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ABSTRACT

This article reviews the transport properties of coherent vortices in rotating
barotropic flows. It is shown that vortices induce regular Lagrangian motion
inside their cores and are highly impermeable to inward and outward particle
fluxes. Passive tracers can be trapped inside vortex cores for long times and are
transported by the vortex motion over large distances. Absolute dispersion in
vortex-dominated flows is discussed by studying particle dynamics in 2D turbu-
lence, point-vortex systems, and subsurface float trajectories in the ocean. Finally,
it is shown that anticyclonic coherent vortices in cyclonically rotating reference
frames can concentrate heavy impurities (e.g. dust grains) in their cores. This
process may play an important role in the formation of planetesimals in the early
solar nebula.

1. Introduction
Whenever rotating turbulent flows have been observed with sufficient resolu-
tion, long-lived coherent vortices have been detected (Bengston & Lighthill
1982, Dowling & Spiegel 1990, Ingersoll 1990, Hopfinger & van Heijst 1993,
Nezlin & Snezhkin 1993, McWilliams & Weiss 1994). Examples include Gulf
Stream rings and salty Mediterranean eddies in the ocean (MODE Group 1978,
Ring Group 1981, Wunsch 1981, Malanotte Rizzoli 1982, McWilliams 1985,
Flierl 1987, Armi et al 1989, Richardson et al 1989, 1991), the polar vortex
(e.g. McIntyre 1989, 1995) and tropical cyclones (Rossby 1949, Adem 1956,
Chan & Williams 1987), rotating plumes in turbulent convection (Killworth
1983, Brummell et al 1996, Julien et al 1996), great spots on giant planets such
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as the Great Red Spot on Jupiter (e.g. Ingersoll 1990, Dowling 1995), dark and
bright star spots where rotation and magnetic fields both play a role (Dowling
& Spiegel 1990), and perhaps vortex spots on astrophysical disks (Abramowicz
et al 1991, Bracco et al 1998).

Coherent vortices form naturally in rotating flows, as many numerical simu-
lations and laboratory experiments have shown. A random initial vorticity field
can organize itself into long-lived vortices that dominate the dynamics of the
flow and emerge as individual coherent entities from the turbulent background
(McWilliams 1984). The formation of coherent vortices is usually associated
with the presence of an inverse cascade of a crucial dynamical quantity (typi-
cally, energy) from small to large scales. However, the inverse cascade in itself
is not enough to explain why coherent vortices are generated. Although various
possible motivations have been suggested (e.g. Leith 1984, Robert & Sommeria
1991, Chavanis & Sommeria 1996) a fully satisfactory theory of vortex forma-
tion is still missing.

Nevertheless, vortices are there, and influence the dynamics in many ways.
In particular, coherent vortices are very efficient in trapping passive tracers for
long times and transporting them over large distances (Elhmaidi et al 1993).
Coherent vortices can thus play an important role in global transport processes
in rotation-dominated flows, such as large-scale geophysical flows.

At present, general circulation models of the ocean and the atmosphere do
not resolve the full spectrum of “eddies” that are present in the system, and rely
upon some form of parameterization of the eddy activity (e.g. Danabasoglu
et al 1994, McWilliams 1996). For coherent vortices, simple parameterizations
based on eddy diffusion concepts do not necessarily provide the correct answer.
As a consequence, it is necessary first to understand transport by coherent vor-
tices and then to properly parameterize it. In the last few years, the dynamics and
transport properties of coherent vortices have been studied in some detail, par-
ticularly in the case of barotropic flows. This has lead to a fairly complete under-
standing of the transport associated with barotropic coherent vortices, which is
reviewed here. As often claimed in short reviews like this one, no completeness
is guaranteed, and these notes barely represent my personal view of the subject.

2. Dynamics of Barotropic Turbulence
In the following, I consider the simplest nontrivial system exhibiting complex
spacetime evolution and the presence of coherent vortices, namely, barotropic
turbulence in the quasigeostrophic (QG) approximation (e.g. Charney 1971,
Rhines 1979, Pedlosky 1987). In the rest of this paper, this system will be our
prototype for the study of transport by coherent vortices.

In quasigeostrophic turbulence, the fluid motion is supposed to be rotation-
dominated and two-dimensional in a shallow layer, on a local horizontal plane.
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The rotation axis of the reference frame is perpendicular to the plane of motion.
The flow is divergenceless and the horizontal velocity is expressed in terms of
a stream function. All vertical derivatives and the vertical velocity vanish. In
the barotropic approximation, the density of the fluid is homogeneous and no
baroclinicity is present.

For quasigeostrophic motions in the ocean and the atmosphere, a local Carte-
sian approximation is often used. The relevant rotation parameter becomes the
Coriolis parameterf = 2Ä sinθ , whereÄ is the rotation frequency of the Earth,
andθ is latitude. Local Cartesian variables arex = (φ − φ0)RE cosθ0 in the
zonal (East-West) direction,y = (θ − θ0)RE in the meridional (North-South)
direction, andz in the local vertical direction. Here,φ is longitude,φ0 andθ0

are respectively a reference longitude and latitude at the center of the domain
of interest, andRE is the radius of the Earth. In the QG approximation, only
the local vertical projection of the Earth’s rotation vector is taken into account;
this approximation looses validity near the equator.

On a spherical planet, the local vertical projection of the rotation vector
varies with latitude. Differential rotation is thus present when employing a
local Cartesian approximation. If the fluid motion takes place on scales smaller
than those where the effects of differential rotation have influence, the variation
of the Coriolis parameter with latitude (i.e. withy) may be discarded, using
what is called thef -plane approximation. In this case, the Coriolis parameter
simply becomesf ≡ f0 = 2Ä sinθ0. If the latitude dependence off cannot
be discarded, a possible approach is provided by theβ-plane approximation,
which is based on considering the locally linearized variation of the Coriolis
parameter with latitude. That is,f ≡ f0+ βy, whereβ = 2Ä cosθ0/RE.

The equation of motion for a rotation-dominated homogeneous fluid layer
on a flat bottom topography and with a free surface is written in dimensionless
variables as

Dq

Dt
= ∂q

∂t
+ [ψ,q] = F + D, (1)

where

q = ω + f0+ βy− ψ/R2 (2)

is potential vorticity, andD/Dt = ∂/∂t + [ψ, ] is the total advective derivative.
Here,ω = ∇2ψ is relative vorticity,ψ is the stream function which is propor-
tional to the elevation of the free surface, [ψ,q] = ∂xψ∂yq − ∂xq∂yψ is the
Jacobian operator, andF andD are forcing and dissipation terms respectively.

The parameterRis the dimensionless Rossby deformation radius expressed in
units of the domain size,R= R0/L, whereR0 = (gH)1/2/ f0 is the dimensional
Rossby deformation radius. Hereg is the acceleration of gravity (in thez
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direction),H is the average depth of the fluid layer, andL is the horizontal size
of the domain. The flow described by Equation 1 is horizontally nondivergent
and the horizontal fluid velocityu = (u, v) has componentsu = −∂ψ/∂y
and v = ∂ψ/∂x. Equation 1 is the called the barotropic quasigeostrophic
approximation. In the context of plasma physics, Equation 1 is referred to as
the Hasegawa-Mima equation (Hasegawa & Mima 1978).

In the case of motion at scales smaller than the Rossby deformation radius
R, the effect of the free surface can be discarded. Moreover, on such scales
the f -plane approximation is often sufficient. Under the conditionsβ = 0
and R→∞ the barotropic QG equation (Equation 1) becomes the standard
equation for two-dimensional (2D) turbulence, where potential and relative
vorticity coincide.

In the absence of forcing and dissipation(F = D = 0), 2D turbulence ad-
mits an infinite number of conserved quantities. Two of them are quadratic
invariants, namely the mean kinetic energyE = 1/8π2

∫
(∇ψ)2 dx dy, and

the mean enstrophyZ = 1/8π2
∫
(∇2ψ)2 dx dy, where we have considered

a square domain with size 2π . The simultaneous conservation of energy and
enstrophy induces a direct (i.e. from large to small scales) cascade of enstrophy
and an inverse (from small to large scales) cascade of kinetic energy (Kraichnan
1967, Leith 1968, Batchelor 1969, Lilly 1972, Kraichnan & Montgomery 1980,
Couder 1984, Frisch & Sulem 1984, Herring and McWilliams 1984, Lesieur
1987, Maltrud & Vallis 1991, 1993), at variance with what happens in three
dimensions, where enstrophy is not conserved and energy cascades from large
to small scales.

