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Numerical simulations of statistically steady two-dimensional (2-D) turbulence are analyzed to 
determine the relative importance of the types of wave-vector triad interactions that transfer 
energy and enstrophy in the both the energy and enstrophy inertial ranges. In the enstrophy 
inertial range, it is found (in agreement with previous studies [J. Fluid Mech. 72, 305 (1975); 
Phys. %luids A 2, 1529 (1990)]) that the important triads (i.e., those associated with the highest 
transfer rates) are typically very elongated. On the average, nearly all of the enstrophy transfer 
within these triads is directed from the intermediate to the largest wave-number mode (i.e., 
downscale transfer). Energy, too, is transferred downscale in this manner, but is also transferred 
upscale due to the interaction of the intermediate with the smallest wave-number mode of the 
triad, resulting in no net flux of energy in the enstrophy inertial range. Analysis of the geometry 
of the important triads indicates they are not ‘of similar shapes at all scales, and that the 
enstrophy transferring triads generally consist of one wave vector near the scale of the energetic 
peak, no matter how large the other wave vectors are. In the energy inertial range, elongated 
triads are also important. As in the enstrophy inertial range, there is downscale transfer of 
energy and enstrophy due to the interaction of the intermediate with the largest wavenumber 
mode. There is also upscale transfer of both energy and enstrophy due to a very nonlocal 
interaction involving the smallest wave-number modes. The result is a net upscale flux of energy 
and no net flux of enstrophy in the energy inertial range. Comparison of the transfer functions 
from the simulations with those calculated by an eddy-damped quasinormal closure show 
agreement in the gross functional forms, but display certain quantitative differences in integrated 
quantities such as total transfer into and flux past a given wave number. 

I. INTRODUCTION 

Inertial range theories are usually derived on the as- 
sumption that spectrally far away from the forcing and 
dissipation scales, the energy spectrum depends only on the 
cascade rate, the wave number k and a universal constant. 
Equivalently, interactions between different scales of mo- 
tion are thought of as spectrally local; that is, only those 
interactions with wave numbers in the vicinity of wave 
number k are important. The locality assumption can be 
tested heuristically by considering the strain rate at k, 

R(k) = ( ~‘,yE@,d,) I”. 

For a k-5’3 spectrum, expected in three-dimensional tur- 
bulence and in the inverse cascade region of two- 
dimensional turbulence, the integral is dominated by con- 
tributions from around k, supporting the idea of locality. 
However, the kd3 spectrum expected in the enstrophy 
range of two-dimensional turbulence gives rise to equal 
contributions from all octaves of the spectrum, implying 
nonlocality. Such n&locality is also present in the log- 
corrected spectrum of Kraichnan.’ Thus, based on such 

a’Present address: Fluid Dynamics Group, MS B216, Los Alamos Na- 
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heuristic arguments, Kolmogorovian theories of two- 
dimensional (2-D) turbulence appear to verge on the brink 
of self-inconsistency. 

Numerical simulations of 2-D turbulence with forcing 
at large scales have in fact shown that long-lived coherent 
structures sometimes make up a significant fraction of the 
flow field,w and energy spectra from these simulations 
have slopes significantly steeper than km3 for (at least) 
part of the enstrophy inertial range. Arguments based on 
( 1) would then suggest that nonlocal interactions should 
indeed be important in this case. Simulations forced at 
small scales show a well-developed k-5’3 energy inertial 
range4p5 which, on the other hand, might be expected to be 
characterized by relatively local interactions. (See Ref. 6 
for a review of current phenomenology. ) In this paper, our 
goal is to go beyond such arguments by examining the 
behavior of actual triad interactions calculated by numer- 
ical simulations. 

Most studies of transfer and fluxes in turbulent flows 
have thus far been performed using closure models, such as 
test field model (TFM)7 and eddy-damped quasinormal 
Markovian (EDQNM)’ studies. Ohkitani9’10 has recently 
presented an investigation of transfer in numerical simula- 
tions of the 2-D enstrophy inertial range similar to part of 
the work presented here (specifically, portions of Sec. III), 
as well as an interesting analysis of spectral and real space 
transfer based on Weiss”’ vorticity-strain decomposition 
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that attempts to isolate the effects of coherent structures on 
the transfer. These studies imply that interactions in the 
enstrophy inertial range involve elongated triads. Our 
study differs from and extends Ohkitani’s in several re- 
spects: transfer in the inverse energy cascade is also ana- 
lyzed, as are the fluxes in both inertial ranges, and we 
perform comparisons with an analytical closure model. 

In any analysis of spectral transfer, it is important to 
distinguish between the locality of interactions and the lo- 
cality of the actual transfer.‘2 For example, we will find 
indeed that important inertial range triads are typically 
nonlocal, meaning that two of the legs are much longer 
than the third. This does not necessarily imply that the 
transfer is nonlocal; this depends on which members of the 
triad gain or lose significant energy or enstrophy. Another 
important distinction must be made between the transfer 
(or transfer rate) and the flux (or cascade rate). The 
transfer describes the time rate of change of energy or 
enstrophy in mode k, while the flux is the total amount of 
energy or enstrophy flowing past mode k: its divergence 
gives the transfer. These distinctions will become more 
clear as the results are presented. 

Ii. FORhlULATlON 

The model equation for this study of 2-D turbulence is 
the incompressible vorticity equation 

g+Jw,t) =F+ D, 

where tc, is the streamfunction defined such that u=z^XV$, 
c=z^=VXu=V2+ is the relative vorticity, J is the two- 
dimensional Jacobian operator, J( +,g) = +&- $,,,S;, , and 
F and D represent generic forcing and dissipation func- 
tions. We solve (2) in a doubly periodic domain. Hence, 
we may express the vorticity and streamfunction in terms 
of a complex Fourier series, 

where r/$ = $-k to ensure reality of the physical field, and 
* denotes complex conjugacy. Then the equation of motion 
(2) takes the following form: 

&d-J,c=F~+D~, 
where 

Jk= c akpq$$: 
P9 

(5) 

withakpq = $(p&-p&&+p+q,O.TheKroneckerdeltais 
a reminder that this is a sum over all possible vector triads 
in wave-number space. In what follows, it will be conve- 
nient to use a form for Jk that is symmetric with respect to 
p and q, since they are dummy indicesI By interchanging 
p and q in (5) and adding to the original expression, we 
obtain the equivalent expression for Jk , 

Jk= c bkpq$h%f 7 
PP 

where 

(6) 

