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ABSTRACT

Pending an appropriate scaling of each trajectory by its Lagrangian integral timescale T, there exists a generic
shape of the Lagrangian frequency spectrum for the trajectories of the 700-m dataset in western North Atlantic,
which are stationary on the timescale of 200 days. The generic spectral shape contains a plateau at the lowest
frequencies extending up to v, ~ (307,) !, a power-law behavior with an intermediate spectral slope o = 0.25
between v and v, ~ (3 ~ 4T;)™', and a steeper slope n = 3 at larger frequencies. Such a steep slope at large
frequencies implies that most of Lagrangian dispersion can be ascribed to low and intermediate frequency
motions. The variance of the Lagrangian acceleration computed from such a spectrum is finite, indicating con-
tinuous particle accelerations and supporting a truly Lagrangian behavior of the 700-m floats. The existence of
an intermediate power-law behavior in the spectrum can be linked with the trapping of some trajectories by
persistent energetic structures and is associated with a tendency for anomalous diffusion lasting up to 107,.. The
authors also introduce an alternative method for computing 7} from a yardstick measure of Lagrangian decor-

relation length from each individual trajectory.

1. Introduction

The purpose of this work is to revisit the 700-m his-
torical Lagrangian dataset of the western North Atlantic
(Richardson et al. 1981; Owens 1991) in order to look
for generic properties of Lagrangian dispersion induced
by the strong mesoscale turbulence ubiquitous at that
depth (Price et al. 1987). We specifically examine the
Lagrangian position structure function and we study
how its behavior at both small and large time lags is
determined by the various frequency bands in the La-
grangian kinetic energy spectrum.

The study of dispersion in mesoscale turbulence in
the northwestern Atlantic is inherently arduous because
of two main sources of difficuities: (i) the existence of
inhomogeneities of the flow at the largest spatial scales
and (ii) the diversity of regimes encompassed by the
dataset.

In order to have sufficiently long time series, we dis-
card the trajectories shorter than 200 days. Following
this criterion, a total of 74 trajectories at 700 m have
been retained. Since here we opt not to address dynam-
ical issues linked with the large-scale spatial inhomo-
geneities of the flow, we then screen the 74 trajectories
in order to retain only trajectories with stationary ve-
locity fluctuations (section 2). To this end, we require
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the Lagrangian velocity spectrum to be equal to the
position fluctuation spectrum multiplied by v2, where v
is the frequency (see discussion in appendix A). By this
kinematic criterion, 56 trajectories at 700 m are re-
tained. The excluded trajectories correspond to the 24%
of the number of trajectories longer than 200 days and
their behavior is presumably due to the inhomogene-
ities of the flow at the largest spatial scales. Here the
focus is on mesoscale turbulence, thus we do not ad-
dress the issue of large-scale spatial inhomogeneities.

The second source of difficulties is the great diver-
sity of dynamical regimes of the stationary trajectories,
with extreme behaviors corresponding respectively to
energetic persistent structures (such as jets or vortices)
and quiescent midocean conditions (section 2).

The existence of common spectral features between
trajectories typical of the two extremes motivates the
search of a characteristic spectrum representative of all
of the stationary dataset. A key point of our approach
is to perform an appropriate rescaling of both ordinate
and abscissa of the Lagrangian kinetic energy spectrum
for each trajectory. For that purpose we introduce an
alternative method for evaluating the Lagrangian inte-
gral timescale 7. This is based on first computing a
correlation length through a yardstick measure of the
length of the trajectory and then supplementing the ap-
proach with dimensional considerations (section 3).
The motivation is that the usual spectral evaluation of
T., based on the behavior of individual trajectories at
the smallest frequencies (e.g., see Davis 1991), is not
always well defined despite that individual trajectories
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may pass the test of kinematic stationarity defined
above.

The main result of this work is the obtention of a
generic shape of the Lagrangian kinetic energy spec-
trum that is representative of those trajectories station-
ary on the timescale of 200 days (section 4). This spec-
tral shape is characterized by a plateau at very small
frequencies v < v, and a steep slope for v > v, where
vy and v, are found to be respectively ~(307,) ' and
(3~4T)7".

The slope n appears to be steeper than 3. At inter-
mediate frequencies, a distinct regime is observed that
is characterized by a spectral slope a = 0.25. The pla-
teau at the smallest frequencies corresponds to the clas-
sical Brownian—Taylor dispersion (Taylor 1921),
while the intermediate regime is associated with anom-
alous dispersion on these timescales. The large spectral
slope at v > v, is associated with ballistic dispersion
on times smaller than 1/v,.

This characteristic shape of the spectrum is in agree-
ment with the results of direct numerical simulations of
Lagrangian trajectories in geostrophic turbulence (Hua
and McWilliams 1996, manuscript submitted to J.
Fluid Mech.).

By using simple analytical fits to the generic La-
grangian velocity spectrum, we then search for its im-
plications on the structure function of Lagrangian po-
sition, which is the usual estimator for characterizing
dispersion (section 5). An important result is that the
smallest and intermediate frequencies of Lagrangian ki-
netic energy have a predominant influence on the po-
sition structure function for the whole range of time
lags whenever the velocity spectrum is steep enough.

