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Finding finite-time invariant manifolds in two-dimensional velocity fields
G. Hallera)

Division of Applied Mathematics, Lefschetz Center for Dynamical Systems, Brown University, Providence,
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~Received 9 July 1999; accepted for publication 18 September 1999!

For two-dimensional velocity fields defined on finite time intervals, we derive an analytic condition
that can be used to determine numerically the location ofuniformly hyperbolictrajectories. The
conditions of our main theorem will be satisfied for typical velocity fields in fluid dynamics where
the deformation rate of coherent structures is slower than individual particle speeds. We also
propose and test a simple numerical algorithm that isolates uniformly finite-time hyperbolic sets in
such velocity fields. Uniformly hyperbolic sets serve as the key building blocks of Lagrangian
mixing geometry in applications. ©2000 American Institute of Physics.
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Typical time-dependent velocity fields in fluid mechanics
are well-known to exhibit intense mixing of particles. For
special time dependences, such as periodic, quasiperiodi
or adiabatic, dynamical systems theory has been succes
ful in locating the geometric structures, stable and un-
stable manifolds, that are responsible for global mixing.
At the same time, there has been no systematic tool to
extract similar geometric structures for general fluid
flows given for finite times. In this paper we give analytic
results that can be used to identify the most important
building blocks of mixing: Uniformly finite-time hyper-
bolic trajectories and their local stable and unstable
manifolds. The results apply to any numerically or ex-
perimentally generated two-dimensional velocity field
and do not assume special features of the flow„e.g., in-
compressibility or the presence of stagnation points….

I. INTRODUCTION

Hyperbolic or finite-time hyperbolic invariant sets a
well known to act as organizing centers for mixing and tra
port in dynamical systems. While the vector fields associa
with near-integrable, adiabatic, or relatively slow flows
provide clues about the location of their hyperbolic sets,
detection of such sets in general time-dependent flows
presents a great challenge.

Traditionally finite-time~or local! Lyapunov exponents
have been employed to pinpoint hyperbolic behavior in tim
dependent velocity fields. This typically involves the nume
cal solution of the variational equation associated with a
jectory of interest which is then used to obtain a finite-tim
approximation for the~infinite-time! Lyapunov exponents
Such an estimation of Lyapunov exponents requires g
care and a thorough understanding of all the errors invol
~see Abarbanel1!. The resulting distribution of exponents
typically a fuzzy set, which approximates the set of all sta
and unstable manifolds present in the flow. Such a pict
provides a first step in the study of hyperbolic behavior in
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flow, even though its building blocks are typically difficult t
isolate.

The identification of regions that behave like hyperbo
sets~isolating neighborhoods! are in principle also possible
using topological methods. A step in this direction has be
taken by Mischaikowet al.,11 who established numerica
methods for the topological detection of chaotic invaria
sets in experimental data sets.

An analytic result on the location of finite-time hype
bolic trajectories in velocity fields of the form

ẋ5u~x,t !, xPR2, tt@ t0,t1#,

can be found in Haller and Poje,6 where time-dependen
stagnation points of the velocity field were considered as fi
approximations for finite-time hyperbolic trajectories. Und
a set of conditions, these stagnation points do imply the
istence of nearby hyperbolic solutions. The method has b
very efficient in creating mathematically rigorous mixin
templates in eddy–jet interaction problems~see Haller and
Poje6 and Poje and Haller12!. The limitation of this approach
is its heavy reliance on the existence of stagnation points
other words, only hyperbolic orbits with velocities very clo
to the velocity of the reference frame can be detected in
fashion.

A statistical approach to locating Lagrangian coher
structures is suggested by Mezic´ and Wiggins,9 who compute
average velocities for a grid of initial conditions for finit
times. The resulting patchiness plots reveal regions of ini
conditions with similar finite-time statistics. As show
through examples in Pojeet al.,13 on certain time intervals
the boundaries of such regions approximate finite-time
variant manifolds. Thus, patchiness plots offer a type
‘‘edge detection’’ that is a useful first step in the explorati
of the global flow geometry.