In the time integration Jk is evaluated with full dealiasing 
using a staggered grid algorithm.‘4 In the subsequent anal- 
ysis, the terms in Jk are explicitly evaluated using (6) and 
(7). Time stepping is done using the leapfrog method with 
a weak Robert filteri applied every time step to suppress 
the computational mode and with the dissipation term 
lagged by one time step for numerical stability. The nu- 
merical experiments that we will describe have a maximum 
wave number up to k,,,= 256, resulting in equivalent grid 
point resolution of up to 5122. The dissipation function, 
Dk, is modeled using a high-order “diffusion” (or scale 
selective filter) to dissipate the enstrophy that accumulates 
at the smallest resolved scales, and a linear drag to dispose 
of the energy that builds up at the largest scales: 

Dk = - Crc- v,,k23$ (8) 

The high wave-number dissipation is a so-called “hyper- 
viscosity” for which pt= 8 (see the Appendix). The forcing 
function Fk is modeled as a random Markovian process in 
time that is isotropic and band limited in wave-number 
space (e.g., Fk#O for lOGk(14). For complete details 
concerning the forcing and dissipation, see Ref. 4. 

Equation (4) can be used to derive an equation for the 
change in the energy of a single Fourier mode, 

dE, x=T,+z(@F,) +v,k2”&, 
where W means take the real part of the argument, Ek 
= f(k2&, Tk=&,qTkpq, and 

Tkpq = x ( - bkpq+kklrllp$q). (10) 

Here rkpq is the energy transfer rate into (if Tkpq is posi- 
tive), or out of (if Tk,, is negative) mode k due to inter- 
actions with modes p and q = - k-p. The enstrophy trans- 
fer &,q, can be found in a similar manner and is related to 
Tkpq by 

s kpq = k2Tkpq (11) 

(S and T will be referred to as transfer functions, regard- 
less of the particular indices used). 

The transfer functions defined above have certain sym- 
metry and conservation properties, in particular 

Tkpq = Tkw 9 (12) 

since both describe the same vector triad. In addition, in 
any given triad there is detailed conservation of energy and 
enstrophy, 

Tkpq+ T,,+ Tqkp=o, 

k2Tkpq+P2Tpqk+42Tqkp=0. (13) 

These constraints may be combined to find the following 
relations regarding the flow of energy: 
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Tpqk/Tkpq= (ti-k2>/(p2-‘&, 
TqkdT,,qk= (k%2>/(+k2), 

(14) 

which imply that only one of the transfer functions are 
linearly independent. That is, given one of the three, the 
other two are determined from ( 14). In addition, energy 
and enstrophy exchange within the triad is restricted to be 
directed into the wave numbers with largest and smallest 
magnitudes from the wave number with the middle mag- 
nitude, or into the middle wave number from the largest 
and smallest. 

The function Tk reveals only the total transfer rate into 
k due to all triad interactions. To examine the role of non- 
locality, it is necessary to use the more detailed informa- 
tion given by Tkpq. However, visualization of TkPQ is diffi- 
cult because it has three vector indices, so we will begin 
with a function that is more detailed than Tk, yet is sim- 
pier than Tkps. 

We reduce the number of indices by summing over q, 

Tkp- c Tkpq. 
P 

(15) 

(This is actually a trivial sum, since for any given k and p, 
there is only one possible q.) If the turbulence is isotropic, 
functions may be averaged over angles in wave-number 
space, which further decreases the complexity. In this case, 
we define 

T,ep= j-kd%j-Pd8, Tk,, 
as the transfer to all wave numbers of magnitude k due to 
interactions with all wave numbers of magnitude p. Fol- 
lowing ( 1 1 ), note that Skp=k2Tkp. In practice, transfer 
functions will also be averaged in time, for smoother re- 
sults. 

III. ENSTROPHY INERTIAL RANGE TRANSFER 

In order to obtain an inertial range that is as long as 
possible given the constraints of the numerical resolution, 
forcing is applied at relatively low wave numbers. The fol- 
lowing discussion will refer to a simulation forced in the 
range lO<k( 14 with low wave-number drag extending up 
to k=5. The vorticity field (as well as other flow diagnos- 
tics) demonstrates the existence of many long-lived coher- 
ent vortices with a typical diameter given by the forcing 
scale [see Fig. 1 (a) of Ref. 41. There is a constant flux 
enstrophy inertial range between the forcing and dissipa- 
tion ranges [Fig. 1 (a)] that is characterized by two distinct 
slopes in the energy spectrum [Fig. 1 (b)]. The steeper, 
lower wave-number part is related to the presence of the 
vortices,3’4 while the higher wave-number subrange has a 
slope close to kB3 and is associated with a more LLclassical” 
turbulent cascade occurring between the vortices. 

value of SkP means that wave number k is losing enstrophy 
to wave number p, and a positive value the reverse. Thus, 
it is clear that enstrophy is being transferred from large to 
small scale in the enstrophy inertial range. Figure 2(a) also 
indicates that the transfer is quite local inp space. With the 
exception of the signal that appears at small p (which will 
be discussed later), nearly all of the transfer into k comes 
from interactions with p that are within about ten wave 
numbers on either side of k. Figure 2(b) shows SkP for 
k=50, 70, and 90 (all in the inertial range); the shape of 
SkP remains similar for all k in the enstrophy inertial range. 
The amplitude appears to decrease slightly with k, though 
fluctuations are probably too large to determine any sys- 
tematic change. The area under each of these curves is 
approximately zero, meaning that there is no net transfer 
into any k, reflecting the presence of a statistically steady- 
state inertial range. 

Although the shape and amplitude of SkP are essen- 
tially independent of k, this does not of itself imply con- 
stant enstrophy flux through the inertial range. The enstro- 
phy flux past k’ is delined as 

(17) 
k=k’ p=l 

Figure 2(a) shows the enstrophy transfer function SkP so we may still have constant (or zero) inertial range flux 
for k=70 in the enstrophy inertial range. From the defi- as long as Xp skp is zero for all k’<k<k,, where kd is a 
nition of the transfer function (9) and (lo), a negative wave number at the beginning of the dissipation range. In 
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FCIG. 1. (a) The time-averaged energy flux (solid curve) and enstrophy 
flux (dashed curve) from a simulation forced in the range lO<k<14. (h) 
The time-averaged enstrophy spectrum Z(k) =kzE(k). Note the transi- 
tion around k=45 from a relatively steep spectrum to approximately k-‘. 
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FIG. 2. Time-averaged enstrophy transfer functions. (a) The enstrophy 
transfer function SkP for the inertial range wave number k=70. The 
dashed lines represent one standard deviation from the mean based on 20 
samples. (b) Skp for the inertial range wave numbers k= 50 (solid curve), 
k==70 (short dashed curve), and k=90 (long dashed curve). 

a statistically steady-state inertial range (where 
,!?k=#k=&=O by definition, and the dot denotes time 
rate of change) the condition that Sk=0 is satisfied, so any 
contributions to the flux integral (17) must come from k in 
the dissipation range where the balance is Sk+k2&=0. 
This balance is independent of both the amplitude and 
general shape of Skp, but is dependent on the area under 
each transfer curve. This point will be especially important 
when considering energy transfer. 