A side issue of this work concerns the contrast be-
tween the Lagrangian velocity spectra and the Eulerian
ones (e.g., see Davis 1983; Babiano et al. 1985, 1987)
with a generally steeper slope for the Lagrangian spec-
tra at high frequencies with respect to the observed Eu-
lerian ones (Wunsch 1982). This result is dynamically
compatible with the common observation that the La-
grangian integral timescale is shorter than its Eulerian
counterpart (Middleton 1985).

Section 3, which gives the technical details for de-
termining 7;, may be skipped by the reader who is
more interested in the results of the spectral analysis
and dispersion given in sections 4 and 5.

2. Stationary trajectories and their variability

The power spectrum of the (vector) velocity time
series u(t) is defined as

P(v) = C[A(v)  A*(¥)],

where v is the frequency in cpd; the asterisk indicates
complex conjugation, and

4o
A(v) =f u(t)e >™'dr.
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The normalization constant C is defined by
4o
f P(vYdv = 1. (1)
We have
+ o0
P(v)= 2f R(t) cos(2nvt)dt 2)
0

and

1 T
R(r) =lim Zf u'(t+ 7y u'(1)de,
T TUu 0

where R () is the autocorrelation function, u’(¢) and o2
are respectively the velocity fluctuation and its variance.
From (2) we obtain the Lagrangian integral time 7},

Tsz R(7)dT =%P(O). (3)

0

If the velocity power spectrum P(v) saturates at small
frequencies, relation (3) can be used to estimate 7.

In order to adequately resolve mesoscale dynamics
(a typical order of magnitude of T, being about 10
days; Owens 1991), we analyze trajectories that are
longer than 200 days. Since the dynamical focus is on
mesoscale turbulence, and in order to avoid difficulties
inherently linked with large-scale spatial inhomoge-
neity, we seek to work with stationary velocity time
series. The aim is to eliminate the trajectories that visit
both high and low energy regions and to preserve only
trajectories that do not display a mean trend in velocity
over the timescale of 200 days, the trend being asso-
ciated with the presence of a net mean acceleration in-
duced by the inhomogeneity of the flow on spatial
scales larger than those resolved by the data. The sub-
sequent analysis is thus performed only on those indi-
vidual trajectories that satisfy

P(v) =v?Q(v), (4)

where Q(v) is the power spectrum of x'(¢) = x(¢)
— ur and  is the mean velocity of the float (given, e.g.,
by the slope of a linear least-square fit to the float po-
sition versus time). Relation (4) is a necessary condi-
tion for the stationarity of the velocity time series or,
equivalently, for the stationarity of the increments of
the position with time (Panchev 1971). We show in
appendix A that (4) coincides with the requirement of
no mean Lagrangian acceleration of the float trajectory.
By the stationarity criterion, we retain 56 of the 74
trajectories that are longer than 200 days (Fig. 1). Note
that the stationary data comes from only 41 distinct
floats since we have cut some of the very long trajec-
tories into pieces of 256 days. Note also that the defi-
nition of stationarity employed here does not necessar-
ily imply the convergence of the individual kinetic en-
ergy spectra at low frequencies; as a matter of fact,
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FIG. 1. The subset of “‘stationary’’ float trajectories.

some of the trajectories classified as stationary do have
a significantly red low-frequency spectrum.

Power spectra of the total velocity time series have
been computed for the stationary trajectories. As al-
ready mentioned by Owens (1991), the dataset exhibits
quite a large variability. More specifically, we observe
(1) a highly variable distribution of the energy content
in the various frequency bands and (ii) a general ab-
sence of saturation at low frequencies. The actual num-
ber of floats, whose velocity spectra saturate at low
frequencies, depends on the quantitative definition of
saturation employed. We have opted to look at the rel-
ative variance of the three lowest frequency bands; by
requiring the relative fluctuation of P () to be less than
0.3 in these three frequency bands we find that only the
37% of the stationary trajectories satisfy the criterion.

Due to the high variability of the dataset, an uncon-
ditional averaging procedure will tend to mix very dif-
ferent behavior and scales. For this reason, we first
identify the characteristics of the extreme behavior of
the trajectories by using conditional averages on total
energy spectra based on threshold values of the follow-
ing parameters:

® a saturation parameter s defined as the relative
fluctuation of the first three lowest frequencies

» the usual Lagrangian integral time T, as defined
by the rhs of (3)

o the relative percentage HF of kinetic energy in
frequencies greater than (10 days) '.

This allows an identification of two extreme classes.
These are

e CAl-type trajectories, characterized by saturation
at low frequencies, a low energy content in the high
frequencies (HF < 0.05), and T, > 5 days

e CA2-type trajectories, characterized by a larger
energy content in the high frequencies (HF > 0.1) and
a smaller Lagrangian integral time § P(vpin) ~ T, < 5
days.

