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Abstract. Mixing and stirring of Lagrangian particles and a passive tracer
were studied by comparison of float and tracer observations from the North
Atlantic Tracer Release Experiment. (NATRE). Statistics computed from the
NATRE floats were found to be similar to those estimated by Ledwell et al. [this
issue] from the tracer dispersion. Mean velocities computed from the floats were
(w,v) = (-1.24+0.3, —0.9 £ 0.2) cm/s for the (zonal, meridional) components, and
large-scale effective eddy diffusivities were (Ke,;,Keq) = (1.5 £0.7, 0.7 £ 0.4) X
10 m?/s. The NATRE observations were used to evaluate theoretical models of
tracer and particle dispersal. The tracer dispersion observed by Ledwell et al. [this
issue] was consistent with an exponential growth phase for about the first 6 months
and a linear growth at larger times. A numerical model of mesoscale turbulence
that was calibrated with float statistics also showed an exponential growth phase of
tracer and a reduced growth for longer times. Numerical results further show that
Garrett’s [1983] theory, relating the effective small-scale diffusivity to the rms strain
rate and tracer streak width, requires a scale factor of 2 when the observed growth
rate of streak length is used as a measure of the strain rate. This scale factor will
be different for different measures of the strain rate and may also be affected by

temporal and spatial variations in the mesoscale strain field.

1. Introduction

The kinematics of tracer dispersal provides a basis
for describing the distribution of natural and anthro-
pogenic tracers in the ocean. In this paper we examine
the horizontal dispersion of a localized tracer observed
during the North Atlantic Tracer Release Experiment
(NATRE). Our goal is to understand what these ob-
servations can tell us about both small- and large-scale
advective and diffusive processes in the ocean.

1.1. Stirring and Mixing in a Turbulent Ocean

To begin, it is helpful to imagine that tracer disper-
sal is a combination of two different types of processes:
“mixing” processes, which act to reduce tracer gradi-
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ents, and “stirring” processes, which act to increase
tracer gradients [Eckart, 1948]. Put another way, mix-
ing processes are those which can (or must) be modeled
by diffusion, i.e., molecular or very small-scale advective
processes in which individual exchange events are not
resolved, while stirring processes are resolved events,
e.g., the streaking and folding of a tracer within a re-
solved eddy field. The distinction between these two
types of processes is, in practice, one of small versus
large scale or, in a modeling context, subgrid-scale pa-
rameterized motions versus resolved motions.

Classical theory can predict the rate of tracer disper-
sal in the presence of a purely diffusive and very simple
advective process [e.g., Fischer et al., 1979]. However,
when shearing and straining occur on different scales, as
in a turbulent ocean, the analysis is far more complex
and models must be built with uncertain approxima-
tions.

Consider the fate of a localized release of a passive
tracer into a turbulent ocean. A useful simplification,
suggested by Garrett [1983], is to model the dispersal
of tracer in three distinct stages. During the first stage,
while the scale of the tracer patch is much smaller than
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that of the straining eddies, the patch growth can be
modeled as a mixing or diffusive process. For such
times, assuming a patch radius of 20, where o2 is the
patch variance, the area A occupied by the tracer wiil
grow linearly in time,

A = 8mk,t, 1)
where ks is an effective small-scale diffusivity and ¢
is time. Young et al. [1982] predicted that the mag-
nitude of this small-scale diffusivity is of order ks ~
(N?/f?)k,, where N is the buoyancy frequency, f is
the Coriolis parameter, and k, is the vertical diffusiv-
ity. For the NATRE region, Ledwell et al. [this issue]
found that this prediction yields ks ~ 0.08 m?/s, and
was consistent with the initial dispersion of their tracer
injection streaks.

As the size of the patch grows, it will eventually reach
a size where the mesoscale strain field begins to advect
the tracer into long, thin streaks. (For a point release,

this will occur after time ¢ ~ 1/2%1s, where vpms is the

rms mesoscale strain rate.) The rate of dispersal may
then accelerate to a second stage in which the streak
length L grows exponentially in time, L = L,e**, where
Lo = 2(ks/7ems)'/? is the transition scale of the patch.
Garrett [1983] presumed that the streak growth rate A
should be nearly equal to the rms strain rate; that is,
A = aYrms, Where « is an order 1 coefficient to be deter-
mined. Meanwhile, the width of the streaks is presumed
to be set by a balance between the narrowing tendency
of the convergent strain field and the small-scale dif-
fusion or mixing, which acts to widen the streak; that
is, 02 . = Ks/Yrms, Where o2 . is the rms cross-streak
variance. (Given observations from a tracer release ex-
periment such as NATRE, ~,s cannot be measured di-
rectly and must be inferred from the streak growth rate,
which is the only accessible measure of strain.) During
the second stage of dispersal, on the basis of this com-
bination of along- and cross-streak dynamics, the tracer
area is expected to grow exponentially in time,

A= 4“(”3/7rms)e[a7rm(t_ $ima)] (2)

(this follows Garrett [1983, equation (2.3)], except for
the leading factor of 4 in our result and a factor of 1/2 in
the exponent rather than 1/4, which arise from different
definitions of length and timescales).

Exponential growth will continue until the horizontal
scale of the tracer patch exceeds that of the mesoscale
eddies. At that time, the tracer dispersal enters a third
stage in which continued stirring by the eddies causes
streaks to wrap around one another, eventually making
the patch more homogeneous. Subsequently, for times
much longer than the Lagrangian integral timescale
(about 10 days; see below for definition), the rate of
dispersal of the patch as a whole may again be modeled
as a diffusive process, with area increasing linearly in
time,
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A = 8TKet, (3)

where k. is the effective eddy diffusivity due to the
mesoscale eddies and is typically of order &, ~ 103 m?2 /s.

This framework has proven useful for describing tracer
dispersal in numerical models. For example, simula-
tions by Haidvogel and Keffer [1984] showed rapid de-
velopment of tracer streaks that were consistent with an

exponential growth (see section 5 for further discussion
of their definition of the rms strain rate). Their sim-
ulations also showed an initial increase in small-scale
tracer variance, possibly corresponding to the initial
sharpening of tracer gradients by the mesoscale strain,
followed by a slow smooth decay, consistent with the ex-
pected transition to diffusive spreading for large times.
The evolution of a continuous tracer with a large-scale
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and Kristmannsson [1984], who showed that an effec-
tive eddy diffusivity formulation can also be used in
that case and that such a diffusivity agrees with simple
mixing length arguments. The idea of an effective eddy
diffusivity is also supported by numerous observational
studies of Lagrangian particle dynamics [e.g., Freeland
et al., 1975; Colin de Verdiere, 1983; Davis, 1985]. The
relationship between Lagrangian particle and passive
tracer has also been discussed, for example, by Davis
(1983, 1987] and Bennett [1987]. These studies have
furthered our understanding of how tracer and parti-
cle dispersal would be influenced by turbulent stirring;
however, until recently, there had been little opportu-
nity to compare them directly with oceanic observations
of a localized release of passive tracer.