The energy transfer function amplitude decreases ap- 
proximately as kA2 since SkP= CT, and Skp is approxi- 
mately independent of k. Since Tkp is proportional to Skp, 
energy is transferred from large scale to small scale in 
apparent contradiction with inertial range theory. How- 
ever, inertial range theory predicts zero energy J4ux 
through the enstrophy inertial range. In fact, a decreasing 
amplitude for Tkp does not imply nonconstant (or non- 
zero) fiux since, still, the area under each TkP curve is zero. 
Indeed, it is such a falloff in the amplitude Tkp that results 
in the asymptotically small (yet constant) flux of energy to 
small scales by making contributions to the flux integral in 
the dissipation range negligibly small. This is consistent 
with theories that predict no energy dissipation in the limit 
of infinite Reynolds number. 

To obtain vector information about triad interactions, 
Sk, can be displayed as a map in p space with shading 

1 0.2 

0.1 

g 0 

-0.1 

-o.21 I I , I * I I I I I I I I I I_ -I 
0 10 20 

3o 7 5o 6o 7o 8o 

FIG. 3. (a) The time-averaged enstrophy transfer function Sk, for 
k= (50,O). Areas blacker than the background gray have positive values 
of Sk,, with solid black denoting the highest value; similarly, white de- 
notes negative values. The plot is centered (in p space) at p= -k. (b) 
Schematic for interpreting (a). Given the triangle made of solid vectors 
(k+p+q=O), the dashed vectors represent their orientation in the plot 
of Sk,,. The square outline denotes the border of (a) above and “0” is the 
origin (p, ,p,,) = (0,O). The small black square at the end of the dashed p 
vector represents an Sk, grid point. (c) &a from a averaged over angle in 
p space. 

related to the transfer rate, as in Fig. 3(a). The largest 
magnitudes of the transfer function are clustered around 
p= -k. Figure 3 (b) shows a schematic of typical triad 
shapes that result in this interaction. Thus we can see that 
while Skp informed us that the magnitude of p is close to 
the magnitude of k for the strongest interactions, Sk, shows 
that the important triads are very elongated triangles, with 
kzp%q in the inertial range. (This result has also been 
seen in EDQNM calculations,‘6 and in a numerical 
simulation.g) It can also be seen that the transfer function 
is very irregular, going from positive to negative at adja- 
cent p grid points. Thus there are interactions in which 
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FIG. 4. (a) The time-averaged enstrophy transfer function S kw for k=70. Each successive curve is the contribution from (2n+ 1/2)<q<(2n+2+ l/2), 
for n=O, 1, 2,...,5. The curve marked with diamonds corresponds to n=O (i<q<2$), the short dashed curve to n= 1, the thin solid curve to n=2, the 
medium dashed curve to n=3, the thick solid curve to n=4, and the long dashed curve to n=5. (b) Histogram of the relative area under each curve 
in a above for p < k. The tirst bin is for the n =0 curve, the second for the n= 1 curve, etc. The solid lines are for k=50, the short dashed lines for k=70, 
and the long dashed lines for k=90. (c) The locality function W(v) for k=50 (solid curve), k=70 (short dashed curve), and k=90 (long dashed 
curve). (d) S,. for k=50 [dashed curve; same as in Fig. 2(a)] and Sk. for k=200 (solid curve) from a higher resolution run. The dashed curve has been 
shifted over to k=200 and scaled in amplitude for comparison. 

energy is going from the middle wave number into the 
largest and smallest, and others transferring into the mid- 
dle wave number. Performing an average over p space for 
this vector k (S,J, we see that energy is typically trans- 
ferred out ofthe middle wave number [Fig. 3 (c)], just as in 
Fig. 2(a). 

Since the data is very irregular when looking at Skp, we 
average over angles in k space without losing all informa- 
tion about q. Following Domaradzki” we now define Skpq 
as the transfer to all wave numbers of magnitude k due to 
interactions with all wave numbers of magnitude p such 
that the third leg of the triad has magnitude q. Here Sk,, is 
similar to Sk, (in fact, Skp=Xqskpq) except now there will 
be a separate curve for every value of q. In practice, q is 
defined as a band of wave numbers, say, for example, be- 
tween 2.5 and 4.5. Again [Fig. 4(a)] major contributions to 
the total energy transfer comes from kzp%q. This is what 
we will refer to as predominantly nonlocal triad interac- 
tions. Note that the p dependence in the vicinity of k re- 
flects the same approximate structure as Sk, for all q bands, 
with the peak moving slowly away from p=k as 4 gets 
larger. 

A more quantitative measure of the contributions from 
different values of 4 can be seen in Fig. 4(b). As the net 
transfer (or total area under all of the curves) into k is zero 
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in a statistically steady state, we consider only the range 
p <k where S,,, is positive when comparing the area under 
each curve. (The same results are obtained using p > k.) 
Most of the transfer comes from interactions with q< 12, 
with the peak around q= 8, which is in fact the location of 
the peak in the energy spectrum. Note that this simulation 
is forced for lO<k<l4, so the direct influence of q in the 
forcing range is not particularly important. 

Another useful way of quantitatively presenting the 
nature of the transfer is to consider the contributions based 
on the geometry of a triad, as was done by Kraichnan’ 
using an analytical closure model. For a given k, the ge- 
ometry of a triad can be partially expressed as the ratio of 
the length of the smallest side to the length of the middle 
side. A locality function W(v) is then defined as the frac- 
tion of the total transfer due to all triads for which the ratio 
of the smallest to the middle wave number is greater than 
U. Figure 4(c) shows that the dominant triads are very 
elongated since only 10% of the total transfer comes from 
triad interactions in which the ratio of the smallest to the 
middle wave number is greater than 0.30 for k=50, and 
greater than 0.15 for k=90. The inertial range is not self- 
similar in the sense that the shape of the important enstro- 
phy transferring triads changes with wave number. For 
example, if a given triad is found to be dominant for k= kl , 
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then self-similarity would imply that a similar shaped triad 
would be equally dominant for k = k2 > kl , the ratio p/q 
would be constant and all curves in Fig. 4(c) would be 
coincident. This is clearly not the case in the simulations 
reported here. 