Clearly, the choice of the precise value of T, for
distinguishing between the two types of behavior is
somewhat arbitrary, and it is difficult to assess the sta-
tistical significance of the results obtained with such
small datasets. On the other hand, we note that the ex-
amination of the float trajectories of the two types
(Figs. 2a and 2b) reveals quite different space and time
characteristics. The 14 CA2 trajectories are clearly re-
lated to motions in highly energetic and coherent struc-
tures, such as.meanders or isolated vortices, while the
9 CAl trajectories are noticeably less energetic and
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FiG. 2. (a) CALl trajectories and (b) CA2 trajectories.
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more typical of midocean conditions. The ordinates at
the smallest frequency in Figs. 3a and 3b yield for the
average value of T, respectively 8 and 3 days for the
CALl and CA2 subsets, values that are well above and
below the selected limiting value of 5 days. This indi-
cates that the distinction between the two types of tra-
jectories, although somewhat qualitative, does properly
represent a different dynamical behavior.

Yet, the average velocity spectra of the trajectories
corresponding to the two extreme types of behavior
display some common features (Figs. 3a and 3b). Both
spectra do, in fact, show a plateau in the low-frequency
range and a steep spectral slope with n > 3 at larger
frequencies, while at the largest frequencies resolved
by the dataset, measurements errors induce a flattening
of the spectrum (see appendix B). The most significant
discrepancy between the two extreme spectra is ob-
served at intermediate frequencies where the CA2-type
spectrum displays an intermediate power-law regime
with a slope of about 0.25, as indicated by the dotted
line in Fig. 3b. As mentioned above, due to the way
they were selected, the CA2 trajectories preferentially
sample the high-energy regions close to coherent vor-
tices. The existence of the intermediate spectral regime
might thus be linked with the action of shear-dominated
regions surrounding coherent structures, analogously to
what has been observed in numerical simulations of
two-dimensional turbulence (Elhmaidi et al. 1993 and
section 5b).

Despite the high variability of the dataset, the exis-
tence of common features in the spectra of Figs. 3a and
3b motivates the search for a characteristic spectrum
P(v) that is representative of all stationary trajectories.
Such a goal requires a rescaling of both the ordinate
P(v) and frequency axis v by the appropriate dimen-
sional timescale for each individual trajectory. Such a
rescaling amounts to a nondimensionalization; the pur-
pose is to take into account regimes of Lagrangian tur-
bulence, with very different spatial and temporal scales,
in order to reveal an eventual self-similar behavior.

An obvious candidate for rescaling both the ordinate
P(v) and the frequency v axis is the usual Lagrangian
integral timescale T [as defined by the rhs of Eq. (3)].
However, not all individual float spectra saturate at low
frequencies, thereby disabling the use of (3) for all
trajectories. This motivated us to introduce an alterna-
tive characteristic timescale 77, which can be com-
puted even for trajectories that do not exhibit a satu-
ration at the lowest frequencies. Such a characteristic
timescale T}, which we can simply interpret as being
the decorrelation timescale of a given trajectory, will
enable us to compute a rescaled average spectrum for
the stationary trajectories. We then pose

T, = MTZK;

details of the actual methodology for computing 77 and
u are given in the next section.
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3. An alternative method for computing T,

Space and time decorrelation scales may be defined
in both Eulerian and Lagrangian coordinates. In gen-
eral, the link between the Lagrangian time and space
decorrelation scales, 7, and L,, and their Eulerian
counterparts, Tz and Lg, may be quite complicated. Fol-
lowing Middleton (1985), we may infer this link in
two simple extreme cases. Supposing the rms of veloc-
ity fluctuations o, to represent the typical scale of the
turbulent velocities (square root of the eddy kinetic en-
ergy), the two extreme cases are characterized, respec-
tively, by the assumptions (i) T <€ Lg/o, and (ii) Ty
> Lglo,.

In the first case, the Lagrangian particles move
slowly in the Eulerian field. Before the particles start
exploring regions that are spatially decorrelated, the
time decorrelation of the Eulerian field has already af-
fected the particle motion. In this case, it is reasonable
to expect the Lagrangian decorrelation time to be de-
termined by the Eulerian decorrelation time, T, ~ Tg.
The lagrangian decorrelation length will also be deter-
mined by the Eulerian decorrelation time, L; ~ ¢,Tg
<€ Lg. This case corresponds to an Eulerian field, which
is rapidly evolving on the advective timescale T4,
= LE/ Oy.

Conversely, the second case corresponds to a field
that is very slowly evolving (frozen field approxima-
tion) on the advective timescale T4, . The Lagrangian
decorrelation scale is now determined by the fact that
the particles explore Eulerian regions that are spatially
decorrelated. In this case, L; = Lg, as the finite La-
grangian decorrelation length reflects the finite Eulerian
space decorrelation. In this situation, 7, =~ Lg/0, < T¢.'