The inverse cascade of energy induces important consequences on the dy-
namics of 2D turbulence. Numerical simulation and laboratory experiments
have revealed the presence of strong, long-lived vorticity concentrations that
contain most of the energy and the enstrophy of the system and live much
longer than their typical eddy turnover time. The first clear evidence of the
spontaneous emergence of coherent vortices in 2D turbulence was provided by
McWilliams (1984), although indications of this phenomenon can be found in
earlier works (e.g. Fornberg 1978, Basdevant et al 1981). The qualitative ap-
pearance of 2D turbulence is thus a random, low-energy background turbulent
field intermittently punctuated by strong individual vortices and high-vorticity
filaments, formed mainly during anelastic vortex-vortex interactions.

In freely decaying turbulence(F = 0 andD 6= 0), coherent vortices gen-
erally form after the time of maximum energy dissipation rate and display a
broad distribution of size and circulation. After the first burst of vortex forma-
tion, the vortex dynamics is characterized by long-range interactions that can
be approximately modeled by point-vortex systems, temporary dipolar pairing
between vortices of opposite sign, and strong anelastic interactions between
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vortices of the same sign (McWilliams 1984, 1990a, Benzi et al 1986, 1987,
Couder & Basdevant 1986, Waugh 1992, Dritschel & Waugh 1992, Dritschel
1995, Dritschel & Zabusky 1996). Moreover, the presence of coherent vortices
tends to suppress the turbulent cascades (McWilliams 1990b).

Figure 1a shows a typical vorticity field obtained by numerical simulation
of Equation 1 withF = 0, β = 0, and 1/R= 0, starting from an initially ran-
dom gaussian vorticity field characterized by a narrow band energy spectrum
E(k) = E0k6/(2k0 + k)18 and random Fourier phases (McWilliams 1990a).
Herek0 = 30 andE0 is a normalization factor that is fixed by requiring the
mean initial energyE = ∫

E(k) dk = 0.5. The mean initial enstrophy is
Z = 1100. Here and in the following we use periodic boundary conditions
in a square box with size 2π . For this simulation, a pseudospectral code with
standard 2/3 dealiasing and resolution 5122 grid point has been used (Orszag
1971, Canuto et al 1987). The time integration is performed by a third-order
Adams-Bashford scheme and dissipation is provided by a biharmonic term
D = −ν2∇4∇2ψ with ν2 = 5 · 10−8. Several works have been devoted to
study the statistical properties of the vortex population in freely decaying 2D
turbulence and its dependence on numerical resolution, initial conditions, and
dissipation scheme (Benzi et al 1987, Brachet et al 1988, Santangelo et al 1989,
McWilliams 1990a, Carnevale et al 1991, Dritschel 1993, Weiss & McWilliams
1993, Bartello & Warn 1996). At very late times, for systems with zero aver-
age vorticity in periodic or bounded domains the inverse energy cascade and
the merging of same-sign vortices lead to the presence of a vortex dipole at
the largest scales (Matthaeus et al 1991). This dipole is usually characterized
by a very small nonlinearity [i.e. [ψ,∇2ψ ≈ 0]] and it decays slowly due to
dissipation.

Freely decaying turbulence is not in a state of statistical equilibrium. When-
ever a statistically stationary turbulent flow is needed, forcing must balance
dissipation in such a way that the total energy and enstrophy of the system
do not show any temporal trend. Simulations of forced, statistically stationary
barotropic turbulence with coherent vortices have been discussed by Babiano
et al (1987a,b, 1990, 1994, 1995), Elhmaidi et al (1993), Legras et al (1988),
Ohkitani (1991), Maltrud and Vallis (1991, 1993), Borue (1994), Provenzale
et al (1995, 1998). In the following, we consider both freely decaying and forced
turbulent flows.

As evident from Figure 1a, the general appearance of 2D turbulence is quite
complicated. To characterize this complex topology, one can employ a partition
of the turbulent field proposed by Okubo (1970) and Weiss (1991) [see also
McWilliams (1984), Elhmaidi et al (1993), Larcheveque (1990), Basdevant &
Philipovitch (1994), Hua & Klein (1998)]. The Okubo-Weiss criterion is based
on considering the evolution equation for the vorticity gradient∇ω in the limit
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(a)

Figure 1 (a) Vorticity field from a numerical simulation of freely decaying two-dimensional
turbulence with 1/R= β = 0 at timet = 10. Initial conditions are provided by a Gaussian random
vorticity field with narrow-band energy spectrum, mean initial energyE = 0.5, and mean initial
enstrophyZ = 1100. Bright anddark tonesindicate negative and positive vorticity respectively.
(b) The field of the Okubo-Weiss parameterQ for the vorticity field shown in Figure 1a. Bright
anddark tonesindicate negative and positive values ofQ, respectively.

of vanishing viscosity; i.e. when vorticity is a Lagrangian invariant. In the
incompressible case, this equation reads

D∇ω
Dt
+ [∇ψ,ω] = 0. (3)

Under the assumption that vorticity and strain (i.e. spatial velocity derivatives)
are slowly varying with respect to the vorticity gradient in a Lagrangian frame,
the general solution of Equation 3 is given by a linear combination of the two
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(b)

Figure 1 (Continued)

elementary solutions

∇ω± ∝ exp

(
± 1

2
Q

1
2 t

)
(4)

whereQ = Q(x, y, t) = S2− ω2. Here

S2 = S2
n + S2

s , Sn = ∂xu− ∂yv, Ss = ∂xv + ∂yu,

whereSn andSs are the normal and shear components of strain, respectively.
The Okubo-Weiss parameterQ measures the relative contribution of the

squared strainS2 and of the squared vorticityω2. Elliptic regions are dominated
by rotation and are characterized byQ < 0, while hyperbolic regions are
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dominated by strain and deformation and are characterized byQ > 0. Note
that the value ofQ defines the behavior of advected particles in thefrozen
field: Regions withQ > 0 are characterized by local exponential divergence of
nearby particles, while regions withQ < 0 are characterized by an approximate
constancy of the distance between nearby particles. Of course, this does not
bear any direct information on the chaotic or regular nature of the trajectories
of advected particles in the evolving field.

Figure 1b showsQ(x, y) for the vorticity field of Figure 1a. Based on the
value ofQ, we identify three regions, namely (a) vortex cores, which are cha-
racterized by strong negative values ofQ; (b) strain cells surrounding the
vortices, which are characterized by large positive values ofQ; and (c) the
background whereQ fluctuates between small positive and negative values.
Depending on the sign ofQ, the background field may be further divided into
noncoherent elliptic and hyperbolic patches.

In past years, various authors have discussed the Okubo-Weiss criterion. In
particular, Basdevant & Philipovitch (1994) have shown that this criterion is
strictly justified only in a small portion of the turbulent field, and Hua & Klein
(1998) have proposed an extension of this approach that explicitly takes into
account time evolution. On the other hand, the partition of the turbulent field
into elliptic and hyperbolic regions has proven to be of value in the study of
absolute dispersion of passively advected fluid particles, see e.g. Elhmaidi et al
(1993). The use of such a parameterization has led to the identification of the
trapping properties of barotropic coherent vortices and to the observation of
different transport regimes associated with different regions of the turbulent
flow.

Before closing this section, it is useful to briefly discuss the fate of coherent
vortices when free surface effects and differential rotation cannot be neglected.