Further evidence that the transfer is not self-similar in 
this sense can be seen in Fig. 4(d) which shows Skp for 
k=200 from a higher resolution run (k,,=256) super- 
imposed on Sk, for k=50 from the lower resolution run. 
Their shapes are a remarkable match. (No scaling of the 
horizontal axis is performed.) If the transfer in the inertial 
range were self-similar, one would expect the curves to 
match on a logarithmic scale, instead of a linear scale as 
shown. The evidence in Fig. 4 seems to indicate that one 
could perform a very high resolution simulation, and find 
that the transfer into, say, k= 1000 would still be domi- 
nated by contributions from q in the vicinity of the spectral 
peak and the shape of Skp would still be the same as for 
k=50. 

An explanation of the signal at small values of p in Skp 
(Fig. 2) is now possible. It is the contribution from curves 
with kzq$p, reflecting the fact that we have a symmetric 
transfer function Skpq=Skqp . In fact, the behavior of Skp at 
small p gives an indication of whether the system is in a 
statistically steady state. Now, a steady state is defined by 
sk=xp$kpg= ( 0 time averaged). This sum can be written 
as ~q(k~pak+~p~k~qck since the triad interactions are so 
nonlocal. Thus if the fluctuations in S&, for small p sum up 
to be much smaller than the peak value for pi k, the sys- 
tem should be in steady state. This is clearly the case in 
Fig. 2(a). 

Although the enstrophy transfer in the inertial range is 
accomplished through interactions that involve very non- 
local triads, this does not necessarily mean that the actual 
transfer is nonlocal. The locality of the transfer can be 
determined by examining the transfer balance among the 
members of a given triad. Figure 5 (a) shows time series of 
skpq, spqk, and ‘%tkp for a particular, relatively important, 
triad involved in the inertial range transfer. The enstrophy 
transfer is primarily between the two wave numbers in the 
inertial range since Sk,,= -S k. This is not surprising 
She [Using (14)] s,,,=[~~(p’--)/~(42-k2)]s~qk 
=: ( -p4/k4)S,,k for k, p+q. This is an example of local 
enstrophy transfer since the exchange is primarily between 
the triad members of similar length and orientation. It 
would seem that the small wave number acts as a mediator, 
or catalyst, but does not lose or gain significant enstrophy 
in this particular interaction. Physically, this is consistent 
with the idea that large-scale straining of vortex sheets is 
the mechanism for the enstrophy cascade. The transfer is 
very intermittent in time and the statistics are not Gauss- 
ian, as can be seen in the probability distribution function 
(pdf) constructed from the time series of Skp, [Fig. 5 (b)]. 

IV. ENERGY INERTIAL RANGE TRANSFER 

In order to maximize the resolution of the energy in- 
ertial range, forcing in this instance is applied at relatively 
high wave number while still allowing for a short enstro- 
phy inertial range at even higher wave numbers. Again, 
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PIG. 5. (a) Time series of Sk,, ( solid curve), 5’sc (short dashed curve), 
and S,,, (long dashed curve) for k=(50,0), p=( -52,5), and q=(2, 
-5). (b) Probability distribution function constructed from the time 
series [four times longer than shown in (a)] of &., . The overlaying curve 
is a Gaussian with the same mean and standard deviation as the con- 
structed pdf. 

coherent structures are found at approximately the forcing 
scale [see Fig. 1 (e) of Ref. 41. The following discussion will 
refer to a 256’ simulation forced in the range 80<k<84 
with low wave-number drag acting for k < 5. A constant 
flux energy inertial range forms with an energy spectrum 
close to k-5/3 (Fig. 6). 

Figure 7(a) shows the energy transfer function Tk, for 
k in the energy inertial range. The data are more irregular 
than for the enstrophy inertial range, but do have a similar 
form. Again, it shows that in the inertial range energy (and 
enstrophy) is being transferred toward high wave numbers 
due to interactions with p near k in the inertial range. We 
know that theJLEux of energy is toward small k [Fig. 6(a)], 
so this result may seem paradoxical. However, the flux past 
k is not directly related to the transfer at k; rather it is an 
integral quantity as in ( 17). The form of the energy trans- 
fer function does indicate that the mechanisms similar to 
those responsible for transfer in the enstrophy inertial 
range (namely, straining of vortex sheets) are also acting 
in the energy inertial range. One important difference 
found here, however, is the small but positive values of T, 
found at large p, that is, for p in the enstrophy inertial 
range above the forcing range (i.e., above k= 84). These 
interactions do transfer energy to larger scales. Further- 
more, the transfer functions for k in the low wave-number 
drag range and in the high wave-number forcing range 
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[Figs. 7(b) and 7(c), respectively] also show that there is 
a direct and rather nonlocal transfer of energy from the 
forcing scale to low wave numbers. Note that the transfer 
into k=5 is directed from small to large scale (i.e., oppo- 
site to the direction of transfer for k in the inertial range) 
and is dominated by interactions of large-scale compo- 
nents. 