1.2. Goals and Outline

The 1992 North Atlantic Tracer Release Experiment
provided unique observations of the dispersal of a pas-
sive tracer and Lagrangian particles in open-ocean con-
ditions. A thorough description of the lateral dispersion
characteristics of the tracer was provided by Ledwell et
al. [this issue|. In the present work, we examine parti-
cle statistics computed from the NATRE float data and
use both the tracer and float data in conjunction with
a numerical model to study lateral mixing and stirring
in the open ocean. We address he following three ques-
tions: _

1. How do the statistics computed from the
NATRE float data compare with similar statistics com-
puted from the NATRE tracer data?

2. Is Garrett's [1983] model of a three-stage tracer
dispersal qualitatively consistent with the observed dis-
persion rates estimated from the NATRE field experi-
ment?

3. What are the biases and uncertainties associated
with using Garrett’s [1983] model to make quantitative
estimates of the strain rate, streak width, and small-
scale diffusivity?

In section 2, we introduce some statistical tools for
quantifying the dispersal and diffusion of Lagrangian
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particles and passive tracer. Section 3 provides an
overview of the NATRE experiment and the tracer re-
sults, along with a statistical description of the float
dispersal. Also in section 3, we address questions 1
and 2 by examining the observations in the context of
the initial streakiness of a passive tracer and the con-
cept of effective eddy diffusivity for long times [Garrett,
1983; Taylor, 1921]. In section 4, we introduce a nu-
merical model that is used to simulate tracer and float
dispersal. We show that the simulated tracer behavior
is qualitatively consistent with the theoretical model
of Garrett [1983]. Question 3 is then addressed using
our numerical results as a quantitative test of Garrett’s
[1983] scaling arguments. In section 5, we offer a discus-
sion of the possible biases and uncertainties associated
with applying this scaling to a temporally and spatially
varying strain field. Finally, in section 6, we summarize
our results and their implications for the NATRE field
study.

2. Theoretical Background
2.1. Formation of Tracer Streaks

In the present study, we are particularly interested
in the second and third stages of dispersal, when the
tracer is under the influence of the mesoscale strain
field. Consider a patch made up of fully developed
tracer streaks that have not yet begun to merge. During
this second stage of dispersal, Garrett [1983] suggested
that the mean streak width is set by a balance between
the strain rate and small-scale diffusivity and that the
growth of the area of the tracer patch should scale as
the product of the along-streak growth rate times the
mean streak width. For the purpose of quantitative di-
agnosis, e.g., using observed streak length and width to
estimate strain rate and small-scale diffusivity [Ledwell
et al.,, 1993, this issue|, we now examine an exact so-
lution to the advection/diffusion equation and consider
the effects of time dependence on this result.

Consider the case of a two-dimensional linear strain
field in which the strain rate, v = 0u/0z = —8v/dy,
is allowed to vary in time, but not in space (spatial
dependence and eddy diffusivity are discussed in section
2.2). Furthermore, assume that small-scale dispersion
processes can be parameterized in terms of an effective
diffusivity 5. In this case, the concentration of tracer
0 can be described by the familiar advection/diffusion
equation,

o0 00 0 4

5 +7z 5 Y 3y (4)
If we assume an initial condition for # that is Gaussian
in z and y (as might result from a purely diffusive pro-
cess at scales small compared to the strain field), the
concentration as a function of space and time can be
expressed as ‘

= k,V?20.

0 = 0,0 () e 1% /20+ 7 1207)],

(5)
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where the along- and cross-streak variances, o2 and 03,
are governed by

do?

dtz — 202 = 2k, (6)
do? )
F7a 207 = 2k, (7)

respectively. 6, = M /o0, is the peak concentration,
with M equal to the total mass of tracer, and v > 0
is assumed (this analysis is similar to that of Townsend
[1951]).

For a small initial patch, 03,0 < & /=, and for small
times, the effects of the strain are negligible and (6)
and (7) reduce to the diffusive limit that characterizes
stage 1. For longer times when the strain is important,
a temporal average of (7) shows that the cross-streak
variance satisfies

2 2

(8)

where primed variables represent fluctuations about the
mean values and we have assumed (do2 /dt) = 0, which
may apply following a tracer parcel in a stationary tur-
bulent flow. Meanwhile, in the along-streak direction,
(6) is satisfied by the general solution

(v02) = (1){0o2) + (¥'o2') = s,

¢
o2 =02eT + 621“/ 2k.e 2L dt,
T To 0

(9)

with the exponential growth rate I' = f(f y(t)dt. If we
identify 40, as the streak width and 40, as the streak
length, in the limiting case of steady v, (8) and (9) are
similar to Garrett’s [1983; equation (2.3)] for the second
stage of dispersal. 4

There are two points to be made regarding this so-
lution. First, even after neglecting spatial dependence
of the strain rate, (8) suggests that the strain rate and
the streak width may hold a more subtle relationship
than scaling arguments alone can reveal. For example,
in this case, there is a covariance term generated by the
product of v and ag. Second, if we intend to use Gar-
rett’s [1983] results for quantitative purposes, then we
must define an appropriate measure of the strain rate

~and streak width for tracer in a fully turbulent flow.

These two points lie near the heart of this study and
are discussed in some detail in section 5.

2.2. Particle Dispersal and Effective Eddy
Diffusivity

During the third stage of tracer dispersal, the con-
cept of effective eddy diffusivity can be applied based
on statistical considerations of particle dispersal in a
turbulent flow [Taylor, 1921]. We now define a number
of statistical quantities that are useful in later sections
to characterize the large-scale flow field. In what fol-
lows, we assume an unbounded ocean that is horizon-
tally homogeneous and statistically stationary over the
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scales of interest. This ocean has been seeded with a
large number of Lagrangian particles or neutrally buoy-
ant floats.

Given such an ensemble of Lagrangian particles, a
measure of the spatial and temporal scales of the flow
can be obtained from the spatial correlation functions

(SCFs) and Lagrangian autocorrelation functions
(LACEFs), respectively. The isotropic SCFs, S;;(£), are
defined as (i (dl(d + £))
v; v; +
Si(§) = =", (10)
(vi")

where £ is the separation distance from an arbitrary po-
sition d and v (¢ = 1,2) represent the transverse and
longitudinal components of velocity, respectively. The
double subscripts # = (11,22) denote (transverse, lon-
gitudinal) spatial correlation functions. Angled brack-
ets denote averages for an ensemble of Lagrangian par-
ticles, while the overbar denotes a temporal average.
The LACFs, R;;(7), are defined as

(wi@)us(t + 7))

(ui?)

where 7 is the time lag from an arbitrary time ¢t and ]
(¢ = 1,2) now represent zonal and meridional compo-
nents of the Lagrangian velocity. The double subscripts
41 = (11,22) denote (zonal, meridional) autocorrelation
functions. The characteristic or integral timescale is
defined as

R,;,;(T) = (11)

o0
L= [ Rur)ar (12
provided this integral converges (for isotropic turbu-
lence, Ill = 122).

