-
pled system. For example, the stochastic model dem-
onstrates the strong sensitivity of the midlatitude cou-
pled system to the strength of coupling.

The results from the simple stochastic model are con-
sistent with the results from several studies using more
realistic coupled models. The enhancement of variance
due to coupling in fully coupled atmosphere–ocean
GCMs is generally of the magnitude predicted by the
stochastic model. This suggests that most of the effect
of coupling between the midlatitude atmosphere and
ocean is the result of reduced thermal damping. Our
simple model is restricted to purely thermal coupling
between the atmosphere and ocean, omitting many phys-
ical processes. Nevertheless, these thermal effects alone
are able to capture the basic effects of coupling, even
in models with active ocean dynamics such as Manabe
and Stouffer (1996). Perhaps the most significant omis-
sion in the simple stochastic model is that of the me-
chanically driven Ekman currents in the ocean, at least
for understanding seasonal to interannual variability.

The simple model presented here provides a concep-
tual model for understanding the overall effects of cou-
pling between the atmosphere and the ocean in mid-
latitudes. It also suggests that the experimental design
of an atmospheric model coupled to a mixed layer ocean
model (likely more sophisticated than a slab model)
would provide a reasonable null hypothesis against
which to test for the presence of distinctive decadal
variability. In addition, it is hoped that this model, or
refinements of it, will be applied to the quantitative
diagnosis of more realistic GCM runs and of the ob-
servational record.
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APPENDIX A

Derivation of the Energy Balance Model

This derivation will provide a more detailed physical
interpretation of Eqs. (1) and (2), and will guide us in
estimating reasonable values for the free parameters not
discussed in the main text, namely la, lo, lsa, and lso.
The original motivation for the heuristic model Eqs. (1)
and (2) was to explain the results of Barsugli (1995),
who used a two-level atmospheric model with simplified
physics. Hence, the assumptions used here are guided
by the formulation and behavior of that model. In this
appendix we will adopt the view that the stochastic mod-
el is relevant to the vertically averaged equations of the
real atmosphere. (In the main text we discussed an al-
ternate interpretation of the stochastic model as repre-
senting modes of atmosphere–ocean variability).

We treat the atmosphere as a single graybody layer
with effective temperature Ta, longwave emissivity «a

5 0.76, and heat capacity ga. The ocean is treated as
a well-mixed layer with heat capacity go. The resulting
balance between shortwave, longwave, surface, and dy-
namical fluxes is shown in Fig. 2, where the variables
are defined. The equations are as follows (all variables
in this appendix are in physical space, so we have
dropped the tildes used in the main text):

]Ta 4 4g 5 R 1 « s T 2 2« s Ta a a B o a B a]t

1 l(T 2 T ) 1 F, (A1)o s

]To 4 4g 5 R 2 s T 1 « s T 2 l(T 2 T ), (A2)o o B o a B a o s]t

where sB is the Stefan–Boltzman constant, F represents
the dynamical forcing of the atmosphere, and R is the
shortwave radiative heating. The combined surface tur-
bulent latent and sensible heat fluxes are linearized, and
l, the proportionality constant between these fluxes and
the air–sea temperature difference, is assumed to be con-
stant. Latent heat is also assumed to be released locally.
To close the system we assume Ts 5 cTa. If we assume
a constant atmospheric lapse rate and a constant effec-
tive longwave emission height, then c 5 1. This as-
sumption is suggested by the observation that at very
low frequencies, temperature anomalies display a
strongly barotropic vertical structure in the troposphere.
This latter assumption is almost certainly an oversim-
plification.

We are interested only in the perturbations about the
climatology (denoted by ‘‘primed’’ variables), so the
steady solution will not be shown. We construct per-
turbation equations by linearizing about the steady so-
lution to Eqs. (A1) and (A2), denoted by Ta and To.

We also regroup terms so that the contribution by toT9o
the longwave flux in the atmosphere equation is in-
cluded entirely in the term proportional to the air–sea
difference (likewise for the contribution to the oceanT9a
equation):

]T9a 3g 5 R9 1 (l 1 4« s T )(T9 2 T9)a a a B o o s]t
3 32 4« s (2T 2 T )T9 1 F 9 (A3)a B a o a

]T9o 3g 5 R9 2 (l 1 4« s T )(T9 2 T9)o o a B a o s]t
3 32 4s (T 2 « T )T9. (A4)B o a a o

Note that Eqs. (A3) and (A4) are in the same form as
Eqs. (1) and (2), provided that we assume 5 5R9 R9a o

0. (This is an extremely good approximation in the two-
level model of B95, less so in more realistic GCMs.)