As with Tkp, the q-dependent transfer functions [Fig. 
7 (d)] are quite noisy, but the trend of transfer to high wave 
numbers for p-k is in evidence. The distribution of Tk,, 
[Fig. g(a)] shows more clearly that a larger variety of 
triads are involved with the transfer in the vicinity of k 
than is the case with low wave-number forcing [see Fig. 
3 (a)]. A histogram of the relative contribution from each q 
[Fig. 8(b)] reveals that, just as in the enstrophy inertial 
range, the transfer peak is in the vicinity of the spectral 
peak, but the distribution falls off more slowly with in- 
creasing q (since the spectrum falls off more slowly), again 
indicating that a wider range of triads are playing a role in 
energy inertial range transfer. Note also the presence of a 
second peak in the distribution showing significant contri- 
butions from large q that are completely absent in the en- 
strophy inertial range. It is these values of q that combine 
with large values ofp to form triads that transfer energy to 
larger scales. These triads (where k is the smallest mem- 
ber) will turn out to be important when considering the 
energy inertial range flux. Quantitatively, the triads that -- 
contribute to the transfer are more local than in the en- 
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FIG. 7. Time-averaged energy transfer functions from a simulation forced in the range 80<k(84. (a) TkP for the inertial range wave number ,&SO. 
The short dashed line is a zero reference. The standard deviation based on 50 samples is of the order of the mean. (b) TkP for the drag range wave number 
k=S. (c) TkP for the forcing range wave number k=82. Cd) T,,, for k=50. Each successive curve is the contribution from (3n+ 1/2)<q<(3n+3 
+ l/2), for n=O, 1, 2,...,5, and the sequence of curve types is the same as in Fig. 4(a). 
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ing that it is the shape of the triad that determines, at least 
in part, its importance. 
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FIG. 8. (a) Th for k=(50,0). See Fig. 3 for interpretation. (b) Histo- 
gram of the relative area under each curve in Fig. 7(d) above [as well as 
for some not shown in Fig. 7(d)] for p> k and k=50. (c) The locality 
function W(v) for k=50 (solid curve) and k=30 (short dashed curve). 
For comparison, the long dashed curve is W(u) seen in Fig. 2 of Ref. 7 for 
an i&rite inertial range predicted by an analytical closure. 

strophy inertial range in the sense that contributions to the 
total transfer are significant even as the ratio of the smallest 
to the middle wave number approaches unity [Fig. 8(c)]. 
Here, approximately 40% of the transfer for k=50 comes 
from triad interactions in which the ratio of the smallest to 
the middle wave number is greater than 0.3, in contrast to 
10% for k=50 in the enstrophy inertial range [see Fig. 
4(c)]. The transfer is perhaps more self-similar here than 
in the enstrophy inertial range (especially as u + 1) , imply- 

V. CbrViPARlSON WlTH ANALYTICAL CLOSURE 

We now compare the results from the simulations with 
those predicted by analytical theories of turbulence, in par- 
ticular with the eddy-damped quasinormal Markovian clo- 
sure (EDQNM).18’t9 Typically, the equation for the en- 
ergy spectrum in EDQNM is presented after one makes the 
assumption that the turbulence is isotropic (e.g., Ref. 8). 
However, for our purposes it is useful to formulate the 
closure’ in vector wave-number space, without the assump- 
tion of isotropy, for then identical analyses of transfer func- 
tions can be performed for closure and simulation. It is also 
convenient to express the equation for the modal energies 
in terms of the streamfunction as follows: 

;E(k)= dp 4 Wwd, (18) 

where 

T(k?p,q) -k’B(k,p,q)B(k,p,q)R(k,p,q), (19) 
with 

R(k,p,q)=B(k,p,q)tC;t(p)f(q) 

+~h,q,W22(q)~(k) 

+~(q,kp)$%+,%), (20) 

Wmq) =$ (#-P2) (Px$-&&)Sk+p+q,O~ (21) 

and 

W,p,a> = 1 --exp[ -pu(kp,qM 
I.L(kw-0 ’ (22) 

where p(k,p,q) =p(k) +,u(p> /p(q) is the eddy-damping 
rate for triple correlations. Two possible expressions for 
p(k) (neglecting viscous contributions) are the local turn- 
over rate 

/q(k) =yr[k4EW l1’2 
or the nonlocal strain rate 

(23) 

(s 
Ikl 

/-dk) =~n 
1 

We will be concerned with steady-state inertial ranges for 
which y (k,p,q)t is very large so that B(k,p,q) 
-p&PA) -‘. 

Rather than integrating the closure in time, as for ex- 
ample in Ref. 16 and (using the test field model closure) in 
Ref. 20, we will use the closure to analyze the results of the 
simulation. This is done by substituting the values for the 
modal energies calculated in direct simulations into the 
expression for T(k,p,q[) and comparing the result with the 
transfer functions calculated by the simulations (e.g., 
Tkpq 21). This focuses attention on the structure of the clo- 
sure, rather than on poorly determined phenomenological 
coefficients which differ from closure to closure. Of 
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FIG. 9. Enstrophy transfer functions as calculated by EDQNM using the local t ime scale (23) with y,=O.6 and the time-averaged energy spectrum from 
the run described in Figs. 1-5. (a) S(kg) for R=50 (solid curve), k=70 (short dashed curve), and k=90 (long dashed curve). (b) The locality 
function W(u) for k=50 (solid curve), k=70 (short dashed curve), and k=90 (long dashed curve). For comparison, the curve marked with circles 
is W(V) for k=50 calculated by the full simulation [i.e., the solid curve from Fig. 4(c)]. (c) The total enstrophy transfer rates S(k) from EDQNM 
(solid curve) and S, from the simulation (dashed curve). (d) The enstrophy flux from EDQNM (solid curve) and from the simulation (dashed curve). 
A  value of y,= 1.1 is needed to make the EDQNM flux approximately agree with the simulation for 50 < k < 100. 

course, the validity of EDQNM may in part be determined 
by the resemblance of its transfer functions to those calcu- 
lated in the direct simulations. 

The qualitative agreement between S(k,p) and SkP in 
the enstrophy inertial range is quite good. [Fig. 9 (a)] in the 
vicinity of p= k. The shape of S( k,p) depends only very 
weakly on whether a local description for p(k,p,q) (23) or 
a nonlocal one (24) is chosen; only the value of the con- 
stant y differs. For this case, we find ylzO.6 and y,--,O. 15 
give good agreement for the amplitudes of S( k,p) with the 
SkP curves in Fig. 2(b). The behavior of S( k,p,q) (not 
shown) indicates that the important triads are very elon- 
gated, though the distribution with q is peaked at slightly 
higher wave number (qzl0) and is more broad than for 
s kPg. This is reflected in Fig. 9 (b), where it is seen that 
20% of the total transfer comes from triad interactions 
with a small to middle wave-number ratio of 0.30 for 
k=50, as opposed to 10% for such triads in the direct 
simulation. However, this percentage does decrease with 
increasing k, a trend that agrees with the simulations. 

much steeper than km3) while leaving the range k> 50 
(which is initially close to kP3) essentially unchanged 
[Fig. 9 (c)l. The large discrepancy in S(k) compared to S, 
at the lower end of the inertial range results in large error 
when computing the flux” Fig. 9 (d)]. 