Taylor [1921] showed how to estimate large-scale stir-
ring from Lagrangian observations. Given the assump-
tions above and assuming the motion has zero mean,
the mean square particle displacement, i.e., the disper-
sion, is related to the eddy kinetic energy through the
exact relation

(@ (t)

— 2 /0 t /0 " Ru(rydrdr.  (13)

In what follows, the mean eddy kinetic energy (EKE)
is defined as

1= 1773 )
() = S(u” + ).
If 7 is small, R;; does not differ appreciably from unity
and (13) simplifies to

(252(1)) = (u?) 22, (14)
which says that the dispersion is proportional to the
time since release squared and the eddy kinetic energy.
For long times, R;; should approach zero in a turbulent
flow, so that the first integral in (13) becomes saturated,

T
/ Rii(T)dT = I;; = const, (15)
0
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and (13) reduces to

(@2(8)) = 2(u?) List = 2k, t. (16)
Thus, for long times, particles disperse at a constant
rate that is proportional to the mean square eddy ve-
locity and the integral timescale of the turbulence. This
constant rate of dispersion, &.,; = (u2)I;;, defines the
effective eddy diffusivity of a stationary homogeneous
turbulent flow and corresponds to stage 3 of Garrett’s
[1983] model. (The limit of small 7 in Taylor’s single-
particle theory has no direct analog in Garrett’s model.)

3. Observations

The NATRE field experiment was performed in an
open ocean region 1200 km west of the Canary Islands.
The main experiment involved the controlled release in
May 1992 of the passive tracer sulfur hexafluoride (SFg)
along a target density surface within the main pycno-
cline [Ledwell et al., 1993; this issue]. The subsequent
tracer concentration was observed over a series of sam-
pling cruises, with the primary objectives of estimat-
ing the diapycnal diffusivity across the main pycnocline
and studying lateral mixing and stirring on scales from
10 to 1000 km in the open ocean. The latter is the
focus of the present study. In conjunction with the
tracer, 10 neutrally buoyant Sound Fixing and Ranging
(SOFAR) floats were also released to help track the
tracer and to characterize the large-scale velocity field.
The floats were preprogrammed to spend the majority
of their time at nearly the same depth as the tracer, and
were tracked for up to 1 year following deployment, thus
allowing simultaneous observation of a passive tracer
and Lagrangian particles.

3.1. NATRE Tracer

The tracer injection performed in May 1992 consisted
of a series of closely spaced streaks in an area approxi-
mately 400 (+100) km? in horizontal extent [Ledwell et
al., this issue]. The target surface had a potential den-
sity of 09,3 = 28.05, correponding to a depth of approx-
imately 310 m. Sampling of the tracer began immedi-
ately after its release and was conducted on five cruises
spanning 2% years. Sampling was performed during the
2 weeks after release, 5 and 6 months later (October
to November 1992), 1 year after release (April to May
1993), and 23 years after release (November 1995). A
thorough analysis of the injection and subsequent dis-
persal of the tracer is given by Ledwell et al. [this issue],
and we discuss some of their results here, as they relate
closely to our numerical simulations in section 4.

The horizontal distribution of tracer observed during
the first 6 months is shown in Figure 1.  This series
of “snapshots,” as measured by the NATRE sampling
cruises, provides a vivid image of mixing and stirring
in the open ocean. Of notable interest is the streak-like
character of the tracer distribution observed during the
October and November 1992 surveys. There appeared



SUNDERMEYER AND PRICE: LATERAL MIXING AND THE NORTH ATLANTIC 21,485
T
45°N
5 T T [ T T T T l;.l T T T T i
| 26'N- —1 - MAY =
E A A .
30°N - "NAITRE release site
s ||| =T iN
E] '
3 v - [
— I
L A .
15°N T
0°
75°W 60°W 45°W 30°W 15°W
‘ Longitude

Figure 1. Horizontal distribution of tracer, expressed as the depth-integrated concentration,
for the first 6 months of the North Atlantic Tracer Release Experiment (NATRE). The inset
(reprinted by permission from Nature [Ledwell et al., 1993] copyright 1993 Macmillan Magazines
Ltd.) shows the location of the initial tracer injection streaks.(marked INJ), contours of tracer
2 weeks after injection (marked MAY), and the two streaks observed in fall 1992 (marked OCT
-and NOV). The triangles are the locations of the five Subduction Experiment moorings.

to be two significant length scales that characterize the
tracer distribution at this time. One was the radius of
curvature of the streaks, which was set by the dominant
length scale of the mesoscale eddies. The second was
the rms width of the streaks, which was presumably set
by a balance between the effective small-seale diffusion
(on scales less than the streak width) and the mesoscale
strain.

The ideas of section 1.1 may be applied to the
NATRE observations in order to estimate an effec-
tive small-scale diffusivity xs. Assuming that after
6 months, the entire tracer patch was distributed in
streaks similar to those observed, an exponential growth
of streaks, L = L,e*, implied a streak growth rate of
A =3 x 1077 1/s. Given the observed rms cross-streak
width of oyms &~ 3 km and using A as a proxy for the
rms strain rate (that is, yyms = A exactly), the cross-
streak balance between the strain rate and cross-streak
diffusivity, ks = 02,), yielded an effective small-scale
(less than 10 km) lateral diffusivity of x5 ~ 3 m?/s. As
discussed by Ledwell et al. [1993, this issue], this value
of ks can be compared with that predicted for shear
dispersion by internal waves, k, ~ 0.08 m?/s, that is
presumed to act on scales of order 100 m [Young et

al., 1982]. The fortyfold discrepancy between these es-
timates of x; is intriguing and suggests that there was
some horizontal mixing process acting at scales of order
1-10 km that was not anticipated by Young et al. [1982].
This result is based on the assumption that the expo-
nential growth of tracer streaks and the approximate
cross-streak balance between the convergent strain field
and small-scale diffusion described by Garrett [1983] are
valid in a fully turbulent flow. Numerical results dis-
cussed in section 4 support these assumptions.

Ledwell et al. [this issue] further reported that by
May 1993 the tracer patch had become much more
filled in comparison to the Fall 1992 surveys. Hence
for the May 1993 and November 1994 surveys, they es-
timated a large-scale effective eddy diffusivity «. using
the relation 2x, = 002/0t, where o2 now represents
the large-scale variance of the tracer patch. From this,
they obtained an effective eddy diffusivity of k. =~ 1 x
10® m?/s, a value consistent with estimates based on
single-particle dispersion rates computed below from
the NATRE float data. (The mean drift of the center of
mass of the tracer patch was also estimated by Ledwell
et al. [this issue] from the May 1993 tracer distribution.
The mean westward component inferred from the tracer
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data was consistent with flow estimates from hydro-
graphic data, while the southward component inferred
from the tracer was somewhat smaller. That there were
only minor discrepancies between these Lagrangian and
Fulerian estimates suggests that the movement of the
center of mass of the tracer was primarily due to an
Eulerian mean flow and not Lagrangian effects such as
might arise from a large-scale gradient in eddy diffusiv-
ity [Freeland et al., 1975].)