An alternative numerical method for the global detecti
of hyperbolic structures in two-dimensional velocity field
has been proposed recently by Bowman.2,3 His finite strain
map technique approximates stable manifolds by finding
local maxima of the function
© 2000 American Institute of Physics
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sT~x0!5 max
yPGx0

ux~T;x0!2x~T;y!u
ux02yu

,

wherex(t,x0) denotes a solution at timetP@ t0 ,t01T# with
initial conditionx0 , andGx0

denotes the set of nearest neig
bors of the pointx0 on the grid of initial conditions. This
method avoids solving variational equations and gives g
approximations for global stable manifolds in several t
cases. At the same time, since it effectively detects lo
extrema of strain, it does not necessarily imply the existe
of nearby hyperbolic sets, as simple examples show. In
dition, the detection of invariant manifolds will depend o
the optimal choice ofT which is not knowna priori. Nev-
ertheless, for typical mixing geometries and for appropriat
chosenT regimes, the algorithm provides a useful templa
for global invariant manifolds.

A. Building blocks of a mixing template

It is important to realize that in order to understand t
global geometry of mixing, one only needs a ‘‘sharp’’ tem
plate of the most influential finite-time hyperbolic sets. Mo
concretely, finite-time Lyapunov exponents and finite str
maps approximate the set of all global stable and unst
manifolds that could be more accurately reproduced num
cally if one knew the exact location of some organizing
bits with ‘‘strong’’ or, uniform, hyperbolicity. Locating the
organizing centers of a mixing template is in fact essen
since a convoluted set of global stable and unstable m
folds is of no immediate help if one wants to understa
interaction among various regions or quantify mixing rate

As an example, consider the Poincare´ map of the ordi-
nary Duffing equation with small forcing. The mixing geom
etry in this problem is completely governed by the stable a
unstable manifolds of the unique uniformly hyperbolic fix
point near the origin~see Fig. 1!. Therefore, instead of ob
taining fuzzy global approximations for these manifolds
using any of the methods described above, one could fo
on obtaining a good approximation of the local stable a
unstable manifolds shown in bold in the figure. Once th
sets are found, one can simply iterate the global stable

FIG. 1. Mixing geometry on a Poincare´ section of the Duffing oscillator
with small periodic forcing.
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unstable manifolds until their first few intersections a
found. In this fashion, a clear picture of mixing emerg
which is not obstructed by the tangling of global stable a
unstable manifolds.

The above example is special because of its perio
time dependence. In the general aperiodic and finite-t
case, Poincare´ maps are not available, and hence it is ev
more important to have a clear template of the ‘‘cores’’
the mixing geometry. In addition, one would like to kno
exactly what one finds; when it comes to clarifying the d
tails in mixing in a given problem, it is desirable to have
algorithm with a strong mathematical foundation. In such
case one can exclude the possibility that the results are
due to some finite-time numerical anomaly. Finally, one id
ally wants to use an algorithm which is not sensitive to t
choice of the time interval and the location of stable a
unstable manifolds become clearer as time increases.

B. Main results

In this paper we prove an analytic result that can be u
to locate uniformly finite-time hyperbolic sets and their l
cals stable and unstable manifolds in two-dimensional tim
dependent velocity fields. Our main theorem will apply
typical oceanic or atmospheric flows where the deformat
rate of coherent structures is slower than typical parti
speeds. The conditions of the theorem are formulated
terms of the eigenvectors and eigenvalues of the Jacobia
the vector field along trajectories.

Based on our main theorem, we also propose a sim
numerical scheme that gives a first approximation for u
formly hyperbolic structures in two-dimensional fluid flow
In particular, such structures and their local stable manifo
will appear as local maxima of the scalar field

dT~x0!5 max
tP@ t0 ,t01T#

$tudetDxu~x~t;x0!,t!,0, t0<t,t%.