Vortex dynamics for 1/R 6= 0 andβ = 0 has been discussed by Polvani
et al (1989), Larichev & McWilliams (1991), Waugh (1992), Kukharkin et al
(1995). The presence of a free surface slows down the inverse cascade at scales
larger thanR. The interaction between different vortices is shielded at large
scales, and the dynamics becomes spatially more localized. At scales smaller
thanR, the dynamics is basically that of 2D turbulence. Coherent vortices form
and grow by merging until they reach a scale of orderR. After this stage, the
evolution becomes very slow because the different vortices interact only weakly
with each other. Figure 2 shows a plot of the vorticity field from a numerical
simulation of barotropic turbulence withR= 0.2 (one fifth of the domain size)
andβ = 0, for the same initial condition of Figure 1. Note the existence of
several vortices encapsulated in subdomains with typical sizeR.

Differential rotation, associated withβ 6= 0, induces more significant ef-
fects (e.g. Rhines 1975, 1979, McWilliams 1984, Bartello & Holloway 1991,
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Figure 2 Potential vorticity field from a numerical simulation of freely decaying barotropic tur-
bulence on thef-plane withβ = 0 andR= 0.2 at t = 10. Bright anddark tonesindicate negative
and positive vorticity respectively. Same initial conditions of Figure 1a.

Maltrud & Vallis 1991, 1993). In particular, theβ-term is responsible for the
existence of an upper scaleLβ = (U/β)1/2, called the Rhines scale, above
which the inverse energy cascade is inhibited (Rhines 1975). Here,U is a typi-
cal velocity scale which is determined by the dynamics. Above the Rhines
scale, Rossby waves dominate the dynamics; usually, coherent vortices can-
not grow larger thanLβ . Even below the Rhines scale,β-plane vortices live
shorter than theirf-plane counterparts. In general, isolated monopoles on the
β-plane emit Rossby waves and undergo zonal and meridional motion (Firing
& Beardsley 1976, McWilliams & Flierl 1979, Flierl et al 1983, Flierl 1987,
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Sutyrin & Flierl 1994, Sutyrin et al 1994, Reznik & Dewar 1994, Korotaev &
Fedotov 1994, Llewellyn-Smith 1997, Morel & McWilliams 1997, Sutyrin &
Morel 1997). Nevertheless, even on theβ-plane coherent vortices still form and
exist for relatively long times and can induce significant effects on transport,
as discussed in the next section. Figure 3 shows the vorticity field obtained by
numerical simulation of freely-decaying turbulence with 1/R= 0 andβ = 10.
This picture illustrates the coexistence of Rossby waves and coherent vortices,
which is typical ofβ-plane turbulence.

Figure 3 Relative vorticity field from a numerical simulation of freely decaying turbulence on
theβ-plane at timet = 10. Here,β = 10 and 1/R = 0. Bright anddark tonesindicate negative
and positive vorticity respectively. Same initial conditions of Figure 1a.
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3. Particle Advection in Turbulent Flows
The equations of motion for passive, point-like Lagrangian particles having
vanishing inertia with respect to the advecting fluid are obtained by equating
the Lagrangian velocity to the Eulerian fluid velocity at the particle position,
i.e.

dx
dt
= V(t) = u(x, t), (5)

wherex(t) = [x(t), y(t)] is the particle position at timet,V(t) is its Lagrangian
velocity, andu(x, t) is the Eulerian velocity at pointx and timet .

For two-dimensional incompressible flows, such as those discussed in the
previous section, the Eulerian velocity may be expressed in terms of a stream
functionψ(x, y, t). In this case Equation 5 becomes

dx

dt
= −∂ψ

∂y
; dy

dt
= ∂ψ

∂x
. (6)

Equation 6 formally defines a Hamiltonian system with one degree of free-
dom, described by the canonically conjugate variablesx andy. Here, the stream
functionψ plays the role of the Hamiltonian and the phase space of the sys-
tem is the physical plane (x, y), see e.g. Ottino (1989). For stationary stream
functions, Equation 6 is integrable, the particles follow the streamlines, and all
particle trajectories are regular. When the stream function is time-dependent
(e.g. periodic in time), the system becomes nonintegrable. In this case, chaotic
particle trajectories are expected and the Lagrangian motion may become highly
irregular even if the Eulerian dynamics is simple. This type of behavior, known
as chaotic advection, has been studied by many authors [see e.g. the reviews
by Ottino (1989, 1990), Crisanti et al (1991), Wiggins (1992)].

When particle trajectories are irregular, statistical quantities are needed to
characterize the Lagrangian properties. The maximum Lagrangian Lyapunov
exponent provides a measure of the degree of chaoticity of a trajectory. Given
two infinitesimally close trajectoriesx1(t) andx2(t) = x1(t)+ δx(t), solutions
of Equation 6, in the limit|δx|→0 the time evolution of the separation vector
δx is given by the linearized equation

dδx
dt
= ∂(u, v)

∂(x, y)
δx, (7)

where∂(u, v)/∂(x, y) is the velocity Jacobian matrix computed alongx, (t).
The maximum Lagrangian Lyapunov exponentλL is then defined as

λL = lim
t→∞3L(t) = lim

t→∞ lim
|δx(0)|→0

1

t
log
|δx(t)|
|δx(0)| . (8)
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For Hamiltonian systems, a regular and predictable Lagrangian behavior is as-
sociated with a valueλL = 0, while chaotic and unpredictable particle trajec-
tories are associated withλL > 0.

The relevant information is contained in the time-dependence of3L . Regular
motion induces an ever-decreasing value of3L , while chaotic dynamics induces
a convergence of3L to a finite positive value, giving an estimate ofλL . Note,
also, that the maximum Lagrangian Lyapunov exponent is based on a time
average along a single trajectory, and must be computed for each fluid particle.
From a practical point of view, there are various algorithms that provide an
approximation to3L(t) from the knowledge of the equations of motion, see
e.g. Benettin et al (1976, 1980), Eckmann & Ruelle (1985). On some occasions,
local Lyapunov exponents (also called Finite Time Lyapunov Exponents, FTLE)
have been introduced (e.g. Pierrehumbert 1991a, Pierrehumbert & Yang 1993).
These are obtained by taking a finite (and usually small) value fort in Equation
8, with the aim of generating a map of the FTLE as a function of the starting
position of the particles. Although useful under several circumstances, we shall
not use the FTLE approach here.

Further information on particle advection is provided by the study of ab-
solute and relative dispersion. Both these concepts are based on averaging
over an ensemble of advected particles, rather than on averaging over time as
for the Lyapunov exponents. Absolute dispersion (also called single-particle
dispersion) provides a measure of the mean square displacement of individual
particles at timet , and it is defined as

A2(t; t0) = 〈|xi (t)− xi (t0)|2〉 = 1

N

N∑
i=1

|xi (t)− xi (t0)|2, (9)

where〈· · ·〉 indicates average over the particle ensemble,xi (t) is the position of
thei -th particle at timet, t0 is the time at which particles have been released, and
N is the total number of particles in the ensemble. For statistically stationary
flows, single-particle dispersion depends only ont − t0.

The definition of the particle ensemble requires some care. In principle,
particles should be released at the same spatial position, in different realiza-
tions of the same turbulent flow (Monin & Yaglom 1971). In most practical
applications, however, particles are seeded in different spatial positions of the
same realization of the flow. The two definitions are compatible if the flow
is spatially homogeneous and the initial particle separation is larger than the
spatial correlation scale of the flow.

For homogeneous flows, the starting positionsxi (t0) of the particles are not
important, but they may become so when the flow displays spatial inhomo-
geneities. In this case, conditional averages can be used (Elhmaidi et al 1993).
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Further complications arise when dealing with anisotropic flows, such as on
theβ-plane. In this case, dispersion alongx andy can be different, and the two
components of the squared displacement must be considered separately.

Relative dispersion is defined as the mean square displacement at timet
between a pair of initially nearby particles. This is given by

D2(t; t0, d0) = 1

N/2

∑
i=1,3,5,...

|xi (t)− xi+1(t)|2, (10)

whereN/2 is the number of particle pairs andd0 is the initial distance between
a particle pair. In the limit ofd0→0, one may relate relative dispersion to the
ensemble average of the largest Lyapunov exponent.

Armed with these statistical tools, we may now study the transport properties
of barotropic vortices.