At this point, it is interesting to compare the qual-
itative nature of the NATRE tracer dispersal to the
theoretical predictions of section 1.1 (Figure 2). For
the exponential growth phase, consistent with Ledwell
et al. [1993, this issue], we use a small-scale diffusivity
ks =3 m?/s, and \ as a proxy for the rms strain rate,
Yrms = A = 3% 1077 1/s. For the linear growth phase at
large times, we assume, for simplicity, an isotropic large-
scale eddy diffusivity k. = 1x10% m?/s (see above). To
account for the finite size of the initial NATRE tracer
patch, we plot the observations with a time offset of
approximately 40 days, which corresponds to the time
it would take for a point release of tracer to obtain an
along-streak scale equal to that of the NATRE initial
condition; that is, 20 = (400 km?/7)/2 = 11 km.

Comparison of the patch area estimates of Ledwell
et al. [this issue] with the theoretical predictions sug-
gests that the lateral dispersal of the NATRE tracer
was consistent with an exponential growth phase fol-
lowed by a linear growth at large times. The corre-
spondence of these two growth regimes with the ob-
served streakiness and later homogenization of tracer is

area (km2)

102 /ﬁ o

NATRE data
exponential growth (stage 2)
linear growth (stage 3)

0 200 400 600 800 1000

time (days)
Figure 2. Exponential (dashed line) and linear (solid
line) growth phases (stages 2 and 3 of section 1 in text)
of tracer area for a theoretical point release of passive
tracer in a turbulent flow and for the five sampling
periods of NATRE (open circles). Theoretical curves
are for effective diffusivity x; = 3 m? s, rms strain
case Yems = 3 X 1077 1/s, and effective eddy diffusivity
ke = 1 x 103 m?/s. Patch area estimates for the NA-
TRE data were taken from Ledwell et al. [this issue]
and have been plotted with a time offset as described
in text.
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Figure 3. Float trajectories for (a) 1992-1993 NATRE

floats (floats 55-64) and (b) 1991-1993 Subduction Ex-

periment floats (floats 14,15,19,26). Triangles mark the

locations of the four Subduction floats at the time of

the NATRE release. Tick marks along trajectories cor-

respond to 30-day intervals since release.

35°W

the most persuasive observational evidence in support
of Garrett’s [1983] model.

3.2. NATRE Floats

The 10 SOFAR floats released during NATRE were
deployed along with the tracer in May 1992 and were
tracked for up to 1 year after deployment, providing
a total of about 57 float months of data (Figure 3).
Each float was preprogrammed to make daily excursions
through a portion of the water column while spending
the majority of the day at a depth approximately equal
to that of the tracer target density surface. The floats
were tracked acoustically, with fixes of their positions
given twice per day by an array of moored listening sta-
tions. Zonal and meridional velocity components were
computed from the float positions using a cubic spline
interpolation method.

All of the 10 NATRE floats provided reasonable ve-
locity data during the time that they were transmitting,
although two of the floats apparently experienced fail-
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ure of either their pressure or temperature sensors. It
is possible that these two floats settled to a deeper level
than did the others; however, based on EKEs computed
from individual float records, it does not seem that they
were in a less energetic portion of the water column. We
thus retain these data in our statistical analysis (in any
case, the inclusion or exclusion of these data does not
alter the main results of this study).

For the purpose of computing ensemble statistics, the
10 NATRE floats provided a somewhat limited sam-
pling of the Lagrangian flow. Therefore, in the follow-
ing analysis, we also incorporate data from four SOFAR
floats of the Subduction Experiment that were deployed
about 600 km northeast of the NATRE site in May
1991. The Subduction floats were of the same type as
those used in NATRE except that they were equipped
to transmit data for 2 years after deployment. The four
floats of interest provided a total of 84 float months of
data and were advected to the southwest through the
site of the NATRE experiment, slightly above the tar-
get density surface between May 1991 and May 1993
(Figure 3).  On the basis of expendable bathyther-
mograph (XBT) profiles taken during the Subduction
mooring deployment cruises [Trask and Brink, 1993],
the average depths of these four Subduction floats were
285, 155, 170, and 170 m. Although three of these four
floats were at shallower depths than the NATRE floats,
we include them in our analysis in an attempt to ob-
tain more robust statistics. It is possible that we thus
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bias our statistics (EKEs of each of the four Subduc-
tion floats were about 2 times larger than the NATRE
floats); however, this should not affect the major re-
sults of this study, which depend on the comparison of
numerical model results with theoretical predictions of
tracer dispersal. A more detailed analysis of the com-
bined float data set is given by Sundermeyer [1995].

Mean velocities computed from the full float data set
are (T,7) = (—1.2+£ 0.3, —0.9 £ 0.2) cm/s, while the
zonal and meridional components of the combined time-
and ensemble-averaged EKE are

%(%2)2) = (81£1.0, 80+0.9) cm’/s?,

Errors on means are given by the square root of the
variance divided by the number of degrees of freedom,
where the number of degrees of freedom is computed as
the record length divided by twice the integral timescale
([I11, I22] = [10.6, 5.4] days). The mean velocities com-
puted from the float data are roughly in agreement with
those estimated above from the tracer data, suggest-
ing that the floats and tracer were advected similarly.
(Ensemble means were computed under the assump-
tion that each float represented an independent par-
ticle. This seems sensible, except for times shortly af-
ter release when floats are likely to be within the same
flow features and behave in a spatially coherent fash-
ion. Thus we may have slightly (by less than about
30%) overestimated the number of degrees of freedom.)
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Figure 4. Time dependent (a) zonal and (b) meridional ensemble-averaged single-particle dis-

. 2
persions, (z}

(t)), computed from NATRE and Subduction Experiment floats showing t? and ¢

growth rates for short and long times, respectively. Solid lines are dispersion curves, while dashed
lines indicate the uncertainty. Bold solid lines indicate 2 and ¢ growth rates. Number of floats
as a function of time that made up the ensemble averages is shown at bottom.
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The ensemble-averaged particle dispersion, (z/2(t)),
is plotted in Figure 4. In the limits of small and large t,
the curves are roughly consistent with the predicted ¢2
and t growth rates, respectively. For small times, (14)
implies that on a log-log plot of dispersion versus time,
the EKE should be given by the height of the dispersion
curves (that is, it is proportional to the slope of these
curves for small times). Figure 4 thus suggests EKE
values of

%(u'(1 »?) = (26 £3.0,24 £ 4.7) cm? /52,

where the uncertainty is computed as the square root
of the variance divided by the number of independent
pieces of data. The fact that values of EKE are some-
what lower than those made from the full record may
reflect a bias at small t; that is, the floats may have
been released into a flow feature that was less energetic
than the average flow. Since the above direct estimates
of EKE utilize the full data record and hence limit such
bias by incorporating a larger number of degrees of free-
dom, we use those to compute the eddy diffusivities
herein.

For long times, (16) suggests that the diffusivities e,
can be estimated by the slope of the dispersion curves.
A weighted least squares fit (on a linear-linear scale)
between t = 100 and ¢t = 400 days, where the dis-
persion at time t is weighted by the variance in the
mean o7, yields ey, ., = (5.9 2.3, 1.9 +0.7) x
103 m? /s. These estimates of . are approximately 2—
6 times larger than those estimated above from tracer
distributions in spring 1993 and fall 1994. This discrep-
ancy may be a result of the small number of independent
float observations used in the calculation. We suspect
this because estimates of k. based on the product of

[
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the integral timescale and EKE (see below) give closer
agreement with values estimated from tracer distribu-
tions.