Using the equality sign T, = Tz or L, = Lg in the
above expressions is rigorously possible only in the
limit for respectively Ly or T going to zero. In both
cases, T;, < Tz and L, < L. Under general circum-
stances, these unequalities have to be interpreted in an
order of magnitude sense, indicating that the Lagrang-
ian space and time decorrelation scales are expected to
be not (much) larger than their Eulerian counterparts
and that an adimensional constant of order one may
enter the above formulas. In particular, we define a
characteristic timescale TF = L,/¢,, which may be de-
rived from the above discussion in both the extreme
cases, and it is related to the true Lagrangian decorre-
lation time by

TL=;LT2‘=M%, (5)

u

where p is a constant proportionality factor.

! Oceanic mesoscale turbulence is more likely to be closer to this
second limit of almost frozen field approximation since we have seen
that Lagrangian spectra present slopes steeper than 3 at high fre-
quencies.
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Operationally, the constant y is determined in such
a way that the value of T, defined by (5) coincides on
average with the rhs of (3) for those specific trajecto-
ries that saturate at low frequencies and for which re-
lation (3) is valid. This coincidence, however, is true
only on average; moreover, x4 depends on the quanti-
tative choice for the definition of saturation. To give an
idea of the range of variation of y, when we choose the
saturation parameter s between 0.1 and 0.3, we find that
between 8 and 26 float trajectories saturate, and values
of 1 belong to the interval 0.57 < i < 0.67. When we
consider only trajectories of the CAl subset, we obtain
1 = 0.6. In practice, we choose ¢ = 0.6 to estimate 7
from (5) and for producing the nondimensional aver-
age spectrum of Fig. 5a (see next section). We have
also performed a sensitivity test of the average spec-
trum on the actual choice of 4 in its interval of vari-
ability and found no significant influence.

As for the determination of the spatial decorrelation
length L;, we resort to a method that is commonly used
for studies of fractal properties of trajectories (e.g., Os-
borne et al. 1986, 1989; Provenzale et al. 1991). It
consists in measuring the length of the float trajectory
as a function of a variable yardstick segment A and by
approximating the curve with a broken line whose in-
dividual segments have length A. Operationally, one
starts from the first point x(z,) of the trajectory and
looks for the point x(z;,) such that |x(f,) — x(#o)}
~ A, this defines the index i,. Then the procedure is
repeated starting from x(f,), looking for a point
x(t,) such that |x(1,) — x(;,)| =~ A, and so on. This
allows for defining a set of indices i,, n = 1, ---,
N(A), which label the vertices of the broken line ap-
proximating the real trajectory. The length of the tra-
jectory is then approximated by

N(A)
L(A) = ¥ [(X(fy,,,, — x(£;))*]'? =~ AN(D).

n=1

(6)

The dependence of i, on the index n is a complicated
function that depends on the geometry and complexity
of the trajectory.

On average, L(A) is a nonincreasing function of A.
An eventual power-law behavior of L(A) can be re-
lated to a fractal behavior of the trajectory, the fractal
dimension D, of the trajectory being in this case defined
by the expression:

L(A) o« ATP, (7

For mathematical fractal curves, the fractal behavior
extends to infinitesimally small scales and the length
L(A) is really divergent. For physical fractal curves,
on the other hand, the requirement of differentiability
at the smallest scales induces a convergence of the
length L(A) to a finite value L(0), and the power-law
behavior (7) is eventually observed on a finite range
of scales (Isichenko 1992).
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In this case, the behavior of L(A) for small A in-
volves the notion of decorrelation length L,, and one
can define L; such that

L(L,) = pL(0). (8)

An interpretation of the above definition is that the La-
grangian velocity along the trajectory remains corre-
lated for scales smaller than the decorrelation length,
and the constant p defines the degree of correlation of
L(A) when integrated over a decorrelation length. This
definition of L, is simply a space analogue of a decor-
relation time based on a velocity correlation function.

Figure 4 show the plot of L(A) versus A for three
typical example trajectories; the corresponding values
of L, are indicated. The paths of floats B59 and B79
are prototypical examples of trajectories dominated by
a single length scale; they have been chosen to illustrate
the meaning of L, . For float B59, in particular, L(A)
displays an abrupt decrease or ‘‘jump’’ for a yardstick
length of the order of the characteristic length scale
(ie., A = L; ~ 70 km). This value L; ~ 70 km closely
corresponds to the scale that may be determined by a
“‘visual’’ inspection of the trajectory and it corresponds
to p = 0.7 in (8). On the other hand, float B17 is an
example of a trajectory that exhibits several length
scales; in this case, L(A) is less steep. Expressions (8)
and (5) with u = 0.6 and p = 0.7 allow us to obtain
an estimate of 7, for every float. As for u, the precise
value chosen for p is not critical.

4. A generic Lagrangian spectrum shape

Having obtained an estimate of 7, for each individ-
ual trajectory, we compute the nondimensional quan-
tities

p=vl, P(D)=PWT)T)"' (O)=tT)".