The parameters in Eqs. (1) and (2) may now be es-
timated. The surface flux proportionality constant, l,
can be estimated from the linear regression of the sum
of sensible and latent fluxes versus the ocean–atmo-
sphere temperature difference. Estimates from the two-
level model of B95 for l as a function of latitude yield
l 5 20 W m22 K21 as a representative midlatitude value.
If we choose Ta 5 270 K, and To 5 285 K, we have
(in units of W m22 K21) lsa 5 23.9, lso 5 23.4, la 5
2.8, and lo 5 1.9. For the standard parameter values,
we also assume b 5 0.5 (discussed in the text), c 5 1,
and N to be white noise forcing of unit amplitude. The
standard parameter values are summarized in Table 1.
The ocean and atmosphere heat capacities listed in Table
1 are for a 50-m slab of water and for a 1000-mb deep
column of air, respectively.

Finally we would like to be more explicit about our
treatment of the atmospheric dynamics. The simplest
possible parameterization of atmospheric dynamics that
retains both the deterministic and random components
of the dynamics is

F 5 2ldTa 1 M. (A5)

The term ldTa is the univariate representation of the
bulk effects of the deterministic dynamics of the at-
mosphere and includes the linearly parameterizable ef-
fects of the transient eddies. The stochastic forcing term
M represents the purely random, unpredictable effects
of the transient eddies. We can obtain a better approx-
imation to the coupled system by extending the param-
eterization to allow for the linear effects of SST anom-
alies as follows:

F 5 2ldTa 1 To 1 M,l9d (A6)

where the stochastic forcing is now assumed to be in-
dependent of the coupling. Because the purely dynam-
ical feedback cannot presently be estimated from first
principles, we have chosen to neglect this effect. In
obtaining Eqs. (6) and (7), we have used Eq. (A6) with
ld 5 0, N 5 M/lsa, and b 5 / lsa 1 1. We have alsol9d
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neglected cloud radiative feedback. These missing feed-
backs could be estimated on a model-by-model basis
from GCM output, and they are likely candidates for
explaining the discrepancy between the atmospheric
timescale of the simple model with the ‘‘standard pa-
rameters’’ and the timescale estimated from GCMs.

APPENDIX B

Evaluation of the Total Variance Integrals

The indefinite integrals of the quantities in Eqs. (25)–
(30) could be performed via a partial fraction decom-
position. This procedure would allow us to prescribe
some upper cutoff in our integration at high frequencies.
However, if one is willing to approximate the total vari-
ance by integrating over all frequencies from 0 → `,
then it is simpler to consider these definite integrals as
being in the complex plane and to evaluate them by
summing over the residues at the poles of the integrand
in the upper half-plane, the procedure we sketch here.
The polynomial

s 4 1 (A2 2 2B)s 2 1 B2, (B1)

where A 5 a 1 d/b, and B 5 (ad 1 a)/b appears in
the denominator of several of the integrals. For the so-
lutions presented here to be valid, the roots of Eq. (B1)
must not lie on the real axis. This requires a 2 d/b .
4a/b, which is easily satisfied for the standard param-
eters. This allows us to write Eq. (B1) as (s 2 1 )(s 22r1

1 ). Special properties of the roots, r1 1 r2 5 A and2r2

r1r2 5 B, are used in obtaining the following, exact
results for the coupled and MOGA systems (the exact
uncoupled results were presented in the text):

` ˜p d z
CP ds 5 1 1 (B2)E a ˜ [ ]2(a 1 d) a z 2 10

` p z
CP ds 5 (B3)E o 2 ˜ ˜ [ ]2b ad(a 1 d) z 2 10

`

MP dsE a

0

 ˜p 2a 1 d 5 1 1 (B4)
2a  b

2˜(a 1 d)(z 2 1) 2a 1 2z 2 1 1 2a 

` p R
MP ds 5 1 1E o 2 ˜ ˜ [ ]2b ad(a 1 d) z 2 10

(B5)
where

W 1 2z 2 1
R 5

W(2z 2 1) 1 1

and

˜2(a 1 d) d a˜W 5 , d 5 , ã 5 .
ã b b
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