Spatial and Lagrangian autocorrelation functions
were computed from the float data according to the
definitions given in section 2.2 (Figure 5). The first
zero crossing of the transverse correlation function oc-
curs at approximately 70 km, which is, not surpris-
ingly, roughly comparable to the diameter of the loops
formed by the float trajectories in Figure 3. Comparing
the zonal and meridional LACFs, a slight anisotropy
is apparent, with the meridional autocorrelation func-
tion showing a small negative lobe after its first zero
crossing. Some degree of anisotropy was also evident
in the tracer distributions [Ledwell et al., this issue].
The first zero crossings of the LACFs occur between
approximately 20 and 35 days, while it appears that
the integrals of the LACF's are probably saturated after
lags of about 40 days for the zonal correlation function
and 60-70 days for the meridional correlation function.
The locations of the changes in slope of the dispersion
curves in Figure 4 imply similar saturation times of ap-
proximately 50 days for the zonal correlation function
and 60-70 days for the meridional correlation function.
Integrating the LACFs using 100 days as the upper
limit of the integral of R;;(7) in (12) gives the inte-
gral timescales I(11,22) = (10.6 4.8, 5.4+ 2.8) days for
the (zonal, meridional) components, where uncertain-
ties represent 95% confidence limits estimated using a
bootstrap method [e.g., Press et al., 1986].

From these integral timescales and the combined time-
and ensemble-averaged EKE, a second estimate of the
zonal and meridional diffusivities yields &e,, ,, = (1.5%&
0.7, 0.7 £0.4) x 103 m? /s, where error estimates are
based on the uncertainties of EKE and I;; computed

above. These estimates of k. are in close agreement
1
(b)
0.5 1
e
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Figure 5. (a) Transverse (solid line) and longitudinal (dashed line) spatial correlation functions
computed from NATRE and Subduction Experiment floats along with the number of float pairs
used for a given separation distance. The covariances were averaged over 15 km bins of separa-
tion distance. (b) Zonal (solid line) and meridional (dashed line) ensemble-averaged Lagrangian
autocorrelation functions computed from NATRE and Subduction Experiment floats along with

the number of floats used for a given time lag.
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with those computed by Ledwell et al. [this issue] from
the tracer data.

4. Numerical Simulations

The results of the NATRE field experiment suggest
that the theoretical ideas of Garrett [1983] and Taylor
[1921] are relevant to the analysis of mesoscale stirring
in the ocean. However, the NATRE tracer observa-
tions alone do not provide a means of quantitatively
testing Garrett’s theory, since we have no independent
information about the strain and small-scale diffusiv-
ity. To address this, we now turn to numerical simula-
tions of tracer dispersal in the presence of small-scale
diffusion and a turbulent mesoscale strain field, where
we do have knowledge of these quantities. A two-layer
quasi-geostrophic vorticity model is calibrated so that
the statistics of model floats agree as closely as possible
with the NATRE floats. The main goal is to under-
stand the possible biases and uncertainties associated
with estimates of strain rate and small-scale diffusivity
from the NATRE observations.

4.1. Model

We used a pseudo-spectral model (described by Flierl
et al. (1987]) with two active layers and a mean vorticity
gradient in the y coordinate direction. The model solves

0g; N
L | J(i, qi) = —pV2; + vV i=1,2 (17)

ot
le.g., Pedlosky, 1979], where the Jacobian operator
J(a,b) = 8a/dz Ob/Oy — Ba/Oy Ob/Oz, and u and v
terms represent bottom friction (lower layer only) and
Newtonian viscosity, respectively. The quasi-geostrophic
potential vorticity g; is given by

@i = V24, — F; (¥ — ;) + fo + Biy,

where 1; is the geostrophic stream function for the ith
layer, which satisfies

j=3—i, (18)
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; =09 O,
(s, 1) = b x Vi = (—gyi, (;i), (19)

F; = f2/¢'D; is the inverse deformation radius squared,
g’ = gAp/p is the reduced gravity, and (f, + By) is the
planetary vorticity.

Forcing was achieved by imposing a westward mean
flow %7 in the upper layer to serve as a source for baro-
clinic instability. A corresponding energy sink was pro-
vided by Newtonian viscosity in both layers plus bottom
friction in the lower layer. (Additional simulations not
discussed here were also run for a barotropic fluid us-
ing different forcing and dissipation mechanisms than
described above. In particular, a random Markovian
formulation was used to force the perturbation stream

~ function across a narrow wavenumber band (160- to

210-km scales; e.g., Maltrud and Vallis [1991]), and an
inverse Laplacian was used to dissipate energy at the
largest scales [e.g., Babiano et al., 1987]. These sim-
ulations can be compared with those of Haidvogel and
Keffer [1984], the primary difference being the form of
the forcing and dissipation mechanisms used to main-
tain the flow. We found that this barotropic model had
to be rather heavily forced in order to achieve realis-
tic time and space scales [Sundermeyer, 1995]. How-
ever, insofar as the tracer analysis went, no apparent
differences were found between the barotropic and the
present baroclinic simulations once a calibration had
been achieved.) This configuration is identical to that
used by Haidvogel and Held [1981], except that they
used a biharmonic diffusion to dissipate enstrophy at
small scales while we use an exponential filter at high
wavenumbers [Canuto et al., 1988]. An overview of the
dynamics of two-dimensional vorticity models was given
by Rhines [1977]. A more recent discussion of vortex
dynamics in two-dimensional turbulence was given by
McWilliams [1990).

Having computed the stream function in both layers
from (17), the upper layer stream function is used to
compute the evolution of a passive tracer field via the

Table 1. Parameter Settings Used in the Numerical Simulations

Parameter Symbol Nondimensional Value Dimensional Value
Domain size 2w x 2m 628 km x 628 km
Number of grid points 512 512
Grid spacing Az 0.012 1.2 km
Time step At 0.0005 0.35 hour
Spin-up time 12.42 1.0 year
Run time 6.21 0.5 year
Baroclinic deformation radius 1/VFL+ F, 0.25 25 km
Aspect ratio Fy/Fy 0.33 0.33
Planetary vorticity gradient B 5.19 2.07 x 1078 km/s
Newtonian viscosity v 7.5 x107* 3.0 m?/s
Bottom friction (layer 2 only) U 0.23 9.2 x1078 1/s
Tracer diffusivity Ks 2.5 %x 1073 10m? 1/s
Mean flow (layer 1 only) ur —0.78 —3.1cm/s
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advection/diffusion equation

% + J(41,0) = K, V20,

5 (20)

where k; is the explicit small-scale diffusivity. The mo-
tion of Lagrangian particles in the upper layer is com-
puted using only the left-hand side of (20). Particles
that are advected across the periodic boundaries are
tracked as having done so, hence the total excursion of
model floats may be larger than the model domain size.

The model was run on a square domain, with doubly
periodic boundaries and 512 grid points in each hori-
zontal direction.  Redimensionalization was done by re-
lating model EKE and planetary g to values appropri-
ate to the NATRE experiment. Having set these two
parameters, the following characteristic velocity, space,
and time scales are obtained:

U = 4cm/s (21)
L = 100 km (22)
T = 2.5x10°%s~ 29 days. (23)

This nonlinear system can be characterized by an ad-
vective timescale, T ~ L/U, so that once U is chosen,
L and T are no longer independent. Other values of
model parameters are given in Table 1.