In words,dT(x0) is the maximal time for the initial condition
that it spends in a domain where the determinant of the Ja
bian of the velocity field is strictly negative. I
detDxu(x(t0;x0),t0)>0, then by definitiondT(x0)50 for any
T.

An advantage of this algorithm is that a contour plot
dT produces sharper and sharper images of local stable m
folds and hence is not sensitive to the choice ofT. Another
important computational advantage is that one does not h
to iterate the whole grid of initial conditions for all times u
to T. In fact, the number of particles to follow decays rapid
as for most of them detDxu(t(t ;x0),t) turns positive at some
point, and hencedT(x0) is obtained without increasing th
time of iteration to T. The particles that exhibit
detDxu(x(t;x0),t),0 for long times are those that are on,
asymptotic to, a uniformly finite-time hyperbolic trajector
as our main theorem shows for flows with Eulerian tim
scales below Lagrangian time scales. The local unsta
manifolds can be obtained from a backward-time calculat
of dT(x0). If needed, one can refine the first approximati
produced by this algorithm by checking the remaining
equalities of Theorem 1. After this refinement, the simp
algorithm we sketched above becomes a rigorous, compu
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assisted analytical criterion. In the numerical example trea
in this paper such a refinement is not necessary, but in
current numerical experiments on two-dimensional turbul
velocity fields the refinement is important to implement~see
Haller and Yuan7!.

Once the uniformly hyperbolic invariant sets are locat
one can compute their global stable manifolds gradually
ing, e.g., the straddling technique of You, Kostelich, a
Yorke,16 as implemented for discrete velocity fields b
Miller et al.10 This approach, therefore, enables one to bu
systematically a global geometric template for mixing, fin
ing first the core structures, then developing their stable
unstable sets to the extent needed for transport calculati

II. THE MAIN THEOREMS

Consider a two-dimensional velocity field

ẋ5u~x,t !, xPR2, ~1!

whereu is at least a classC2 function of its variables. As-
sume that a solutionx(t) of this system is known. The Jaco
bian of the velocity field along a solutionx(t) is given by the
time-dependent matrixDxu(x(t),t). We assume that on
some finite time interval@ t0 ,t01T#, we have detDxu(x(t),t)
,0, i.e., Dxu(x(t),t) has real eigenvalues2l1(t),0
,l2(t). @Since we did not assume incompressibility f
u(x,t), in general we havel1Þl2 .# We will need the quan-
tities

lk min5 min
[ t0 ,t01T]

lk~ t !, k51,2, ~2!

which measure the minima of the norm of the eigenvalu
We also define the eigenvectorse1(t) ande2(t) correspond-
ing to 2l1(t) andl2(t), and we assume that they are no
malized suchuek(t)u51 and are chosen such thatek(t) de-
pends smoothly ont. We denote the angle betweene1(t) and
e2(t) by k(t) and note that sink(t)Þ0.

Throughout this paper, for matricesAPR232, we shall
use the notationuAu5A( i , j 51

2 uAi j u2. With this notation, the
matrix of eigenvectorsM (t)5@e1(t),e2(t)#PR232 satisfies

uM u5&, udetM u5usink~ t !u. ~3!

We note thatM (t) is a differentiable function oft under our
assumptions.

We now introduce the quantities

a5 min
tP[ t0 ,t01T]

usink~ t !u, b5 max
tP@ t0 ,t01T#

uṀ ~ t !u, ~4!

which are upper bounds on the norm ofM 21/& and Ṁ ,
respectively. Finally, we define

g5
&b@a2l1 minl2 min1&ab~l1 min1l2 min!12b2#

a3l1 minl2 min
.

~5!

In the following we will use the notion offinite-time
stable and unstable manifoldsfor a given particle motion
x(t). By these manifolds we mean two-dimensional surfa
in the three-dimensional space of the (x,t) variables that
contain motions asymptotic tox(t). More precisely, a finite-
time stable manifold forx(t) on the time interval@ ṫ0 ,T# is a
d
ur
t

,
s-

d
-
d
s.

s.

s

smooth, two-dimensional set of initial conditions (x0 ,t0)
such that all the corresponding motionsx(t;t0 ,x0) approach
x(t) at a fixed exponential rate as long astP@ t0 ,T#. A simi-
lar definition applies for finite-time unstable manifolds~see
Haller and Poje6 for more details!.