The presence of a positive signal for smaU,p in S(k,p) 
in Fig. 9(a) indicates that the system is not in a statisti- 
cally steady state as far as the closure is concerned. Given 
this spectrum as an initial condition, the closure would 
begin to evolve the system in such a way as to rapidly 
shallow the spectrum for 15 < k < 30 (which is initially 

Results from comparisons in the energy inertial range 
are similar to those in the enstrophy inertial range. We find 
the same characteristic shape for T(k,p) [Fig. 10(a)] ford 
in the vicinity of k (i.e., transfer from large to small scales) 
as well as the contribution from p above the forcing range. 
Use of the local y(k,p,q) again produces essentially iden- 
tical results as the nonlocal expression, with y[zO. 15 and 
3;t =; 0.08 producing best agreement with the amplitudes for 
TkP. Note that different values of y are needed in the en- 
ergy and enstrophy inertial ranges, in agreement with Ref. 
16 where it was found that it is not possible to recover the 
values of the inertial range constants as predicted in Ref. 7 
without using a different value of ‘yn for each inertial range 
separately. The distribution. of T(k,p,q) (not shown) with 
q is similar to that for TkPq [see Fig. 8(b)] and is peaked at 
slightly higher wave number. In contrast to the compari- 
son in the enstrophy inertial range, the EDQNM triad 
interactions appear to be less local than the simulations 
since only 20% of the total transfer into k= 50 comes from 
triads in which the ratio of the smallest to the middle wave 
number is greater than 0.3 for EDQNM, compared to 40% 
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FIG. 10. Energy transfer functions as calculated by EDQNM using the local time scale (23) with yr=O.15 and the time-averaged energy spectrum from 
the run described in Figs. 6-8. (a) T( k,p) for k= 50 (solid curve) and k= 30 (dashed curve). (b) The locality function W(V) for k= 50 (solid curve) 
and k=30 (dashed curve). For comparison, the curve marlced with circles is from the simulation [seen in Fig. 8(c)] for k=50, and the long dashed line 
is W(u) seen in Fig. 2 of Ref. 7 for an infinite inertial range predicted by an analytical closure. (c) The total energy transfer rates T(k) from EDQNM 
(solid curve) and r, from the simulation (dashed curve). (d) The energy flux from EDQNM (solid curve) and from the simulation (dashed curve). 
A value of y/=0.5 is needed to make the EDQNM flux approximately agree with the simulation for 10 <k < 60. 

for the direct simulation [Fig. 10(b)]. However, EDQNM 
does recover the same kind of self-similarity as the simu- 
lations as u-t 1, and displays the same trends with increas- 
ing k. Note that the EDQNM curve for k=50 is almost 
identical to Kraichnan’s’ result, implying conditions simi- 
lar to an infinite self-similar inertial range. Given this ini- 
tial condition, the closure would not significantly alter the 
slope of the energy inertial range spectrum that is approx- 
imately proportional to k- 5’3 [Fig. 10(c)]; only the region 
near the forcing range would change. Again there is a large 
error in calculating the energy liux @?ig. 10(d)]. 

VI. INERTIAL RANGE FLUX 

In this section we discuss the relationship of inertial 
range flux to transfer, and resolve the apparent dichotomy 
of downscale energy transfer in the energy inertial range 
accompanied with upscale energy flux by examining the 
inertial range fluxes in more detail. 

It can be shown’ that the flux integral (17) can be 
Y  .I 

rewritten as II:, = II:,’ + II:,- , where 

m k’ 
IIf#+z= c II:;; II:-= c n& 

k=k' k=O 

and 
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(25) 

k' 
n;;= c skpq; l$&=- i skpq. 

p,q=o p,q= k' 
(26) 

Similar expressions exist for the energy flux, II:, . Thus the 
flux past k’ has contributions from triads with k < k’ <p,q 
and k>k’>p,q. Figures 11(a) and 11(b) show the sepa- 
rate contributions to the energy and enstrophy flux for 
k’ = 50 in the enstrophy inertial range. Clearly, the enstro- 
phy flux here (the area under the curve) is due almost 
entirely to triads for which k2k’. The energy flux has 
equal but opposite contributions from II:,’ and II:,-, re- 
sulting in no net energy flux. To determine which triads are 
responsible for the major contributions to the flux, we must 
look at the p (or q) dependence of II:,, (which is qualita- 
tively the same as II:, since they differ by a factor of k2) 
as in Figs. 11 (c) and 11 (d). Thus we arrive at the follow- 
ing scenario for enstrophy inertial range fluxes: The impor- 
tant triad interactions are nonlocal, and the enstrophy flux 
through k’ is primarily due to triads with k’ =: k >p$q, 
while the energy flux has the additional contribution from 
p, q > k’ % k which may be thought of as “backscatter” 
from high wave numbers. 

Consider a simple schematic model of the process as 
seen in Fig. 12. Assume that the energy transfer function 
TkPq can be approximated as a simple step function in p 
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FIG. 11. Contributions to the enstrophy inertial range flux for k’ = 50. (a) The energy flux contributions II:,+ 
(b) The enstrophy flux contributions $2 (dashed curve) and II:,; ( 

p (dashed curve) and II:; (solid curve). 
solid curve). (c) Thep dependence of II,,: for k= 52. The contribution from small 

p is due to the symmetry in p and q and the integral over p gives the value of IIf; 
p gives the value of II,& for k=S. 

for k= 52. (d) The p dependence of IIii for k= 8. The integral over 

space wi;h constant (independent of k) width A and am- 
plitude T,. +lso assume that this shape is independent of 
q, and that Tk is zero for q> A. The value of A is of the 
order of 10, so this represents transfer due to triads with 
kzpsq. A plot of SkPp [as in Fig. 4(a)] as defined here 
would have A different curves that all lie on top of each 
other. 

Replacing the sums in (25) and (26) with integrals we 
can solve for the inertial range fluxes. First solve for the 
energy flux: 

FIG. 12. Schematic of an idealized transfer function. 
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=A 
s 

k’+A ?k(k’+A-k)dk. 
k’ 

we know from S@IUk$iOUS that TkP falls off approximately 
as ku2, so let T,=S/p, and after assuming Agk’ we 
obtain 

Triads with pzq&k contribute to the backscatter flux; 

II;,-= JoAdkJ; dpIiA Tkpqdq. (29) 

For p$ k, we can use Tkpq=: - (2k/p) TPqk, so we find 

Thus we see that IT;,+ and II:,- are of the same order, but 
opposite in sign, so we get no net energy flux. This shows 
that even though each individual triad that contributes to 
II;,- sends a relatively small amount of energy past k’ to 
small wave numbers, the sum of the energy from all rele- 
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vant triads is just enough to balance II:,’ . (Note that there 
are many more triads contributing to II:,- than II;,+ . ) 

We may solve for the enstrophy flux in the same way 
as the energy flux to obtain 

I-If,+ - iA3; 
Since k’s A, the enstrophy flux is dominated by II:,+, 
meaning that it is the exchange of enstrophy between wave 
numbers of similar length and orientation that is responsi- 
ble for essentially all of the inertial range flux of enstrophy, 
unlike the energy flux which has an important contribution 
from modes of very different length and orientation (i.e., 
between the smallest and middle modes). 