Note that with this normalization the asymptotic value
of P(P) for & — 0 is equal to 2 for floats whose spec-
trum saturates at low frequencies. The average nondi-
mensional spectrum for all trajectories is represented
by the continuous curve of Fig. 5a. There is clearly a
generic spectrum shape, characterized by a flat plateau
extending up to v, ~ (307,) ', a steep decrease for v
= v; = (3 ~ 4 T,) ! characterized by a slope n = 3.3
+ (.14 (see Table 1), and an intermediate regime for
vy =< v < v, that displays a power law behavior with
a slope a = 0.25 = 0.06. The values vy, vy, 1, and «
have been obtained by least square fits to the spectral
shape of Fig. 5a while taking into account the con-
straints (1) and (3). The indicated uncertainties on the
slopes are the 95% confidence limit of the least square
fits.

The average spectrum shape (Fig. 5a), representa-
tive of all 56 stationary trajectories, displays character-
istics that are dominated by CA?2 characteristics in the
intermediate and low frequency bands, while it is closer
to the spectrum of CA1l in the high frequency band
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(Figs. 3a and 3b). In particular, the value of the slope
n = 3.3 in the high frequency band is very close to the
value of n = 3.2 for the CA1 subset. It is thus of interest
to discuss the quantitative influence of the 9 CA1 and
14 CA2 trajectories on this average spectrum. The re-
spective values of T, for CA1 and CA2 are about 8 and
3 days (section 2). These values of T; imply that the
nondimensionalization of the frequency axis yields a
stronger weighting of the CA1 subset for the high val-
ues of 0. Conversely the CA2 subset, which has a
shorter T, has a stronger weighting in the lowest and

intermediate frequency bands. The presence of the
power-law regime P(v) o v %% in the average velocity
spectrum of Fig. 5a confirms the dominance of the
CA2-type behavior in the frequency band vy < v < v,.
We have noted in section 2 that the existence of this
intermediate power-law regime corresponds to the tra-
jectories that explore energetic persistent structures
such as coherent structures and jet meanders. Finally,
as already observed for the CA1l and CA2 types, the
highest frequencies 7 = 1 in the dataset are dominated
by measurement errors and have been truncated. It is
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unclear to us what the maximal frequency limit of this
steep slope range is in reality.

The generic shape suggested by the continuous line
of Fig. 5a is further supported by results on Lagrangian
geostrophic turbulence simulations (Hua and Mc-
Williams 1994, manuscript submitted to J. Fluid
Mech.), where Lagrangian velocity spectra are com-
puted from the numerical trajectories of 1024 particles
launched in a stratified stationary geostrophic turbulent
flow on the [ plane. The results of the direct numerical
simulations (DNS) (Fig. 5b, continuous line) also in-
dicate that beyond the low-frequency plateau, the spec-
trum displays an intermediate power-law regime v ~*
for 7y < v < 7, and a steep slope 7 for v = ¥, up to
frequencies close to numerical noise frequency, at v
~ vy, where v, is determined by the hyperviscosity of
the numerical model, which is necessary for handling
the enstrophy cascade at the smallest spatial scales.
Least square fits to the numerical spectrum provide o,
~ Vo, Uy ~ vy, and & ~ «. Note however that the DNS
example of Fig. S5b presents substantially steeper slopes
at very high frequencies (/i = 5) than in the northwest
Atlantic data. The DNS further reveal that this slope,
which is always larger than 3, is sensitive to the degree
of intermittency of the turbulence (i.e., the existence of
strong coherent vortices). However, if we limit the
least square fit to the frequency range that is correctly
sampled by the data (i.e., vT, < 1), we get i ~ n.

That the generic velocity spectrum of the stationary
700-m floats displays a slope steeper than 3 at large
frequencies implies that the power spectrum W (v) of
Lagrangian acceleration

W) « v2P(v)

is integrable and that the variance of the acceleration
is finite. In other words, the quantity

u(t + Ar) —u(s)
At

converges in the mean-square sense toward the accel-
eration a(t) and

u(r + At) —u(z)

d .
—u(t) = a(t) = lim Ar

dt At—0

is well defined in a statistical sense (Panchev 1971)
and is continuous. It is worth emphasizing that a finite
value of the variance of the acceleration supports a truly
‘‘Lagrangian’’ behavior of the 700-m floats even for
an infinite extent of the inertial range. This type of be-
havior is different with respect to that considered by
various stochastic models of particle trajectories (e.g.,
see Griffa et al. 1995), which rely upon discontinuous
Lagrangian accelerations.

5. Contributions of the different spectral bands to
dispersion

This section is devoted to the study of the structure
function of the (linearly detrended) Lagrangian posi-
tion x' (), given by

Sty =L([x'(t + 1) = x"(1)]1%). ¢
The aim is to identify the role of the different spectral
frequency bands in determining the form of the struc-
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TaBLE 1. Logarithmic spectral slopes and number of points N used
to estimate the slope for the normalized spectra of the floats. The
indicated uncertainties are the 95% confidence limits to the least
square fit to the spectrum in the selected frequency range.

Slope Av’ (T)™! N
n=33*014 0.3-0.7 70
a =025 = 0.06 0.025-0.25 41

ture function (and therefore the dispersion®) and to
draw the dynamical implications of the generic spectral
shape identified in the previous section.