4. Transport by Isolated Vortex Structures
A coherent vortex is a region inside closed vorticity isolines, which keeps its
identity for times much longer than the local eddy turnover timeTZ , defined as
TZ ≈ Z−1/2, whereZ is the local average enstrophy. The core of a coherent
vortex is the region whereQ¿ 0, and it is bounded by the isolineQ = 0.

From a Lagrangian viewpoint, there is a significant difference between a
vortex core and the external field. Figure 4 shows the evolved distribution of
2000 advected particles initially seeded on a straight line from the center of
the simulation domain to its edge, in a freely decaying, initially perturbed
vortex with 1/R= 0 on thef-plane. The vortex center(x0, y0) coincides with
the center of the simulation domain and the initial vorticity profile is given by
ω(r, φ, t = 0) = ω0 exp{−[r/σ(φ)]4/2}, wherer = [(x−x0)

2+(y− y0)
2]1/2,

φ = arctan[(y− y0)/(x − x0)], andσ(φ) = σ0[1+ ε cos(mφ)]. Herem = 3
is the azimuthal wavenumber,ε = 0.3, andσ0 = π/2. The value ofω0 is fixed
by requiring the mean initial energy of the vortex to beE = 0.5. The mean
initial enstrophy isZ = 0.6. During the free evolution, the vortex tends toward
a circular shape, emitting vorticity filaments and interacting with its images in
the periodic domain.

In the vortex core, initially nearby particles remain close to each other, gently
undergoing linear azimuthal dispersion because of differential rotation inside
the vortex. Outside the vortex, particles are rapidly dispersed and they soon
display an irregular distribution. Here, one observes exponential stretching of
material lines and a corresponding exponential divergence of nearby particles.
Analogous results are obtained for a finite Rossby deformation radius.

The behavior of particles inside and outside the vortex can be quantified
by considering the radial relative dispersion between pairs of nearby particles.
Radial relative dispersion can be defined as the radial component of the relative
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Figure 4 Distribution of 2000 passively advected particles att = 20. Particles are seeded at
t = 0 on a radial line in an azimuthally perturbed cyclonic vortex undergoing freely decaying
two-dimensional dynamics with 1/R= β = 0. The mean initial vortex energy isE = 0.5 and the
enstrophy isZ = 0.6. Theshadingrepresents the evolved vorticity field.

dispersionD2(t)given by Equation 10, the origin of the polar coordinate system
coinciding with the vortex center. Provenzale et al (1998) have shown that
particles in a vortex core display an almost null radial relative dispersion and
a linear azimuthal dispersion, while particles outside undergo strong radial
relative dispersion.

The above results indicate that particle motion is regular inside coherent
vortices. The lack of Lagrangian chaoticity in the vortices of 2D turbulence has
been discussed by Babiano et al (1994), who have shown that the maximum
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Lagrangian Lyapunov exponent converges toward zero inside vortex cores.
Outside vortices, particle trajectories in 2D turbulence are generally chaotic
and have a positive maximum Lagrangian Lyapunov exponent. In a sense,
coherent vortices in barotropic turbulence can be defined as islands of regular
Lagrangian dynamics in a chaotic background. It is interesting to note that these
regular islands are not fixed in space and time, as they wander chaotically in
the turbulent field and have finite lifetime. The lack of chaoticity in the vortices
indicates that Lagrangian mixing is very weak inside vortices, and it is achieved
only on diffusive time scales by the combined action of viscosity and differential
rotation inside the vortex.

An important property of coherent barotropic vortices is their impermeabil-
ity to inward and outward particle fluxes (Elhmaidi et al 1993, Babiano et al
1994; see also Dewar & Flierl 1985). Figure 5 shows the distribution of two
ensembles of passive tracers seeded respectively inside and outside a coherent
vortex in freely decaying 2D turbulence (β = 0 and 1/R= 0), using the same
initial conditions of Figure 1a. Particles are seeded att = 10 when the coherent
vortices are already present. At the seeding time, the mean kinetic energy of
the Eulerian field isE = 0.35 and the mean enstrophy isZ = 20. The sys-
tem is then integrated up to a timet = 42. The particles inside the vortices
remain there, while those seeded outside spread in the background turbulent
field, without entering any vortex core. Analogous results have been discussed
by Elhmaidi et al (1993) for forced 2D turbulence. In this latter case, particles
are ejected from vortex cores only during strong vortex-vortex interactions, and
no particles enter the cores of existing vortices. In forced turbulence, vortices
are continuosly (albeit slowly) generated and the only possibility for a parti-
cle to enter a vortex core is to be captured by a newly forming vortex during
the generation process. Thus, in forced turbulence the particle distribution be-
comes homogeneous on a very long time scale, which is determined by the
typical lifetime of the vortices rather than by the eddy turnover time of the
individual vortices. In stationary or oscillatory flows, closed streamlines delay
homogeneization of passive scalars, as shown by Rhines & Young (1983). The
above results show that even in turbulent flows the presence of chaotically mov-
ing regular islands associated with the coherent vortices leads to a similar delay
of homogeneization.

The presence of aβ term does not destroy the trapping properties of coherent
vortices. Although vortices may be short-lived because of emission of waves
and vorticity filaments, below the Rhines scale vortex cores still act as trapping
islands as long as they exist. Figure 6 shows the distribution att = 20 of an
ensemble of particles initially seeded inside a vortex core, in freely decaying
barotropic turbulence on theβ-plane. For this simulation,β = 10 and 1/R =
0. Particles are seeded inside a randomly selected vortex at timet = 10, when
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Figure 5 Evolved distribution of two ensembles of passive particles that were initially seeded
inside a vortex core and in the background field in freely decaying two-dimensional turbulence.
Particles seeded in the vortex remained there during the turbulent evolution and can be seen inside
the vortex in the lower right portion of the domain. Particles seeded in the background (small solid
triangles) do not enter vortex cores and spread in the background turbulent field. In this figure,
bright anddark tonesindicate positive and negative vorticity respectively.

the turbulent field is already organized in coherent vortices and the mean kinetic
energy isE = 0.35. Most of the particles are trapped in the vortex during its
entire lifetime, being released only when the vortex is destroyed att ≈ 20.

Particle trapping inside coherent monopoles on theβ-plane can have impor-
tant consequences on the overall transport of passive tracers. In the presence
of a β term, transport in the meridional direction (i.e., parallel to the direc-
tion along which the Coriolis parameter varies) is generally inhibited. Rossby
waves tend to move passive constituents mainly along the zonal direction, and
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Figure 6 Evolved distribution of an ensemble of passive particles that were initially seeded inside
a vortex core in freely decaying turbulence on theβ-plane. Hereβ = 10. Most of the particles
have been trapped in the vortex for its whole lifetime and are released only after the disruption of
the vortex itself.Bright anddark tonesindicate negative and positive vorticity respectively.

a marked asymmetry between zonal and meridional transport is observed (e.g.
Pierrehumbert 1991b). By contrast, coherent vortices may have a significant
meridional component in their motion. Passive tracers trapped inside vortices
are also displaced meridionally, and, when the vortex finally disappears, are
released at a different latitude with respect to their original location. Trapping
of passive tracers inside coherent monopoles can thus provide a mechanism of
meridional mixing on theβ-plane.

The trapping properties of coherent vortices can be understood by noting that
the vortices have a strong vorticity gradient at their edge, which separates the
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rotation-dominated core from the strain-dominated region just outside. In two-
dimensional turbulence, relative vorticity is a material invariant when forcing
and dissipation are absent. In QG turbulence, the same happens for potential
vorticity. In the presence of forcing, dissipation, or weak three-dimensional
effects, vorticity is not exactly conserved and fluid particles can cross vorticity
isolines. If the perturbing effects are weak, however, particles can change their
vorticity only slightly. Thus, regions of uniform or gently variable vorticity
are easily crossed by fluid particles while regions of large vorticity gradient
act as transport barriers, since the fluid particles cannot change their vortic-
ity enough to cross them. This criterion, discussed by McIntyre (1989) in the
context of polar vortex dynamics, can be applied also to the case of barotropic
vortices.