Our first main result, a set of sufficient criteria for hy
perbolicity and uniform finite-time hyperbolicity, can now b
stated as follows.

Theorem 1: Suppose that for a solution x(t) of ~1! and
for all t P@ t0 ,t01T#,

detDxu~x~ t !,t !,0, &bF 1

l1 min
1

1

l2 min
G,a. ~6!

Then
~i! x(t) admits two-dimensional finite-time stable an

unstable manifolds in the space(x,t) for tP@ t0 ,t01T#.
~ii ! If, in addition, for all tP@ t0 ,t01T#

b,
a

2
A2l1 minl2 min ,

l1~ t !.g1
2b2

a2l1 minl2 min
l2~ t !, ~7!

l2~ t !.g1
2b2

a2l1 minl2 min
l1~ t !,

then x(t) is uniformly finite-time hyperbolic on@ t0 ,t0

1T#.
Roughly speaking, our next result states that for flo

where the rate of change of coherent structures stays bel
critical limit, detDxu(x(t),t),0 is also a necessary conditio
for x(t) to be uniformly hyperbolic.

Theorem 2: Suppose that a solution x(t) of ~1! is uni-
formly hyperbolic on the time interval@ t0 ,t01T#. Let P(t)
be a smooth matrix that contains unit vectors that are ta
gent to the t5constslice of finite-time stable and unstab
manifolds of x(t), and assume that

udetṖ~ t !uudetP~ t !u12&uṖ~ t !uuDxu~x~ t !,t !u

,udetDxu~x~ t !,t !uudetP~ t !u2. ~8!

Then we havedetDxu(x(t),t),0.
The proofs of Theorems 1 and 2 will be given in Sec. V

III. FINDING STABLE AND UNSTABLE MANIFOLDS IN
APPLICATIONS

In this section we give some intuition for the condition
of Theorems 1 and 2. We also discuss sharper versions o
theorems as well as a numerical algorithm that locates c
didates for uniformly hyperbolic trajectories.

A. Physical interpretation of Theorems 1 and 2

The conditions of Theorem 1 have the following mea
ing. The first inequality in Eq.~6! requires ‘‘instantaneous
hyperbolicity’’ along the solutionx(t). This becomes trans
parent after one notes that alongx(t)
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DFt
h~x~ t !!5I 1h

d

dh
DFt

h~x~ t !!uh501O~h2!

5I 1hDxu~x~ t !,t !1O~h2!,

and hence if2l1(t) and l2(t) are the eigenvalues o
Dxu(x(t),t), then the eigenvalues ofDFt

h(x(t)) can be writ-
ten as 12hl1(t)1O(h2) and 11hl2(t)1O(h2). The sec-
ond condition in Eq.~6! ensures that the ‘‘Eulerian’’ time
scales alongx(t) ~measured byb! are sufficiently well sepa-
rated from the Lagrangian time scales~measured bya!. If
the strength of instantaneous hyperbolicity~measured by
lk min! is stronger, then (1/l1 min) 1 (1/l2 min) is a smaller
quantity and hence the Eulerian and Lagrangian time sc
are allowed to be closer to each other. Finally, the conditi
in Eq. ~7! require an even more pronounced separation
Eulerian and Lagrangian time scales alongx(t) in order to
ensure uniform hyperbolicity.

While detDxu(x(t),t),0 by itself is often used in fluid
mechanics to identify hyperbolic regions in a flow~see, e.g.,
Weiss,15 Elhmaı̈di et al.,4 and the references therein!, the
second condition in Eq.~6! is essential forx(t) to be hyper-
bolic for the following reason. The linear stability ofx(t) on
the time interval@ t0 ,t01T# is determined by the stability o
the origin in the variational equation

ẏ5Dxu~x~ t !,t !y.