Investigation of the transfer functions in the energy 
inertial range (Sec. IV) showed transfer to both large and 
small scales which must combine to give an energy flux to 
large scales. Contributions to the energy inertial range 
fluxes at k’ = 50 can be seen in Figs. 13 (a) and 13 (b) . As 
in the enstrophy inertial range, triads with k’ Sk >p,q 
are associated with energy and enstrophy flux to small 
scales. Whereas this was the only important type of triad 
contributing to enstrophy tlux in the enstrophy inertial 
range, now there is an equal and opposite contribution 
from II:,- resulting in no net enstrophy flux. The energy 
flux now has a large contribution from II:,- that more than 
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cancels the energy flux to small scales associated with 
II:,.‘, resulting in a net flux of energy to large scales. To 
discover which triads are important in the energy cascade, 
consider the p dependence of II:,,. Typical contributions 
to lI$ [Fig. 13(c)] are similar to what was found in the 
enstrophy inertial range. However, there is a noticeable 
difference in the p dependence of lI& [Fig. 13(d)]. 
Whereas in the enstrophy inertial range the important tri- 
ads have p 2 k’ s k, here the important contributions come 
from p 2 kf, k [Fig. 11 (c)l. That is to say, the important 
triads contributing to the inverse energy cascade have one 
small member near the spectral peak, and two members at 
higher wave number, with at least one in the enstrophy 
inertial range above the forcing range. Contributions from 
k’ <p < k, are also typically positive, but far less regular. 

It seems intuitive to suppose that the importance of 
interactions involving p > kf contributing to the flux past 
k’ would become unimportant as (kf--k’ ) --, 00. This ten- 
dency appears to hold in a higher resolution simulation 
with a longer inertial range where k’ is held fixed but kf is 
increased23 [Fig. 14(a)]. However, there continue to be 
significant contributions to II$ from p > kf [Fig. 14(b)]. 
The contributions from k’ <p < kf are now slightly more 
obviously positive, but remain very irregular. There are 
clearly different mechanisms involved with the transfer in 
these two regions. Perhaps the intermediate range (i.e., 
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k’ <p < kf), being quite erratic, has some relationship to 
vortex merger events. In any event, for a sufficiently long 
inertial range, contributions from this range will likely 
dominate, and it will be important to investigate the mech- 
anisms by which this transfer occurs. 

VII. SUMMARY AND DISCUSSION 

Inertial range transfer functions and flux have been 
examined with a view to understanding how well the clas- 
sical phenomenological theories of two-dimensional turbu- 
lence perform, and what factors may contribute to their 
successes and failures. We have concentrated on an analy- 
sis in spectral space, although a discussion in physical 
space may be more of an appropriate setting to examine the 
role of coherent vortices and the like.” 

It is clear for the enstrophy inertial range that impor- 
tant triad interactions (those that have high transfer rates) 
tend to be very nonlocal in the sense that two of the three 
legs are much longer than the third. For the enstrophy 
cascade, this may be associated with the usual physical 
picture of vorticity filaments being elongated and forced 
closer together by a large-scale flow. No matter what the 
scale of the filaments, in the simulations analyzed here the 
significant straining scale is in the vicinity of the spectral 
peak of energy. This is consistent with the heuristic argu- 
ments based on ( 1) for spectra steeper than ks3. In such 

triad interactions, the largest scale receives a negligible 
amount of enstrophy, so one may consider the transfer to 
be local in the sense that enstrophy is transferred only 
between the two modes of similar size and orientation. 
Similarly, the enstrophy flux may be considered local since 
the flux at k’ may be determined by contributions from 
k 2 k’. However, the triad interactions are manifestly non- 
local. Furthermore, they are not similar in shape at all 
scales: for a given integration, the important triads at all 
scales contain a member close to the spectral peak. Thus, 
even though enstrophy transfer is local in the sense used 
above, the influence of the large scales may be communi- 
cated directly to all scales. Thus, the notion of a chaotic 
cascade, in which information about the forcing scales is 
gradually lost as enstrophy is transferred in small steps to 
the small scales, would appear to be invalid. Still higher 
resolution simulations of two-dimensional turbulence 
could of course modify this conclusion. 

Energy transfer in the enstrophy inertial range is a 
little more involved. There is a local component of the 
energy transfer to small scales that is associated with the 
downscale enstrophy transfer. However, a significant 
amount of energy is also transferred to the smallest mem- 
ber of the triad, referred to as “backscatter.” Backscatter 
may be thought of as a nonlocal process, since a small wave 
number is receiving energy directly from a much larger 
wave number. The backscatter, when integrated over all 
appropriate triads, produces a nonlocal energy flux which 
cancels the local component, resulting in no net energy flux 
in the enstrophy inertial range. It is interesting to note that 
although approximately 70% of the possible triad interac- 
tions for a given k transfer more energy between the small- 
est and middle wave numbers than between the middle and 
largest,24 most of the important interactions fall in the 30% 
that transfer more energy between the two larger members 
of the triad. 

Transfer in the energy inertial range appears to be 
quite complex. One aspect of the transfer is similar to the 
enstrophy inertial range, that is, energy and enstrophy are 
transferred to smaller scales via elongated triads. Here, the 
same physical mechanism at work in the enstrophy inertial 
range (straining of vorticity filaments) appears to be 
present, though it may be less efficient and result from a 
somewhat wider range of triads. This type of transfer is 
again responsible for a flux of energy and enstrophy toward 
small scales. Backscatter again provides a nonlocal flux 
directed toward large scales from very nonlocal interac- 
tions, though it ditfers from the enstrophy inertial range. A 
significant portion of the energy flux comes from nonlocal 
triads with the large members in the enstrophy inertial 
range in and above the forcing range and is large enough to 
more than balance the downscale contribution, resulting in 
a net flux of energy to large scales, as expected. In contrast 
with the enstrophy inertial range, the backscatter does 
bring some enstrophy back to large scales, and when inte- 
grated over all appropriate triads, produces a flux that can- 
cels the local contribution, resulting in no net enstrophy 
flux in the energy inertial range. 