Following the normalization introduced earlieAr, we
define a nondimensional structure function S(7),
which is related to the total energy spectrum by

_S(1)
o212
8 [~ P(D)

47T2 0 172

S(#)

sin?(270t/2)dp, (10)
where the frequency © and spectrum £(#) are the non-
dimensional quantities defined in section 2. In partic-
ular, we have

PO)=2

f Pap = L.
0 2

For simplicity, from now on we drop the caret to
indicate nondimensional quantities. In the following we
investigate two simple analytical approximations to the
Lagrangian spectrum, obtained by using a piecewise
power-law spectrum with respectively two and three
pieces.

a. Two-piece fit

The shape of the average Lagrangian spectrum mea-
sured in situ (continuous line in Fig. 5a) suggests a first
analytical representation of the form

P,(v) = Py(v) + P(v)
= 2[H<u]) + (%)n(l - H(vl))] . (1)

where H(v,) = 1 for v < v, and O elsewhere. The
spectrum is the sum of two contributions P; and P,,
which represent the low and high frequency branches
of the dashed line in Fig. 5a. These two parts of the
spectrum are idealizations of the low-frequency plateau
and the steep spectral decrease at large frequencies. The

2 We recall that the diffusion coefficient is usually defined as
$(dldT)S(T).
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slope n represents the slope of the high-frequency part
of the spectrum; we want to quantify the impact of
various values of n on the behavior of the Lagrangian
structure function.

By equating the areas beneath the continuous and
dashed curves of Fig. 5a, we conserve the total variance
through

(12)

Relations (11) and (10) enable us to quantify the re-
spective role of P; and P, in shaping the structure func-
tion of the Lagrangian position. The corresponding an-
alytical approximation to the structure function,

Sa(7) = 81(7) + Sa(7), (13)

is the sum of the respective contributions of the low
and high frequency bands. The functions S,(7), S:(7),
and S,(7) are plotted in Figs. 6a and 6b for n = 2 and
n = 3.3 respectively. The latter value of n corresponds
to the average slope obtained for the total energy spec-
trum of the stationary trajectories (see Table 1 and Fig.
5a). Figure 6 indicate that the low frequency band con-
tributes to the structure function much more than the
high frequency band for both values of n. Moreover,
using (10), (11), and (12), we get

li 51(7')_
m-—=—=—-=n

70 SQ(T) - L (14)

Therefore, provided that the decrease at large frequen-
cies is steep enough, the dominance of the low fre-
quency band holds even for the shortest time lags of
the structure function. In particular, for n = 3 more
than 66% of the energy content is in P;(v) and S;(7)
> S,(7) for all 7.

For n = 3.3, corresponding to the in situ observations
(Fig. 6b), the low-frequency contribution S,(7) is al-
ways significantly much larger than S,(7), by almost
an order of magnitude, for all time lags. All the char-
acteristic features of the structure function, such as the
short time ‘‘ballistic”” 72 regime and the large time
‘“‘Brownian’’ 7 regime, as well as the transition region
between them, are predominantly determined by the
low-frequency motions. For the case of a two-piece fit,
the transition between the 72 and 7 regimes occurs at
about 7 = 2 ~ 3 T;; for values of n > 2, the transition
between the two regimes is found to be only weakly
dependent on n.

b. Three-piece fit

We want now to better study the transition between
the 72 and 7 regimes of the structure function by re-
sorting to a three-piece fit of the spectrum. This cor-
responds to the dotted line of Figs. Sa and 5b, which is
of the form
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Pu(v) = 2[H<uo) + (%)al(uo, )

; (—”—°>a(ﬂ)"<1 _ H(m))] . (15)
v, v

where I(vy, v;) = 1 for vy < v < v, and 0 elsewhere.

Figure 7a shows the compensated structure functions
S(7) X 77", as computed respectively from the in situ
data (continuous line ), the two-piece spectrum (dashed
line), and the three-piece spectrum (dotted line). The
compensation by 7' has been performed in order to
better display the intermediate and Brownian regimes
in the log-log plot. Figure 7a clearly shows that the
three-piece fit yields a significantly better approxima-
tion to the observed structure function than the two-
piece fit. In particular, the three-piece fit enables a bet-
ter representation of the intermediate regime of

.
1 <—=<10,
T,

where there is a tendency for an extended power-law
behavior, and the Brownian regime in 7 does not start
until 7 =~ 107,. This delay of the Brownian regime
when compared to the two-piece fit and the existence
of an intermediate extended power-law behavior are
reminiscent of the findings of Elhmaidi et al. (1993).
These authors have documented the anomalous diffu-
sion at intermediate times caused by the existence of
persistent coherent vortices in simulations of two-di-
mensional turbulence. The trapping of particles by
long-lived structures causes a delay in the transition to
the Brownian dispersion, generating an intermediate
anomalous dispersion regime, bounded at large times
for spatially homogeneous turbulence.