The edge of a coherent vortex may thus be defined as the isoline of maximum
vorticity gradient closer to the vortex center. Previously, we have defined the
vortex edge as the inner isoline whereQ = 0. Close to this isoline, the kinetic
energy and the vorticity gradient reach their maximum. Although the isolines
of maximum kinetic energy, maximum vorticity gradient, andQ = 0 do not
necessarily coincide, in general they provide three consistent definitions of the
vortex edge (Paparella et al 1997).

A striking geophysical example of the impermeability of coherent vortices
is provided by the polar stratospheric vortex (Paparella et al 1997). The polar
vortex is a strong, quasistationary stratospheric wind system that fully develops
during winter. In the Southern hemisphere, the stratospheric polar vortex is
particularly stable, and it is characterized by a limited exchange between the
air masses inside and outside it.

Figure 7 (from Paparella et al 1997) shows the simulated trajectories of 30
isopycnal balloons initially released at 292◦E and 63◦S on the isopycnal surface
at ρ = 0.0938 kg/m3 (corresponding to an approximate height of 20 km).
The balloons were released every two days starting on August 1st, 1993, and
their trajectories were numerically simulated using the ECMWF meteorological
wind fields for the period under study and a dedicated Lagrangian advection
scheme. From Figure 7, it is clear that the balloons, which were initially released
just outside the edge of the polar vortex, did not enter the vortex due to the strong
impermeability of the vortex edge. Analogously, balloons released inside the
vortex tended to stay inside, and spread out only at the end of the Southern polar
winter when the vortex weakened. Analogous results are obtained for passive
particle motion on isentropic surfaces.

5. Absolute Dispersion in Vortex-Dominated Flows
Having discussed how individual coherent vortices affect particle transport, we
may now concentrate on the Lagrangian behavior of flows dominated by the
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Figure 7 Simulated trajectories of 30 isopycnal balloons in the southern polar stratosphere. The
balloons are initially released at 292◦E and 63◦S on the isopycnal surface atρ = 0.0938 kg/m3,
corresponding to an approximate height of 20 km. The balloons were released every two days
starting on August 1st, 1993, and their trajectories were numerically simulated using the ECMWF
meteorological wind fields (from Paparella et al 1997).
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presence of several vortices and on the properties of absolute dispersion in 2D
turbulence.

Absolute (or single-particle) dispersion is defined by Equation 9. In homo-
geneous and isotropic 2D turbulence, particle trajectories are differentiable at
short times and absolute dispersion takes a ballistic form,A2(t) = 2〈E〉t2,
where the initial time ist0 = 0 and〈E〉 is the average kinetic energy of the
particle ensemble during the time interval [0, t ]. At large times, particle mo-
tion becomes analogous to a random walk, and absolute dispersion takes the
standard Brownian formA2(t) = 2Kt , whereK is the dispersion coefficient
(Taylor 1921, Monin & Yaglom 1971).

The meaning of “short” and “large” times for particle dispersion is deter-
mined by the value of the Lagrangian integral timeTL . This quantity can be
obtained by a time average over particle trajectories. We define the ensemble-
averaged Lagrangian velocity autocorrelation as

R(τ ) = lim
T→∞

1

T

〈
1

σ 2
i

∫ T

0
V′i (t) · V′i (t + τ) dt

〉
(11)

where〈· · ·〉 indicates average over the particle ensemble,V′i (t) = V i (t) − V̄ i

is the Lagrangian velocity fluctuation of thei-th particle, V̄ i is the average
Lagrangian velocity, andσ 2

i is the velocity variance. The average energy spec-
trum of the particles is given by

P(ν) = 2
∫ ∞

0
R(τ ) cos(2πντ) dτ, (12)

whereν is frequency. The average Lagrangian integral time is then defined as

TL =
∫ ∞

0
R(τ ) dτ = 1

2
P(0). (13)

Thus, short times are those which are much smaller than the average Lagrangian
integral timeTL , while long times are much longer thanTL .

The ballistic and Brownian regimes, respectively att ¿ TL and t À TL ,
have a rather general nature. In practical situations, however,TL is often com-
parable with the time scale of interest in the dynamics, e.g.TL is a few days for
mesoscale ocean flows. In addition, often the large-time Brownian regime can-
not be observed because of large-scale Eulerian inhomogeneities. Under these
conditions, it becomes important to understand dispersion on times compara-
ble with TL , in order to provide appropriate models for the parameterization of
transport. Anomalous diffusion (i.e. neither ballistic nor Brownian) has been
experimentally observed in two-dimensional chaotic advection (Solomon et al
1993, 1994).

The work of Elhmaidi et al (1993) has considered the properties of absolute
dispersion in forced and dissipated 2D turbulence, focusing on intermediate
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times. In this work, forcing is obtained by keeping fixed the power spectrum
at a selected wavenumber, simulating the contact of the turbulent flow with an
external energy and enstrophy reservoir. Dissipation is introduced at both small
and large scales, in order to dissipate the energy piled up by the inverse cascade.

One series of runs has resolution 128∗128 grid points in the periodic square
domain with size 2π . Large-scale forcing is fixed at the wavenumberkF =
(10, 0). An initial random field is evolved until statistical equilibrium is reached
and vortices form; passive particles are seeded into the turbulent flow only
after this moment. At equilibrium, the average Eulerian integral time scale is
TE = 0.14 and the average Lagrangian integral time isTL = 0.035. At variance
with what happens for free decay, in this type of forced turbulence the vortices
have a narrow distribution of size, centered on the forcing scale.

The study of absolute dispersion has allowed Elhmaidi et al (1993) to identify
the existence of a regime of anomalous dispersion at intermediate times. By
using conditional averages over the particle ensemble, it has been shown that
absolute dispersion in strain-dominated regions whereQ > 0 is characterized
by the approximate power-law behavior

A2(t) ∝ t5/4, (14)

at times between approximately 2TL and 30TL . This anomalous dispersion
regime is related to motion in the strain-dominated cells that surround coherent
vortices and in the hyperbolic patches of the turbulent background.

A similar intermediate regime of anomalous dispersion has been detected,
although indirectly, in the Lagrangian motion of ocean subsurface floats (Rupolo
et al 1996). In a reanalysis of the historical data set of SOFAR floats in the
western North Atlantic (Richardson et al 1981, Owens 1991), Rupolo et al
(1996) have shown that float trajectories with stationary velocity time series
possess a kinetic energy spectrum with a generic shape, when the frequency
and the spectrum of each trajectory are rescaled by the Lagrangian integral
time Ti of the individual trajectory considered,P̂i (ν̂) = Pi (νTi )/Ti . Note that
the Lagrangian integral times are well-defined because only trajectories with
stationary velocities have been considered. In this data set,Ti ranges between
about three and ten days.

The average adimensional spectrumP̂(ν̂) = 〈P̂i (ν̂)〉 has been shown to be
best-fitted by a three-component function. The best-fit shape is characterized by
(a) a flat plateau at low frequencies, ˆν < 1/30, associated with the stationarity
of the velocity record, (b) a very steep slope at high frequencies, ˆν > 1/3,
which indicates that Lagrangian accelerations are convergent for the data set
considered, and (c) an intermediate regime that is approximately fitted by a
power law P̂ ∝ ν̂−0.25. The intermediate regime is particularly visible in the
spectra of floats sampling high-energy regions near jet meanders and isolated
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vortices. Note that frequencies are given in units of the Lagrangian integral
time.

To see the link with absolute dispersion, one has to define the structure
function,

Si (τ ) =
{∣∣x′i (t + τ)− x′i (t)

∣∣2}
t
, (15)

wherex′i (t) = xi (t)− V̄ i t is the linearly detrended position time series of the
i-th float and the symbol{· · ·}t denotes average over timet. The adimensional
structure function is given bŷSi (τ̂ ) = Si (τ/Ti )/(σ

2
i T2

i ), whereσ 2
i andTi are

the velocity variance and Lagrangian integral time of the individual trajectory
considered.