4.2, Model Spin-up and Calibration

The flow was spun up for 1 year from an initial condi-
tion in which the perturbation stream functions were set
to zero in the lower layer and assigned a random phase
and an amplitude in the upper layer such that its en-
ergy spectrum was similar to the expected equilibrium
spectrum. Model calibration was achieved by adjust-
ing the relative strengths of the imposed mean flow a7
(note that this was the only forcing in the model) and
the bottom friction u, the objective being to achieve an
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upper layer flow that was similar in a statistical sense to
that of the NATRE region. Three diagnostics were used
to determine this: the eddy kinetic energy, the spatial
correlation function, and the Lagrangian autocorrela-
tion function. In all cases, model float statistics were
computed in the same way as for the NATRE floats
(see below). Parameter settings for a typical model so-
lution that meets these calibration criteria are listed in
Table 1.

An ensemble of 10 tracer simulations was run by
reinitializing the model tracer every 6 months during
a total simulation period of 5 years (not including spin-
up). Figure 6 shows typical energy wavenumber spec-
tra for the fully spun-up upper and lower layer along
with a time series of the energy balance of the system.
The k=5 dependence of spectra at high wavenumbers is
similar to that found by Haidvogel and Keffer [1984]
and is notably steeper than the k—3 slope predicted
from simple energy and enstrophy conservation argu-
ments for two-dimensional turbulence. Several investi-
gators [e.g., Basdevant et al., 1981; Bennett and Haid-
vogel, 1983; Babiano et al., 1985; Maltrud and Vallis,
1991] have shown that steep spectral slopes may result
from space-time intermittence and coherent structures
of two-dimensional turbulence.

Floats were released into the upper layer, in a closely
spaced array of 37 floats (intended to track the tracer;
see Figure 7), superimposed on a uniformly spaced ar-
ray of 100 floats that spanned the model domain (in or-
der to insure robust statistics). For this example, mean
velocities computed from the full array of floats were
u(1,2) = (—3.2+ 1.6, 0.1+ 1.3) cm/s for the (eastward,
northward) components and were, of course, consistent
with our specified value of w7. The time- and ensemble-
averaged EKEs were (6.4 5.0, 7.0 & 4.8) cm?/s? for
the (eastward, northward) components and were within
20% of the EKE computed from the NATRE floats. The
model SCFs (Figure 8) are similar to the SCFs com-

3.5 - :
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Figure 6. (a) Model energy spectra for upper and lower layer of a typical model run and (b) total
(domain averaged) Eulerian energy budget for a typical 6-month integration.
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Figure 8. (a) Transverse (solid line) and longitudinal (dashed line) spatial correlation functions
computed from model floats along with the number of float pairs used for a given separation
distance. The calculated covariances were averaged over 5-km bins. (b) Ensemble-averaged zonal
(solid line) and meridional (dashed line) Lagrangian autocorrelation functions computed from
model floats. The number of floats used for a given time lag was 137.

puted from the NATRE floats (see Figure 5), with the
transverse SCF having a first zero crossing at 70 km.
Model zonal and meridional LACFs (Figure 8) both
have their first zero crossings at approximately 28 days,
which is also consistent with LACFs computed in sec-
tion 3 from the NATRE observations. Given these re-
sults, we consider this solution to be calibrated.

4.3. Simulated Tracer Fields

A tracer was released into the fully spun-up upper
layer. The initial tracer distribution was a Gaussian
patch

0(a,y,t,) = e~ =+ (24)

of radius 20 = 12.5 km, intended as an idealization
of the NATRE initial tracer distribution. The small-
scale diffusivity in the model was set to 10 m?/s or
about 3 times larger than that inferred from the NA-
TRE tracer observations. This was done to insure that
tracer streaks were well resolved in the model, even in
the presence of large strain rates. (Numerical experi-
ments using a steady linear strain field, ¢ = —yzy [not
shown), were able to reproduce Garrett's [1983] result,
o2 = Kg /"rms, provided that the streaks were well re-
solved, i.e., that they were always greater than about
8-10 grid points in width. For poorly resolved streaks,
say 5 grid points wide, the observed streak width was
about 50% greater than predicted by the relevant steady
theory, presumably because of numerical diffusion.)
The evolution of the tracer field for a representative
model solution is shown in Figure 7. By comparing the
floats and tracer, it can be seen that the two are ad-

vected together, as expected. Qualitatively, the disper-

sal of model tracer appears consistent with both the-
oretical expectations and observations from NATRE.
Immediately after release, there is a period of rapid
streak formation, characterized by a fairly well defined

streak width. For longer times, the streaks begin to
wrap around one another and merge, gradually filling
in the model domain. The tracer concentration and
area are not considered for times greater than about 6
months, at which time the tracer has wrapped around
the model domain.

We now mimic the analysis of the NATRE tracer (sec-
tion 3.1), assuming no a priori information about the
flow, and attempt to infer the small-scale diffusivity via
estimates of streak width and strain rate. Using T' = 3
months from our representative model solution (streak
length in this simulation becomes ambiguous after this
time; see frames of t = 4 to t = 6 months in Figure 7),
we estimate a streak length of approximately 800 km or
L = 20 =~ 400 km, which would imply a streak growth
rate of A ~ 4.5 x 10”7 1/s. Using A as a proxy for the
rms strain rate (i.e., taking rms = A exactly) and using
a value for the rms cross-streak variance o2, ~ 28 km?
estimated from sections of the tracer (Figure 9), the
assumed balance kg = afms'yrms yields a small-scale dif-
fusivity of kK, = 13 m?/s, which is about 30% larger
than the explicit small-scale diffusivity set in the model.
Repeating this analysis for the set of 10 simulations,
we obtain, on average, k; = 19.0 & 10.5 m? /s or ap-
proximately twice the explicit small-scale diffusivity set
in the model (the uncertainty here is twice the sample
standard deviation).

This is one of the most significant results of our nu-
merical simulations. It shows that if A is used as the
strain rate in the expression for the cross-streak balance,
then the predicted x; is biased by a factor of 2 but is
otherwise fairly robust. An unbiased estimate obtains
if we use 02, = ks/(A\/2). This suggests that the more
than order of magnitude discrepancy between ks esti-
mated by Ledwell et al. [this issue] and that predicted
for shear dispersion by Young et al. [1982] is very re-
liable. (K. L. Polzin et al., manuscript in preparation,
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Figure 9. Cross-streak profiles of model tracer mimicking those obtained during the October
and November NATRE cruises showing a “well-defined” rms streak width. (a) Model tracer
distribution is the same as t = 3 months in Figure 7, corresponding to approximately 3 months
since release. Solid lines represent the locations of tracer sampling sections. (b) Absolute and
(c) normalized concentrations along the sections, plotted with the streak axis centered at zero.

1998) have suggested that shear dispersion associated
with the vortical mode, which is not accounted for in
the theory of Young et al. [1982], may be responsible
for this discrepancy. However, further investigation of
this process is beyond the scope of this study.)