In general, the stability of such a time-dependent linear s
tem cannot be inferred from the eigenvalues ofDxu(x(t),t)
as numerous classic counterexamples show~see, e.g., Hale5

or Verhulst14!. However, all these counterexamples are ba
on the idea of introducing fast enough changes in the eig
vectors of Dxu(x(t),t) as t increases, thereby destroyin
correlations between instantaneous hyperbolicity and ac
stability in phase space alongx(t). In contrast, typical ve-
locity fields in fluid mechanics do display a sufficient sep
ration of Eulerian and Lagrangian time scales so that form
las ~6! and ~7! hold for uniformly hyperbolic sets.

All this is made rigorous by Theorem 2, which esse
tially says that in flows where coherent structures do
change very fast@i.e., the elements of the matrixṖ are small
numbers compared to the product of the eigenvalues
Dxu(x(t),t)#, a uniformly hyperbolic trajectoryx(t) will
necessarily satisfy detDxu(x(t),t)),0. This second theorem i
not meant to be a quantitative result as the estimates in
proof are far from being optimal. Rather, it serves as a t
oretical underpinning for our numerical algorithm below.
particular, it guarantees thatstrong enough uniformly hyper
bolic sets can be found in typical fluid mechanical vec
fields just by tracking the determinant of the Jacobi
Dxu(x(t),t) along particles.

B. A sharper version of Theorem 1

Here we give an improvement of the conditions of The
rem 1. The improved conditions are somewhat more
volved to implement numerically, yet they may give bet
results in given applications.
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It can be seen from the inequality~21! in the proof of
Theorem 1 that the second condition in Eq.~6! can be sharp-
ened to

max
tP@ t0 ,t01T#

iM 21~ t !i max
tP@ t0 ,t01T#

iṀ ~ t !iF 1

l1min
1

1

l2min
G,1,

where i•i refers to the operator norm~i.e., for any B
PR232, iBi5supuxu51(uBxu/uxu) with xPR2!. In fact, the
proof also reveals the even sharper condition

max
tP@ t0 ,t01T#

iM 21~ t !Ṁ ~ t !iF 1

l1 min
1

1

l2 min
G,1.

C. The numerical algorithm

The statement of Theorem 1 gives a sufficient condit
to locate uniformly finite-time hyperbolic trajectories. B
Theorem 2, if the coherent structures in the velocity field
not change fast compared to particle speeds, the cond
detDxu(x(t),t),0 becomes necessary forx(t) to be uniformly
hyperbolic. This suggests the following simple procedure
Consider a grid of initial conditions 2. Integrate each init
condition x0 forward in time as long as detDxu(x(t;x0),t) is
negative. 3. If detDxu(x(t;x0),t),0 for tP@ t0 ,t01T#, then
x(t;x0) is a candidate for a uniformly hyperbolic trajector
check the remaining conditions of Theorem 2 to ascert
this.

The above ‘‘naive’’ algorithm would be very sensitive t
numerical errors by the underlying instability of the un
formly hyperbolic sets that it intends to seek out. Indeed,
best one can hope for when one picks an arbitrary grid
initial conditions is to stay very close to the local stab
manifold of a uniformly hyperbolic trajectory for a lon
time. For this reason, the following algorithm works signi
cantly better in practice: 1. Consider a grid of initial cond
tions. 2. Integrate each initial conditionx0 forward in time as
long as detDxu(x(t;x0),t) is negative. 3. LetdT(x0)P@0,T#
denote the time for which detDxu(x(t;x0),t) stays negative
@dT(x0)50 will hold for initial conditions for which
detDxu(x(t0;x0),t0).0#. 4. Local extrema of the scalar fiel
dT(x0) are candidates for thet5t0 slices of local stable
manifolds.