The ensemble-averaged structure functionŜ(τ̂ ) = 〈Ŝi (τ̂ )〉 is equivalent to the
absolute dispersionA2(τ )with an additional average over the initial dispersion
time t. Ŝ(τ̂ ) is related to the power spectrum by

Ŝ(τ̂ ) = 8

4π2

∫ ∞
0

P̂(ν̂)

ν̂2
sin2(πν̂τ ) dν̂. (16)

From Equation 16, one sees that a power-law behavior of the average spec-
trum, P̂ ∝ ν̂−α, corresponds to a power-law behavior of the structure function,
Ŝ∝ τ 1+α. Thus, the valueα = 0.25 observed for float trajectories is consistent
with the absolute dispersionA2 ∝ t5/4 observed for strain-dominated regions
in 2D turbulence, provided we can identify the structure function with the en-
semble absolute dispersion and that the extent of the power-law region in the
spectrum is not too small to be masked by the side regimes. Note also that the
extent of the intermediate regime, between about 3TL and 30TL , is consistent
in the two cases.

The results on anomalous dispersion reported above are intriguing and are
worth further study. For example, it is unsatisfactory that there is no theoretical
explanation of the intermediate regime of anomalous dispersion. In particular, it
would be interesting to determine whether the observed approximate power-law
behavior is produced by a truly self-similar dynamics or it is generated by other
mechanisms, such as a superposition of a small number of dispersion processes
with different characteristic times (Artale et al 1997). It would also be of interest
to determine the dependence (if any) of the anomalous behavior on the forcing
mechanism, on the presence of a free surface (1/R 6= 0), and on theβ-term. If
anomalous dispersion at intermediate times will prove to be a robust property
of vortex-dominated turbulent flows, it will then become necessary to take it
into account when parameterizing sub-grid mesoscale dynamics. Simple eddy
diffusion approaches—which rely upon the presence of a Brownian dispersion
regime—cannot represent this process.
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6. Advection in Point-Vortex Systems
Systems of point vortices represent an extreme form of vortex-dominated flows.
Here, vorticity is concentrated in point-like singularities that move because of
their mutual advection, and the fluid between the singularities is completely
passive (Kirchhoff 1876) [see Aref (1983) for a review]. Point vortices have
been shown to mimic the behavior of the extended vortices of 2D turbulence
for limited times (Benzi et al 1987), their main drawback being the lack of
anelastic vortex-vortex interactions and of vortex merging. Attempts to extend
the dynamics of point vortices to include vortex merging have been discussed
by Carnevale et al (1991), Benzi et al (1992), Weiss & McWilliams (1993)
and Riccardi et al (1995). In past years, several works have been devoted to
the study of passive particle advection in point vortex systems (e.g. Aref &
Pomphrey 1980, Aref et al 1989, Rom-Kedar et al 1990, Meleshko et al 1992,
Babiano et al 1994, Carnevale & Kloosterziel 1994, Velasco Fuentes 1994,
Pentek et al 1995, Velasco Fuentes et al 1995, Boffetta et al 1996, Kuznetsov &
Zaslavsky 1998, Carena et al 1998, Weiss et al 1998). Here, we briefly review
some of these results.

Formally, point vortices are singular solutions of two-dimensional Euler
equations. The equations of motion for point vortices can be obtained by sup-
posing the existence of a singular vorticity field

ω(x, t) =
N∑

i=1

0i δ[x− xi (t)], (17)

whereN is the number of vortices,0i is the constant circulation of thei-th
vortex andxi (t) = [xi (t), yi (t)] is its position at timet.

By substituting Equation 17 into the 2D Euler equations [equivalent to
Equation 1 withβ=1/R= F = D = 0], one obtains the equations of motion
in the non-canonical Hamiltonian form

0i
dxi

dt
= +∂H

∂yi
, 0i

dyi

dt
= −∂H

∂xi
, (18)

whereH is the Hamiltonian

H({xi }) = −
∑
i 6= j

0i0 j

2
G(xi , x j ), (19)

and the form of the Green functionG depends on the boundary conditions.
The motion ofN vortices is described by an Hamiltonian system withN

degrees of freedom (2N dimensions in phase space). If the system hasN0

independent conserved quantities, the motion ofN ≤ N0 vortices is regular
and the maximum Lyapunov exponent in the 2N-dimensional phase space is
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zero. The motion ofN > N0 point vortices is in general chaotic, with a positive
maximum Lyapunov exponent.

For a periodic domain with size 2π the Green function takes the form

G(xi , x j ) =
∞∑

m=−∞
ln

(
cosh(xi − xj − 2πm)− cos(yi − yj )

cosh(2πm)

)

− (xi − xj )
2

2π
. (20)

The functionG can be shown to be periodic inx andy, and invariant under the
transformationx ⇀↽ y. The dynamics on the periodic domain has two invari-
ants other than the energy, namely, the components of the linear momentum
Px =

∑N
i=10i yi andPy =

∑N
i=10i xi . Angular momentum is not an invariant

because the periodic boundary conditions break rotational symmetry. The in-
variantsPx and Py are independent only if the total circulation

∑
i 0i is zero

(Aref 1983).
Passively advected particles are easily incorporated into point-vortex sys-

tems as zero-circulation vortices. A vortex with zero circulation,0i = 0, is
advected by the other vortices but it does not affect their motion. The study of
passive particle advection in point vortex systems has shown that each vortex is
surrounded by a region where passive particles are trapped for extremely long
times, analogously to what happens in the cores of extended vortices (Babiano
et al 1994, Carena et al 1998). Figure 8 shows the distribution, at four different
times, of 1000 passive particles initially seeded around a vortex in a system
composed of ten point vortices on the periodic domain. There are five positive
and five negative vortices and the total circulation of the system,

∑
i 0i , is

zero. The circulation of each vortex is|0i | ≈ 3. Although some of the parti-
cles rapidly detach from the vortex, there is an inner island where the particles
are trapped for a long time. Similar trapping islands exist around the other
vortices.

The size of the trapping islands is determined by the closest encounter be-
tween a pair of vortices. For same-sign vortices on the infinite plane, the joint
conservation of energy and angular momentum imposes the existence of a min-
imum distance between the vortices. As a consequence, the trapping islands
have a finite size, which is approximately half the minimum distance between
the vortices themselves, that is, the minimum distance to the nearest hyperbolic
point (Babiano et al 1994). Numerical simulation of vortex motion on the in-
finite plane has shown that the trapping islands keep their identity and size for
extremely long times. I have integrated the motion of a passive particle in an
island around a chaotically moving vortex for more than 108 particle rotations
without observing any significant increase of its distance from the vortex. This
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Figure 8 Distribution of vortices (crosses) and of 1,000 passively advected impurities (dots) in
a system of five positive and five negative point vortices on the periodic domain at timest =
0, 10, 30, 50. The particles were initially seeded close to one of the vortices. The particles closer
to the vortex are trapped in an island of regular Lagrangian dynamics, which moves with the vortex.

behavior suggests an asymptotic nature of the islands around point vortices on
the infinite domain.

Particles trapped in the islands around the vortices are characterized by reg-
ular Lagrangian motion, analogously to what has been observed for particles in
the vortex cores of 2D turbulence. In these islands, the maximum Lagrangian
Lyapunov exponent of the passive particles converges to zero even if the vor-
tices move chaotically (Babiano et al 1994). The nature of the regular islands
for quasiperiodic vortex motion has been studied by Boffetta et al (1996) for
the motion of two vortices in a circular domain and by Kuznetsov & Zaslavsky
(1998) for three vortices on the infinite plane.

On the periodic domain, vortices can get closer and closer to each other,
and the trapping islands have a size that can slowly shrink in time. However,
owing to the rarity of very close encounters between vortices, the islands can
still survive for long times.
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The Lagrangian dynamics of systems of a large number of positive and neg-
ative point vortices on the periodic domain has been studied in detail by Weiss
et al (1998). This work has shown that the Lagrangian velocities generated by
an ensemble ofN vortices are characterized by a probability density function
(PDF) with a Gaussian core and power-law tails [see also Min et al (1996)
for a study of the velocity PDF of point vortices on the infinite plane]. The
high-velocity tails in the PDF disappear, because of central limit theorem, for
N→∞. However, because of the shape of the velocity field induced by indi-
vidual vortices, the convergence is extremely slow and power-law tails are still
important for systems ofN ≈ 106 vortices.