Next, we compare qualitatively the growth of the
model tracer area with that predicted from theory.

o numerical model
10' L ---- exponential growth (stage 2)
—— linear growth (stage 3)
100 1 i L 1 L L L
0 50 100 150 200 250 300 350 400
time (days)

Figure 10. Exponential (dashed line) and linear (solid
line) growth phases (stages 2 and 3 of section 1 in text)
of tracer area for a theoretical point release of passive
tracer in a turbulent flow and model results (open cir-
cles) for Figure 7. Theoretical curves are for k, =
10.0 m?/s, Yms = 4.5%1077 1/s, and k. = 1x103 m?/s.
Model results are plotted with a time offset of approxi-
mately 70 days to compensate for the finite size of the
initial release.

For the small-scale diffusivity, we use the model value
ks = 10 m? /s, while for the rms strain rate, we again use
the streak growth rate A = 4.5 x 1077 1/s, estimated
above. For the large-scale effective eddy diffusivity, we
use K. = 1 x 103 m?/s, consistent with estimates from
NATRE. The area of the tracer patch of our representa-
tive solution, computed as the area within the highest
contour bounding 95% of the tracer, is plotted along
with the corresponding theoretical curves in Figure 10.
As with the NATRE observations, there is a clear ex-
ponential growth phase followed by a reduced growth
rate, perhaps approaching a linear regime, at long times
(the linear growth phase for long times is not sampled
adequately here owing to limitations in model domain
size).

Pertinent to the above calculations, the clear expo-
nential growth seen in Figure 10 associated with rapid
streak formation is the most compelling argument for
using Garrett's [1983] scaling results to estimate the
effective small-scale diffusivity. As noted above, this
period is characterized by a fairly well defined streak
width that permits unambiguous (although perhaps bi-
ased) estimates of K.

5. Discussion

The above analysis suggests that the predictions of
section 1.1 can be calibrated with numerical simulations
and used to make unbiased estimates of x, based on ob-
servations from a tracer release experiment. If X is used
as a proxy for the rms strain rate, an unbiased esti-
mate of k, obtains for o2 = ks/()\/2). For practical
purposes, this is a very useful result, and, in principle,
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we could stop here. However, there are some interest-
ing questions that merit further consideration. How
are the different measures of the strain rate related to
one another? Is the calibration factor in the above re-
sult sensitive to spatial and temporal variations of the
strain rate and streak width? Could a bias also occur
if we overestimate the mean streak width as a result of
the merging of tracer streaks? We now address these
questions in turn.

5.1. Streak Growth Rates and Strain Rates

To understand the relationship between the streak
growth rate and the strain rate, consider our expression
(9) for streak length in a time dependent but spatially
constant strain field. In that case, the mean strain rate

may be defined as (y) = } fg ~(t)dt and is equal to the
streak growth rate; that is, A = a(y), with a = 1. As
pointed out by Garrett [1983], however, this equality de-
pends on what one uses as a measure of the strain rate.
For example, he used Y;ms = ((8u/8z)? + (8v/dy)?)1/?,
which for the time dependent problem would imply an
exponential growth coefficient o = 1/v/2. Yet another
measure of the strain rate, suggested by Haidvogel and
Keffer [1984], is given by the diagonalized strain tensor,
Yems = (—0u/Bx B8v/dy + 1/4(du/dy + dv/dz)*) /2,
which would require still another value for a.

In the general case of a temporally and spatially vary-
ing strain field, it is not immediately clear which, if any,
of the above strain rates is the best estimator of the
strain rate needed to evaluate ;. Intuitively, we might
expect some average of the along-streak component of
the strain rate v, to be most appropriate and most
nearly equal to the mean streak growth rate. Some evi-
dence for this can be found in our numerical results if we
compare the along-streak component of the strain rate
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Figure 11. Along-streak component of model strain
rate computed within the 95% contour of tracer (solid
line) for ¢ = 3 of Figure 7. The rms strain rate is {y,) =
2.8x1077+7.2 x 1077 1/s; the inset shows a histogram
of the strain rates computed at each model grid point.
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~s computed directly from the model stream function
to the streak growth rate A estimated from the model
tracer fields. Averaging over the area strained by the
tracer (the area within the highest contour encompass-
ing 95% of the tracer) for ¢t = 3 months of our represen-
tative model, we find (7,) = 2.8x1077+7.1x 107% 1/s,
where the uncertainty is given by the standard er-
ror (Figure 11). This is about 60% smaller than
the average streak growth rate estimated directly from
the tracer, i.e., for this definition of the strain rate,
A =~ 2(7;). Ledwell et al. [this issue] suggest that the
mean streak growth rate may be weighted by the largest
strains along the streak and should be larger than the
averaged along-streak strain rate.

If we similarly compute the averaged strain rate as de-
fined by the diagonalized strain tensor, we find values
that are 3 to 6 times larger than the streak growth rate.
Thus, while the averaged along-streak component of the
strain rate is somewhat smaller than the streak growth
rate, the diagonalized strain tensor is many times larger.
A similar result was reported by Pope [1990] for simula-
tions of three-dimensional turbulence, namely, his mean
“maximum extensive strain” was 3 times the “mean
strain rate on a material line.” From this, we conclude
that for estimating the small-scale diffusivity from Gar-
rett’s [1983] theory, the along-streak component of the
strain rate is a more appropriate measure of the strain
rate than the diagonalized strain tensor.

5.2. Temporal and Spatial Variations

Locally, along some segment of a tracer streak, we
expect that a balance obtains between some (possibly
weighted) average of the directional strain rate and the
small-scale diffusivity; that is, 02, = ks/(7s). How-
ever, the directional strain rate (and, in fact, any of the
above measures of the strain rate) varies significantly on
scales that are small compared with the streak width,
which violates the assumption that the strain rate is
uniform within a given streak (Figure 11). In fact, a
histogram of the directional strain rates (inset in Fig-
ure 11), shows both negative as well as positive values of
vs; that is, the flow is not even always divergent in the
along-streak direction. At first, this may seem coun-
terintuitive; after all, it is the sign of the divergence
that should determine the along- and cross-streak direc-
tion of the tracer. However, such changes in the direc-
tion of the strain rate on scales smaller than the streak
width are consistent with the splitting and bifurcating
of tracer streaks seen in both the observations and the
numerical solutions (Figures 1 and 7).

How these small-scale spatial variations in the strain
rate affect estimates of x, is unclear. Even if we could
construct some appropriate spatial average, we must
still contend with the mixed temporal variations in the
strain rate (see also Pope [1990] for a discussion of
temporal variations in strain in three-dimesional tur-
bulence). This is illustrated by (8), which shows that
the covariance between the strain rate and the cross-
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Figure 12. Theoretical solution for a sinusoidally vary-
ing strain rate showing a mean cross-streak variance
that is biased high when the strain rate varies slowly
in time. Solid lines represent the instantaneous cross-

streak variances 05 for () oscillating with periods
T=02x1/y, T =1/y,and T = 5 x 1/v. Dashed
lines represent the running mean of the corresponding

cross-streak variances (o2).

streak variance may be important. For example, for a
slowly varying strain rate (slow compared to the advec-
tive timescale, 1/v), the strain rate and streak width are
approximately in balance and are negatively correlated.
In that case, neglecting the covariance term would lead
to an overestimate of k;, consistent with results from
our numerical experiments.