In principle, the above procedure should give the sa
result in forward and backward time. In practice, as is w
known, local stable and unstable manifolds behave diff
ently under numerical iterations. For this reason, perform
the above algorithm first in forward time starting fromt
5t0 will render t5t0 slices of the local stable manifolds o
uniformly hyperbolic sets, while iteration in backward tim
from t5t0 will give the slices of local unstable manifolds
This is precisely the numerical scheme that we describe
the Introduction. The intersection of the stable and unsta
curves will clearly mark candidates for uniformly hyperbol
particle paths. For these, the remaining conditions of Th
rem 1 may be verified. As we noted in Sec. I, in some e
amples this verification is crucial as the set of particles w
long initial residence times in hyperbolic regions is too larg
In other examples, such as the one described in Sec. IV
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low, the emerging template of local stable and unsta
manifolds is sharp enough so that further computations
not necessary.

While for analytically given vector fields the calculatio
of the JacobianDxu(x(t),t) along the solutionx(t) is
straightforward numerically, for experimentally or nume
cally defined velocity fields it needs to be interpolated. Ho
ever, as opposed to the difficulties arising with similar c
culations for finite-time Lyapunov exponents, here t
results will be fairly robust and independent of the discre
zation scheme used. The reason is that one does not ne
solve the variational equation associated withDxu(x(t),t),
or compute higher powers of this matrix. In our numeric
experiments for analytically given flows~see below!, the
field dT(x0) showed no noticeable difference when first t
exact Jacobian was used and then its approximation by fi
differences.

IV. EXAMPLES

In this section we consider two examples that illustr
the use of Theorem 1. We start with a simple integra
example in which the outcome of a numerical experim
can be predicted without actually performing it. We th
consider a nonintegrable example and test our algori
along with another technique, the finite strain method~cf.
Sec. I!.

Example 1: ~Duffing equation in a moving frame! Let us
consider the time-dependent system

ẋ5u~x,t !, u~x,t !5S x21~v22v1!t
x11~v12v2!t2~x11v1t !3D ,

~9!

which is obtained by lettingx5y2vt with v5(v1 ,v2) in
the Duffing equation

ẏ15y2 , ẏ25y12y1
3 . ~10!

We know that the only uniformly hyperbolic trajectory o
Eq. ~10! is the y50 equilibrium as well as solutions in it
local stable and unstable manifolds. We would like to s
whether the sufficient criterion we gave in the previous s
tion picks outx52vt and its local stable and unstable man
folds as uniformly hyperbolic sets for system~9!.

On any solutionx(t) of Eq. ~9! we have

Dxu~x~ t !,t !5S 0 1

123~x1~ t !1v1t !2 0D ,

so we have detDxu(x(t),t),0 if

ux1~ t !1v1tu,
1

)
. ~11!

Thus, the first condition in Eq.~6! is satisfied for solutions o
Eq. ~9! which stay in a band of width 1/) around the plane
x15v1t in the extended phase space of the variab
(x1 ,x2 ,t). We know from the geometry of the Duffing equ
tion @Eq. ~10!# that for tP@ t0 ,t01T#, the solutions satisfying
Eq. ~11! form an open neighborhood of the local stable a
unstable manifolds of the solutionx52vt. This neighbor-
hood is getting thinner and thinner asT increases. Therefore
le
re
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-
to
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e
e
t
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e
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for large enoughT a numerical evaluation of the first cond
tion in Eq. ~6! would yield precisely the pieces of the loc
stable and unstable manifolds ofx52vt.

As for the second condition in Eq.~6!, we note that on
the solutionx52vt we have

Dxu~2vt,t !5S 0 1

1 0D ,

therefore, on this solution

detDxu~2vt,t !521, a5&, b50,

g50, l1 min5l2 min51.

Consequently, conditions~6! and ~7! are satisfied forx
52vt for all times, implying that it is a uniformly hyper-
bolic solution on any finite time interval. By continuity, clos
enough solutions in its local stable and unstable manifo
will also satisfy Eqs.~6! and ~7!.