Figure 7b shows the various contributions to the total
structure function (continuous line) for the three-piece
fit; the dotted, short-dashed, and dashed lines corre-
spond respectively to the lowest, intermediate, and
highest frequencies. We note that at all time lags, the
largest contribution comes from the intermediate fre-
quencies; again, the highest frequencies provide a neg-
ligible contribution. The Brownian regime is deter-
mined by both the intermediate and lowest frequencies,
while the intermediate regime, which corresponds to

1 < —< 10,
I,
is solely determined by the second piece of the three-
piece fit. We have therefore provided evidence for a
close correspondence between the existence of an in-
termediate power-law regime in the spectrum and an
intermediate regime in the behavior of the structure
function (and thus in the absolute dispersion). We have
already noted in section 2 that the existence of this
intermediate regime in the spectrum is characteristic of
the CA2 trajectories, which preferentially sample high-
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energy regions close to coherent vortices and strong
jets.

6. Discussion and conclusions

This paper shows that, pending an appropriate scal-
ing of each trajectory by its Lagrangian integral time-
scale T, there exists a generic shape of Lagrangian
frequency spectrum for ‘‘stationary’’ trajectories in the
western North Atlantic. Such a rescaling requires to
estimate the value of 7, for each trajectory; we have
proposed an alternative methodology based on an av-
erage proportionality between T, and a decorrelation
timescale T;, which can be deduced through dimen-
sional considerations from a yardstick measure of the
Lagrangian decorrelation length L, .

The generic spectral shape consists in a plateau at
the lowest frequencies extending up to v, ~ (307.) ',
an intermediate slope with @ = 0.25 between v, and
vi(3 ~ 4 T;)7', and a steep slope n = 3 at larger
frequencies. Such a steep slope at large frequencies im-
plies that most of Lagrangian dispersion can be as-
cribed to low and intermediate frequency motions. The
predominance of low frequency on dispersion requires
in fact the high frequency to be slope n = 2. A stronger
result, which requires n = 3, is that the spectrum shape
is compatible with continuous material particle accel-
erations and finite variance of the Lagrangian acceler-
ations (section 4). This case supports a truly ‘‘La-
grangian’’ behavior of the 700-m floats even for an
infinite extent of the inertial range.

We have provided some evidence from the data and
from a three-piece linear fit of the Lagrangian spectrum
that the observed delay of the Taylor—Brownian re-
gime, which is reached in the data only for time lags
larger than 107, can be ascribed to the existence of an
intermediate power-law regime in the spectrum. This
intermediate regime is characteristic of floats sampling
energetic persistent features, such as strong jets and/or
coherent vortices, while it does not appear to exist for
less energetic midocean trajectories.

We recall that in past years some attention has been
devoted to the study of anomalous dispersion and frac-
tal behavior of both surface drifter and SOFAR float
trajectories (Osborne et al. 1986, 1989; Brown and
Smith 1990; Provenzale et al. 1991; Sanderson and
Booth 1991). In particular, for surface drifters the anal-
ysis of Osborne et al. (1986, 1989), has indicated the
existence of an intermediate spectral slope with o'
~ 0.6, associated with an anomalous dispersion law
S(7) « 73 in the structure function. In their study of
absolute dispersion in 2D turbulence, Elhmaidi et al.
(1993) have detected both a >’* and a > law for the
ensemble dispersion of advected tracers. The former
was shown to be associated with particle motion in
proximity of coherent vortices and it is analogous to
the intermediate regime observed in the spectrum of
the CA2-type SOFAR float trajectories. The #*'® dis-
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persion law, on the other hand, was shown to be related
to the motion of vorticity-dominated, incoherent
patches in the background between the vortices. We
note the analogy between the values found by Osborne
et al. (1986, 1989) for surface drifters and those ob-
tained for the vorticity-dominated patches in 2D tur-
bulence. Due to the discontinuous particle accelerations
observed for surface drifters, however, it still remains
to be assessed whether surface motions may be inter-
preted in terms of 2D dynamics and compared with the

results found for the truly quasigeostrophic dynamics’

of SOFAR floats.

We also note that Middleton (1985) has developed
the argument that steep Lagrangian spectra are to be
expected if the Eulerian wavenumber spectra are them-
selves steep. This is supported by DNS of quasigeo-
strophic turbulence (e.g. Hua and Haidvogel 1986),
where Eulerian wavenumber spectra are steeper than
k~*. Furthermore, we have noted a close analogy be-
tween the rescaled average spectrum measured in situ
and the Lagrangian spectra computed in DNS of qua-
sigeostrophic turbulence (Hua and McWilliams 1994,
manuscript submitted to J. Fluid Mech.).

A side issue of this work concerns the contrast be-
tween the Lagrangian velocity spectrum slopes and the
observed v ~? Eulerian ones (Wunsch 1982), with a
steeper slope prevailing for the Lagrangian case. This
result is dynamically compatible with the common in
situ observation that the Lagrangian integral timescale
is shorter than its Eulerian counterpart; this behavior is
confirmed by the DNS of Hua and McWilliams (1994,
manuscript submitted to J. Fluid Mech.).