The notion of energy “cascade” in the energy inertial 
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range also would seem to have limited validity, in that the 
small scales inject energy directly (i.e., via a ndnlocal in- 
teraction) into the large-scale flow. This is consistent with 
the conclusion reached by examining the vorticity field in 
physic81 space from simulations forced at high wave num- 
bers: that is, the energy flux is not primarily due to vortex 
mergers, since vortices are observed to be present at scales 
only slightly larger than the forcing scale. While merger 
events may play a part in the energy flux, a clear physical 
mechanism for the inverse “cascade” remains to be clari- 
fied. 
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APPENDIX: IMPLICATIONS FOR SUBGRID-SCALE 
MODELING 

In the simulations described in this paper, we have 
modeled the effect of the subgrid scale with a high-order 
diffusion which keeps enstrophy from building up at the 
smallest resolved scale. In this sense, our simulations are 
not direct but are “large eddy simulations.” Such a scheme 
appears ad hoc, but is very useful for numerical simula- 
tions. Here we examine the appropriateness of such a de- 
scription based on the transfer functions described in the 
body of this paper. 

The premise for this discussion of subgrid-scale mod- 
eling is schematized in Fig. 15. Consider an extremely long 
enstrophy tiertial range that has evolved to a statistically 
steady state, thus, the area under the Sk, curve [which we 
assume has the shape seen in, for example, Fig. 2 (a)] must 
be zero for any k. If the system is suddenly truncated, and 
the maxiinum resolved wave number (denoted by the dot- 
ted lixie in Fig. 15) is too close to k, the shaded part of the 
Sk curve is no longer resolved. This mikes the area under 
thl Skp curve positive, which in turn increases (artificially) 
tht enstrophy in mode k. Unless dissipation is added, this 
“piling up” of enstrophy contiimes until the spurious 
small-scale effects dominate the flow. 

If we assume that Skpq has the same shape for all of the 
unresolved scales as for the resolved scales, then the ideal 
diffusive subgrid-scale model would simply dispose of the 
excess enstrophy that sliould be transferred out to modes 
that are not explicitly resolved. That is, the dissipation rate 
should be equal to the area of the shaded region in Fig. 15, 

(Al) 

Figure 16(a) shows a comparison of & and the true dis- 
sipation rate bk=vgk18Ek. Here & was calculated using 

1773 Phys. Fluids A, Vol. 5, No. 7, July 1993 
c 

P 

FIG. 15. Schematic of the premise for subgrid-scale modeling. 

Sk, ibr k-70 as representative of S+, for all k in the iner- 
tial range, which we have seen is a good approximation [see 
Fig. 2(b)]. We are particularly interested in the shape of 
each curve, that is, at what wave number does dissipation 
become important? It is clear that, even with a very high- 
order diffusion, dissipation ( Dk) becomes important in this 
simulation (around k=95) earlier than it needs to be since 
b; does not in fact become significant until approximately 
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FIG. 16. The true dissipation rate i)(k) (dashed curve) and the transfer 
deficit b(k) (solid curve). k(k) has been resealed so that its maximum 
is the same as for b(k). (a) The diffusion operator is given by V”$. (b) 
The diffusion operator is given by V4’$. Other model parameters are the 
same as in (a). 
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FIG. 17. (a) The eddy viscosity calculated by truncaiing a 512’ simula- 
tion at k,=128 (solid curve), k,=64 (short dashed curve), and k,=32 
(long dashed curve). Note the negative values at low k particularly ap- 
parent for k,=32. (b) The same curves as in (a) except on a log-log 
scale. Negative values at low k have their absolute value plotted. 

k= 110. This implies that one could choose an even higher- 
order diffusion that would be an even closer approximation 
to the inviscid dynamics. 

We can use simple scaling to estimate the order of 
diffusion necessary to produce a curve similar to fi; in Fig. 
16(a). Defining k, as the scale at which the diffusion time 
scale (t,,~ l/~k2”) and dynamical time scale ( tCz l/c $) 
are equal, we find k,s y’k,,,, where y’ = y-‘““k;T$ 
and y is an order one tuning factor and n is the power of 
V2. As reference, this expression gives k,--,90 for the sim- 
ulation shown in Fig. 16(a). If we want to choose a diffu- 
sion that would give k ,,=: 110 as suggested by bi, a value 
of nz24 would be necessary, meaning the diffusion oper- 
ator would be Dk=yV4’$. Figure 16(b) shows a simula- 
tion like the one in Fig. 16(a) but uses V4’$ for diffusion. 
Even this high of an order diffusivity is unable to move the 
dissipation wave number as high as transfer arguments 
would suggest. Attempts to use even higher-order diffusion 
to increase the dissipation wave number were unsuccessful, 
in part due to the fact that having too steep of a drop-off in 
the dissipation range is similar to simply truncating the 
system further, resulting in the kind of spurious enstrophy 
buildup that the subgrid-scale model is introduced to alle- 
viate.. 

Another way of looking at l-his problem is in terms of 
a ‘wave-number-dependent eddy viscosity coefficient,26 

D(k) =v,$V2& which models the transfer into resolved 
scales from unresolved scales. Note that the eddy coeffi- 
cient vi may be negative, representing transfer into a given 
mode. In practice, we can determine the form of vi by 
truncating the resolution of a given simulation and mea- 
suring the difference in the transfer as a function of k-corn- 
pared to the full resolution. If we have a simulation with 
maximum resolved wave number k,,,, we truncate the 
system at k= kt by setting to zero all modes with 
kr<k<k,,, then the eddy viscosity2’ may be defined as 

vi= [Jk(&3 -JkGm l$R 
k41clk@ ’ C-42) 

where 3 and g are the truncated streamfunction and vor- 
ticity. Figure 17 shows the eddy viscosity calculated from a 
high resolution run (k&,=256) with truncations at 
k,= 128, 64, and 32. Note the similarity of the k,=128 
curve with b’(k) in Fig. 16. 

Suinmarizing, a subgrid-scale parametrization for two- 
dimensional turbulence should subs&ntially affect only 
those wave numbers close to the truncation wave 
number-typically those within a distance A from the 
truncation, where A is of order the wave number of the 
spectral peak. In a spectral simulation this may be mast 
easily implemented with a high-order diffusion operator. In 
limited area and grid-point models the ease of implemen- 
tation of boundary conditions will also be an important 
consideration in the particular form chosen for the filter. 
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