Weiss et al (1998) have shown that the motion of individual vortices can be
decomposed into three main regimes, namely: (a) slow motions induced by the
mean velocity field generated by the other vortices. This motion is associated
with the Gaussian, low-velocity part of the velocity PDF, and it generates a
short-time exponential decay of the Lagrangian velocity autocorrelation. In
this regime, the vortex motion can be approximated by a stochastic Ornstein-
Uhlenbeck (OU) process (e.g. Wax 1954, van Dop et al 1985)

dx = Vdt; dV = − V

Tou
dt + σou

T1/2
ou

dW, (21)

wheredW is the Wiener process, a Gaussian random increment with〈dW〉 = 0
and〈dWα(t)dWβ(t ′)〉 = 2δα,βδ(t − t ′) dt, and Greek subscripts indicate vec-
tor components. The OU process is characterized by two parameters: a ve-
locity scaleσou, which can be determined by the variance of the gaussian
core of the velocity PDF, and the Lagrangian integral timeTou, which can
be determined by the short-time exponential behavior of the autocorrelation,
R(τ ) ≈ exp(−τ/Tou). (b) Strong interactions between same-sign vortices,
leading to temporary vortex couples that spin rapidly around each other with-
out a significant mean motion; and (c) strong interactions between vortices of
opposite sign, leading to temporary dipoles that travel rapidly across the domain.

The strong vortex-vortex interactions induce a long memory in the system
of vortices; as a consequence, the velocity autocorrelation tends to zero very
slowly after the short-time exponential decay. Vortex ensembles with different
initial conditions may thus display long-lasting significant differences in the
velocity PDF, suggesting that ergodicity is reached—if ever—only on very
long time scales (see also Weiss & McWilliams 1991).

In general, passive particles undergo a Lagrangian motion analogous to that
of the vortices. Particles close to a vortex remain there for long times, and have
an overall motion similar to that of the vortex, plus a fast rotational component.
Particles in the background mainly feel the mean velocity field generated by
the vortices, and their motion can be modeled by an OU process for most of
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the time. However, these passive particles sometimes come quite close to a vor-
tex and can temporarily participate in the vortex motion. For example, passive
particles can be significantly displaced from their previous position if the vortex
is undergoing a period of fast dipolar motion.

Useful information on the Lagrangian dynamics is provided by the absolute
dispersion of vortices and of passively advected tracers. The dispersion of
an ensemble of particles undergoing an OU process can be easily calculated,
and it provides an interesting comparison. Figure 9 shows the time-dependent
dispersion coefficientK (t) = A2(t)/2t for two long integrations of a system
of 100 vortices and 100 passive particles, compared with the prediction for a
OU process. The dispersion of the vortices and of the passive particles turns
out to be very similar to each other, but definitely larger—at long times—
than that of an OU process describing the background vortex motion. Weiss
et al (1998) have shown that this behavior is due to the close interactions
between opposite-sign vortices. The pairing of same-sign vortices does not
produce any recognizable sign on absolute dispersion, since a pair of same-sign
vortices moves similarly to a single vortex with circulation equal to the sum of
the circulations of the individual components. By contrast, the long flights of
the vortex dipoles induce an anomalously large dispersion that can be clearly
observed. Anomalous behavior can also be detected in relative dispersion, as
discussed by Viecelli (1990, 1993) for vortices on the infinite plane.

The above results indicate that a possible stochastic model for Lagrangian
motions in point-vortex systems is a background OU process, punctuated by
occasional long flights generated by the temporary pairing of opposite-sign
vortices. The quantitative study of this model has not yet been pursued, and
would be an intriguing issue.

7. Dust, Bubbles and Vortices
The passive tracers considered in previous sections are point-like particles hav-
ing vanishing inertia with respect to the advecting fluid. For these particles,
Equation 5 is a good dynamical model. Complications arise when the advected
particles have finite relative inertia and/or finite size, as in the case of dust
grains, gas bubbles and the floats and balloons used as Lagrangian tracers in
the ocean and the atmosphere. In this case, the dynamical behavior of the ad-
vected tracers (hereinafter called “impurities”) is qualitatively different from
that of fluid particles, and new effects can be present (e.g. Stommel 1949,
Maxey & Riley 1983, Smith & Spiegel 1985, Maxey 1987, Crisanti et al 1992,
Elghobashi & Truesdell 1992, Wang et al 1992, Vasiliev & Neishtadt 1994,
Marcu et al 1995, Tanga et al 1996).

The equations of motion of a finite-size, finite-inertia particle may become
extremely complicated, as they depend, for example, on the shape of the particle
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Figure 9 Absolute dispersion coefficientK (t) from two long integrations of a system of 100 point
vortices and 100 passive particles.Thin solid curvesrefer to vortex dispersion andthin dashed curves
to passive particle dispersion. Thethick wiggly solid curveis the average of the four dispersion
coefficients. Also shown is the dispersion coefficient for an Ornstein-Uhlenbeck stochastic process
(thick, smooth solid curve) and the envelope of expected error for four ensembles of 100 particles
moving according to this process (thick dashed curves). Adapted from Weiss et al (1998).
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itself (e.g. Auton et al 1988, Mallier & Maxey 1991). In the case of very small
spherical particles, the equations of motion take a simple form that can be
derived from Newton’s second law of motion [see Maxey and Riley (1983)
for a fairly complete discussion of the dynamical equations for small spheri-
cal impurities in nonrotating systems and Tanga et al (1996) for the rotating
case].

In their simplest form, these equations take the form

d2x
dt2
= δ Du

Dt
− γ

(
dx
dt
− u
)
+ g(1 − δ) − 2Ä

×
(

dx
dt
− δu

)
+ |Ä|2r (1− δ)r̂ , (22)

wherex is the position of the advected impurity,u is the Eulerian velocity field,
r is the distance from the rotation axis,r̂ is the unit radial vector.

Let us now discuss the various terms of this equation. The term on the left
hand side represents particle acceleration. The first term on the right hand side
represents the force that the fluid would exert on a fluid particle placed at the
position of the impurity, weighted by relative inertia. Here,δ = ρ f /ρp is the
ratio of the fluid density to the density of the individual impurity and the total
time derivativeDu/Dt = ∂u/∂t + u · ∇u is the material derivative following
the fluid particle.

The second term on the right hand side represents the Stokes drag, and it
models the friction that the fluid exerts on a particle moving with a velocity
that is different from the local fluid velocity. The parameterγ may be written
asγ = (9δ/2)(a/L)−2Re−1, wherea is the radius of the advected impurity,L
is a typical scale of the Eulerian flow, andRe is the Reynolds number of the
advecting flow.

The third term on the right hand side represents the buoyancy force acting
on the impurity.

The fourth and fifth terms on the right hand side represent the relative Coriolis
and centrifugal accelerations present in a rotating reference frame (such as the
Earth or a rotating laboratory vessel); hereÄ is the angular velocity of the
system. In the absence of an advecting fluid(δ→ 0), the Coriolis term takes
the form−2Ä × dx/dt and the centrifugal term becomes|Ä|2r r̂. When an
advecting fluid is present, a term−2δÄ×u must be subtracted from the Coriolis
term acting on the impurity because it has already been taken into account in
the form ofu andDu/Dt . Thus, the Coriolis term present in Equation 22 acts
on the density-weighted difference between the velocity of the impurity and
that of the fluid. Analogously, the centrifugal term is proportional to(1− δ)
and it disappears forδ = 1.
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In writing Equation 22, we have discarded the added mass term, the Basset
history term, and the so-called Faxen corrections (Maxey & Riley 1983). Pre-
vious work has indicated that these terms play a minor role for the type of flows
we are concerned with here [see Maxey & Riley (1983), Tanga & Provenzale
(1994); see also Thomas (1992) and Druzhinin & Ostrovsky (1994) for studies
of the effect of the Basset term and Benjamin (1986) for a discussion of the
added mass term].