As a concluding remark, we note that the analysis of
the North Atlantic SOFAR floats datasets at 700 meters
has indicated both the existence of apparently generic
features in the behavior of Lagrangian quantities as
well as intriguing similarities between field observa-
tions and numerical simulations of quasigeostrophic
flows for trajectories that are stationary on the timescale
of 200 days. On the other hand, both the statistical sig-
nificance of these results and their applicability to other
flow conditions remain to be fully explored. We leave
this to further investigation.
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torical dataset in the northwestern Atlantic. Comments
on the manuscript by Dr. Klein are gratefully acknowl-
edged.

APPENDIX A
Stationarity of Velocity Time Series

Given a generic time series £(z), we say that it has
stationary average if its mean

_ 1 10+ T
&(to, T) = E?f_ &(r)dt

RUPOLO ET AL.

1605

is independent of both #, and 7 for sufficiently large
values of 7.

In the case of float trajectories, we consider the scalar
time series of position x(#) and velocity v(¢) = dx/dt,
and we want to verify whether the velocity time series
has a stationary average, that is, if there is no net La-
grangian acceleration. To this end, we consider the lin-
ear least-square fit v,(z) = y¢ + c to v(¢), and we
rewrite the two series as

x(t) =x"(t) + ct + % vi?
v(t) =v' () + ¢+ i,

where now x' (¢) and v’ (¢) are stationary and the quan-
tity y represents the net Lagrangian acceleration. Note
that the presence of a trend in a velocity time series
with total length T is related to the presence of signif-
icant components with periodicity longer than T.
Clearly signals which are nonstationary on the time-
scale T may well become stationary on much longer
timescales.

A common procedure when studying Lagrangian
float trajectories is to linearly detrend the position time
series in order to eliminate a constant mean advection
velocity (e.g., Provenzale et al. 1991). In the above
case, the linearly detrended position time series is

(1) = x(1) = kt =2’ (1) + (c = ) + 3 1%,

where k = ¢ + 3T is the mean slope of the linear
least-square fit to the position time series of length 7.
If ¥ = 0 (i.e., the velocity time series is stationary as
there is no net Lagrangian acceleration), linearly de-
trending x(¢) gives £(¢) = x'(¢), providing the correct
signal. In this case the velocity v(z) is (apart from the
constant v,,, = ¢ that may be easily eliminated) the
derivative of £(¢). When y # 0, however, linearly de-
trending x(#) may be inappropriate since the mean ve-
locity itself is not constant in time and v(¢) — c is not
the derivative of X(f).

We now want to have a simple operational way for
determining whether the velocity time series is station-
ary. A first possibility is to perform a linear least-square
fit to v(#) in order to determine the value of y. This
may be troublesome, however, due to the large uncer-
tainties in v(#) when the velocity is obtained by nu-
merical differentiation of x(¢) and to the possible pres-
ence of higher-order trends in x(t). Alternatively, we
may follow the simple procedure of comparing the
power spectra of position and velocity. In what follows,
the Fourier transforms and the power spectra are given
in frequency units. The Fourier transform of velocity
is

F,=F, + F},

where F] the Fourier transform of the linear trend in
velocity, F] = —iy/v.



1606
The power spectrum of velocity is

P,= P, + P] + [F, F]* + F5F"]
iy (A1)
=Pu’+Ply+_[Fu’_F;k’]’
v

where asterisks denote complex conjugate.
The Fourier transform of the linearly detrended po-
sition time series is

Fi=F.+ Fi“+ F)*,

where F)/* denotes the Fourier transform of the

parabolic trend in position, that is, F)/** = —y/v?
and
i(c —«k ivT
Fox = ( ) _ T )
v 2v

The power spectrum is
P.=P.+ P+ P)/*, (A2)

and remaining terms in the power spectrum can be
checked to cancel out.

We want to assess under which conditions v2P;
= P,. We have

P, = P.v?
Y — 1/2 2
Pl = Pp Ty ,

therefore

v2P; — P, = v* P77 — L[F, — F3]
14

]

T i
7[7 - - (F — Fu*)] .
4 v

Therefore for stationary velocity time series, that is,
for no mean acceleration of particles (v = 0), one
should verify P, = v2P; and conversely that P, # v*P;
means that we are dealing with nonstationary velocity
because of the presence a net mean acceleration of the
flow, which is linked to the existence of a strong mean
large-scale circulation.

APPENDIX B
Error Estimate on Velocity Spectra

We assume that the determination of float positions
is affected by a white noise error distributed between
0 and 1 km. The corresponding maximal error on ve-
locity time series will therefore be ~2 cms™'. The
noise spectrum B(v) is

B(v) = Cv?, (B1)
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and the normalization constant is such that
N
Y Cv?=(2cms™)?,
where
i
N=128 vy; = ,
256 days
1 2 128
C 2 2 (=2
<256 days) Zit~d e s

128
S i = 707264 = M,

i=1
so that C is given by
C ~ 4.0(256)*/M[(days cm s~ 1)?]
~ 0.37[(days cm s~1)?].

The error spectrum (B1).corresponds to the dashed
line in Figs. 3a and 3b.
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