Using (9) as a solution for the cross-streak variance
oy (and letting v < 0), we may also compare the case of
a slowly varying strain rate to one that varies rapidly in
time. Consider a time dependent strain rate of the form
Y = Y[l +sin(27/T t)]. For T < 1/7,, we find that
the long-term mean (05) closely resembles the solution
for a constant strain rate with v = v, as does the same
sinusoidal solution with 7' ~ 1/v, (Figure 12). On
the other hand, a slowly varying strain rate, 7' >> 1/~,,
leads to a mean (03) that is significantly greater than
the steady solution. The reason for this can be seen by
considering the form of the exponential growth rate in
this case,

r= /Ot,fy(t)dt =Yo{t - —2—ﬂ_1/—T[cos (%t) + 1]}

This shows that for T' < 1/~,, for time ¢ > 1/~,, T'/t
approaches 7,, which is precisely the mean value of ().

This example suggests that rapid variations in ~(t)
do not significantly alter the long-term/steady balance
between the streak width and the strain rate. However,
slow variations in the strain rate may bias high our es-
timates of k5. Returning to our numerical results, it is
interesting to assess in which regime our solutions lie.
To determine this, we calculate directly the time depen-
dent strain rate following a marked fluid parcel (Fig-
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ure 13). This reveals that the along-streak component
of the strain varies considerably on timescales greater
than or equal to 1/7. We thus conclude that temporal
variations in the strain rate may account for as much
as 30% of the bias in our estimate of k;. (Whether this
estimate is affected by small-scale spatial variations is
unclear.)

5.3. Merging of Tracer Streaks

A third and final possible bias in our estimates of
small-scale diffusivity stems from the merging of tracer
streaks which must occur in order for the tracer to fill in
the patch (see Figure 7). When two streaks merge, each
effectively loses its identity, leaving a single streak that
is initially wider than either of the component streaks.
From an observer’s perspective, the inability to distin-
guish individual streaks from those that have resulted
from a recent merger could lead to an overestimate of
the streak width, which would lead, in turn, to the over-
estimation of k;. We were careful to avoid this bias in
our analysis of simulated tracer, but, of course, we had
nearly complete information about the model tracer.
This may not always be possible in real oceanic tracer
release experiments. However, the careful planning and
execution of sampling surveys combined with an under-
standing of the time and space scales of the mesoscale
flow should help avoid this bias.

6. Summary and Conclusions

In this study we have shown that the dispersal of a
passive tracer in NATRE can be described using the
ideas laid out by Garrett [1983] and that such tracer
experiments can be simulated realistically using an ap-
propriately calibrated numerical model.

2.5 T T T T . — r ; -

—
(9,

strain (106 s

—

05F

0 20 40 60 80 100 120 140 160
time (days)

Figure 13. Along-streak component of the model
strain rate following a Lagrangian particle. Order 1
fluctuations are readily apparent on timescales that are
long compared with 1/v = 26 days, suggesting that the
strain rate and streak width are likely to be negatively
correlated.
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The streakiness phase of the NATRE tracer patch was
consistent with an exponential growth of tracer area for
values of small-scale diffusivity, x; = 3 m? /s, and streak
growth rate, A\ = 3 x 1077 1/s, as previously estimated
by Ledwell et al. [1993, this issue]. Large-scale effective
eddy diffusivities computed from the NATRE float ob-
servations were (Ke,, , Key,) = (1.540.7, 0.740.4) x 103
m? /s for (zonal, meridional) components. These values
agree with estimates based on the growth of the sec-
ond moments of the tracer patch by Ledwell et al. [this
issue] and describe the approximately linear growth of
the patch area at long times.

Statistics computed from the NATRE float data were
used to characterize the kinematics of the mesoscale
flow. Mean velocities of (%,7) = (—-1.2£0.3, -0.9+
0.2) cm/s estimated from the float data were roughly
consistent with those estimated by Ledwell et al. [this is-
sue| from movement of the tracer patch. The ensemble-
averaged (zonal, meridional) EKEs were (8.1+1.0, 8.0+
0.9) cm?/s%. The first zero crossing of the transverse
SCF occurred at approximately 70 km, while (zonal,
meridional) integral timescales estimated from the inte-
gral of the LACF's were I(11,22) = (10.6 4.8, 5.41+2.8)
days. ‘

A two-layer, quasi-geostrophic vorticity model was
used to simulate the stirring and mixing of a passive
tracer in a turbulent flow. The model was calibrated
so that the basic statistics of the model floats agreed
as closely as possible with those computed from the
NATRE floats (EKE and spatial and Lagrangian auto-
correlation functions). The rate of dispersal of model
tracer was then examined in order to assess the quanti-
tative agreement between the theoretical model of Gar-
rett [1983] and tracer dispersal in a fully turbulent flow.
The dispersal of model tracer was found to be con-
sistent with an exponential growth phase, followed by
a reduced growth rate, perhaps approaching a linear
regime for long times. Using the streak growth rate
estimated directly from the tracer as a proxy for the
rms strain rate in the formula of Garrett [1983] for the
cross-streak balance (as must be done in any real tracer
release study, since ~yms cannot be measured directly),
we found that a factor of 2 is required to obtain an
unbiased estimate of the effective small-scale diffusivity
ks (that is, ks is otherwise biased high by a factor of
" 2). An appropriate measure of the strain rate in Gar-
rett’s theory may be the averaged along-streak compo-
nent of the strain rate, which we found was roughly
half the streak growth rate computed directly from the
tracer patch. The rms strain rate computed from the
diagonalized strain tensor was 3 to 6 times larger than
the streak growth rate, and is therefore less appropri-
ate. A second possible source of bias in estimates of x,
from tracer observations results from the temporal and
spatial variations in the strain field, particularly the
negative correlation between streak width and strain
rate, which are necessarily neglected by Garrett’s [1983]
theory.
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These assessments of the spatial and temporal effects
in our numerical experiments suggest that estimates of
the effective small-scale diffusivity s inferred from the
NATRE tracer by Ledwell et al. [1993] may have been
too large by about a factor of 2, and Ledwell et al. [this
issue] have adjusted their estimates downward in light
of these results.

A third potential source of bias brought to light by
our numerical simulations is that as tracer streaks begin
to merge, it may not be possible from local measure-
ments to distinguish individual streaks from recently
merged (and broader) streaks. Whether such a bias
occurred in computations of x, from the NATRE field
data is not known, but it is considered unlikely.

Given the agreement between the theoretical predic-
tions of Garrett [1983] and our numerical results, we
conclude that no known biases could account for the
order of magnitude discrepancy between the effective
small-scale diffusivity estimated from NATRE (k, =~ 2
to 3 m?/s) and that predicted for shear dispersion by
internal waves (k, ~ 0.08 m?/s). It is more likely that
this discrepancy is due to the presence of some real but
as yet unidentified horizontal mixing process acting on
scales of 1-10 km.
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