The dynamics of Equation 22, have been studied by Crisanti et al (1992) for
a kinematically prescribed two-dimensional incompressible flow defined by
the stream functionψ(x, y, t) = Acos[x+ B sin(σ t)] cosy, in the absence of
rotation (Ä = 0). For a given functional form of the stream-functionψ(x, y, t),
the phase-space variables describing the motion of the advected impurities are
x, y, dx/dt, dy/dt. These define a four-dimensional phase-space dynamics
that can be autonomous or nonautonomous depending on the time dependence
of the stream function. Note that Equation 22 is dissipative, and thus phase-
space volumes shrink with time. This implies that the long-term evolution of
the system takes place on a set of measure zero in the full phase space. This is
a major difference with respect to the dynamics of fluid particles, described by
an Hamiltonian system for which the Liouville theorem holds.

For a stationary stream funtion(σ = 0), Crisanti et al (1992) have shown that
light particles tend to the elliptic fixed points at the center of the advection cells,
while heavy particles undergo chaotic motion associated with the presence of
a strange attractor in the four-dimensional phase space(x, y, dx/dt, dy/dt).
For time-dependent stream functions, the picture is more complicated and also
light particles can display chaotic dynamics.

The motion of finite-inertia, finite-size impurities in barotropic turbulence
has been studied by Provenzale et al (1998). Heavy particles in nonrotating tur-
bulence are rapidly ejected from coherent vortices and strain-dominated cells,
undergoing chaotic motion in the turbulent background where the Okubo-Weiss
parameter isQ ≈ 0. Thus, the coherent vortices become empty of heavy impu-
rities. By contrast, light particles tend to enter the cores of coherent vortices and
to be concentrated there, with possible filamentation events when the vortices
are strained by strong vortex-vortex interactions.

The presence of an overall rotation of the system induces new effects in
the dynamics of heavy impurities. When heavy particles are spinning inside
a coherent vortex in a rotating reference frame, they are subject to two main
opposing forces: the centrifugal force, which pushes the heavy particles outside
the region of closed isolines, and the Coriolis force, which—for an overall
cyclonic rotation of the reference frame—pushes the particles to the right of the
direction of motion. Thus, the Coriolis force pushes heavy impurities out of
cyclonic vortices and it pushes them toward the center of anticyclonic vortices.
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While in a nonrotating reference frame heavy impurities are always ejected
from coherent vortices, in rotation-dominated systems, the Coriolis force may
become stronger than the centrifugal term when the Rossby number is small. As
a consequence, heavy impurities can be concentrated in the cores of anticyclonic
vortices (Tanga et al 1996, Provenzale et al 1998).

Figure 10 shows the evolved distribution of 8000 heavy impurities that were
initially uniformly seeded in a statistically stationary numerical simulation of

Figure 10 Distribution att = 6 of 8000 heavy impurities advected by forced, statistically station-
ary two-dimensional turbulence in a cyclonically rotating reference frame. Att = 0, the impurities
were seeded uniformly in the turbulent field.Small solid trianglesindicate the positions of the
advected impurities andthin solid curvesindicate vorticity isolines. The impurities concentrate in
the cores of anticyclonic vortices.
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forced and dissipated 2D turbulence (Provenzale et al 1998). The same Eulerian
velocity field discussed in Section 5 was used. The mean Eulerian integral
time is TE = 0.14 and the mean Lagrangian integral timesTL = 0.035. The
overall rotation of the system isÄ = 160 (in dimensionless units), which gives
a rotation periodTrot ≈ 0.04, of the same order of the Lagrangian integral
time TL . The impurities haveδ = 0.8 andγ = 100. The heavy particles
concentrate inside the cores of the anticyclonic vortices, evacuating both the
turbulent background and the cores of cyclonic vortices.

The concentration of heavy particles in anticyclonic vortices has been sug-
gested by Barge & Sommeria (1995) and Tanga et al (1996) to play an important
role in the formation of planetesimals in the early solar nebula. Present theories
of Solar System formation favor building of the planets via progressive aggre-
gation of dust grains in the primordial nebula (Taylor 1992). A crucial problem
in this scenario is to reconcile the time scales for growth by accumulation of ob-
jects of the size of Jupiter and the estimated lifetime of the gaseous nebula itself.
In particular, there is a lack of standard mechanisms for building planetesimals
between the centimeter-sized grains formed by agglomeration and sticking and
the larger objects capable of efficiently triggering gravitational instability.

By considering a simple kinematic flow field, Tanga et al (1996) have shown
that if there are long-lived vortices on the early solar nebula, then a dust-
concentrating mechanism such as that discussed above can push the dust grains
into the cores of anticyclonic vortices, inducing a rapid formation of planetesi-
mals which can then evolve by gravitational instability.

Clearly, this mechanism relies upon the existence of coherent vortices on
the solar nebula. In a study of vortices on accretion disks, Bracco et al (1998)
have shown that long-lived anticyclonic coherent vortices can effectively form
in perturbed gaseous disks with cyclonic Keplerian rotation. Coherent vortices
may thus play a crucial role in astrophysical disks, by radially transporting
angular momentum and concentrating dust grains in their interior.

8. Summary and Conclusions
Coherent vortices play an important role in geophysical and astrophysical flows.
In this review I have explored the transport properties of barotropic vortices,
showing that vortices can trap fluid particles for long times and transport them
during their motion.

Dispersion in vortex-dominated flows displays interesting signatures. Nume-
rical simulation of 2D turbulence has indicated the existence of an anoma-
lous absolute dispersion regime at intermediate times, associated with strain-
dominated regions. Analysis of sub-surface float trajectories in the western
North Atlantic has suggested the presence of a similar anomalous dispersion
regime in ocean dynamics. The study of point-vortex systems has then suggested
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that the motion of passively advected particles and of the vortices themselves
can be described by a stochastic process where a background motion, obeying
an Ornstein-Uhlenbeck process, is randomly punctuated by long flights of fast
displacement, associated with the formation of temporary vortex dipoles.

Finally, coherent vortices in rotating reference frames can concentrate heavy
particles in their cores. This has been suggested to be an important mechanism
for the formation of planetesimals in the early solar nebula.

Even if some of the transport properties of coherent barotropic vortices are
now reasonably understood, much work is still needed on this and other related
subjects.

For example, baroclinic effects have been completely discarded in this review.
The dynamics and merging properties of baroclinic vortices has been studied
by several authors [see e.g. McWilliams & Flierl (1979), Hua & Haidvogel
(1986), Griffiths & Hopfinger (1987), McWilliams (1989), Polvani et al (1989),
Polvani (1991), Verron et al (1990), McWilliams et al (1994), Verron & Valcke
(1994), Valcke & Verron (1997), Morel & McWilliams (1997), Sutyrin &
Morel (1997)]. Preliminary work on the transport properties of baroclinic quasi-
geostrophic vortices during merging events in numerical simulations with high
vertical resolution (up to 256 layers) has shown that baroclinic vortices keep
most of the trapping properties of their barotropic counterparts, possessing
however a richer behavior that has to be carefully analyzed (von Hardenberg
et al 1998).

In astrophysical flows, coherent vortices have been suggested to play an
important role whenever the fluid is rapidly rotating. In most cases, magnetic
effects cannot be discarded, and the vortices take the form of coherent magnetic
flux tubes (Dowling & Spiegel 1990, Kinney et al 1995, Bracco et al 1998). A
full study of coherent magnetic vortices and of their transport properties is still
needed.

In geophysical flows, coherent vortices represent only one of the components
of the rich spatiotemporal texture of geostrophic turbulence. Coherent jets and
waves represent other components, and a full understanding of transport in
geophysical turbulence requires the study of the behavior of each of these
entities, as well as of their interplay. Similarly, the interaction of coherent
vortices and jets with topography is another important topic.

Once the effects of coherent structures are understood, the time of parameter-
ization will come. Until now, transport of passive tracers in large-scale ocean
and atmosphere general circulation models has been parameterized by using
various versions of eddy diffusion, or more refined parameterizations such as
that proposed by Gent and McWilliams (1990). The results discussed in this
review indicate that the simplest parameterizations cannot properly represent
the complexity induced by a field of coherent eddies. Thus, new stochastic
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processes must be developed, and their continuous limit understood, in order
to obtain satisfactory eddy-transport operators to be included in large-scale
general circulation models. But this is still matter for future research.
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