We conclude that in this example our Jacobian algorit
picks out thin stripes around the stable and unstable m
folds around the local stable and unstable manifolds ox
52vt. The stripes shrink down to the local stable and u
stable manifolds exponentially fast inT, and hence the re
sults refine quickly in time. The verification of Eqs.~6! and
~7! is not necessary since they are automatically satisfied

Example 2: ~Forced Duffing equation in a rotatin
frame!. We now apply the change of coordinates

x5A~ t !y5S cosvt 2sinvt

sinvt cosvt D y

to the Duffing equation@Eq. ~10!# to obtain the system

ẋ5B~ t !x2S sinvt~x1 cosvt2x2 sinvt !3

cosvt~x1 cosvt2x2 sinvt !3D ,

where

B~ t !5S sin 2vt v1cos 2vt

2v1cos 2vt 2sin 2vt D .

To break integrability, we add anO(1) periodic forcing term
and consider the modified system

ẋ5B~ t !x2S sinvt~x1 cosvt2x2 sinvt !3

cosvt~x1 cosvt2x2 sinvt !3D1S 0
sinvt D .

~12!
Without the sinusoidal forcing term, this time-depende

system would admit two homoclinic manifolds asymptotic
thex50 equilibrium. The homoclinic solutions would diffe
from the usual pair of homoclinic solutions of the Duffin
equation by a rotating component. Adding the forcing term
expected to break the homoclinic structures and perturb
origin into a hyperbolic periodic orbit. The location or eve
the existence of this hyperbolic trajectory is not obvio
since the perturbation is large, and hence standard pe
tence results from dynamical systems do not apply.

We now use the Jacobian algorithm described in the p
vious section to locate uniformly hyperbolic trajectories
the above problem. We select the rotation speeduvu,1 in
our experiments in order to push our method to its limi
This means that the coherent structures in the flow rotat
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FIG. 2. ~Color! Two different algo-
rithms applied to the forced Duffing
equation in a rotating frame. The num
ber of initial conditions is 2500, taken
from the square@23,3#3@23,3#. The
time of integration is@0,15# for the
stable manifold and@0,215# for the
unstable manifold.~a! Visualization
by the finite strain map algorithm
with the maximal strain normalized to
1. ~b! Visualization by the Jacobian al
gorithm, with the maximal time
dT(x0) normalized to 1.
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speeds almost comparable to particle speeds near the o
In real-life flows of fluid mechanics this will typically not b
the case.

As a first exploratory step, we use the finite strain m
technique~see the Introduction! as well as the Jacobian a
gorithm on the square@23,3#3@23,3# of initial conditions.
The solutions are integrated in both cases on the time in
vals @0,15# and @0,215# to obtain approximations for thet
50 slices of stable and unstable manifolds, respectively.
show the results for Fig. 2. The finite strain map techniq
highlights global maxima of stretching, but misses the und
lying uniformly hyperbolic trajectory that is ultimately re
sponsible for all the mixing. As expected, the Jacobian al
in.

p

r-

e
e
r-

-

rithm described in Sec. III C highlights only the core of th
mixing template, thet50 slices of the local stable and un
stable manifolds a uniformly hyperbolic trajectory.

Aided by the above picture, we now focus on the sma
window @21,1#3@21,1# of initial conditions. This will help
the finite strain algorithm since in this window the maximu
of the strain is closer to the strain near the uniformly hyp
bolic point. Indeed, as seen in Fig. 3, the finite strain alg
rithm initially gives a good approximation for the core of th
mixing temple. However, even before the end of two forci
periods~4p!, it starts producing a fuzzy picture from whic
the location of the underlying hyperbolic point is hard
guess. Att515 the picture becomes unhelpful due to t
.

FIG. 3. ~Color! Same as Fig. 2 for
three different times of integration
The initial grid is the square@23,3#
3@23,3# of 2500 particles.~a! Finite
strain algorithm ~b! Jacobian algo-
rithm.



b
nt
e
no
ly

e
n

n

o-

fi-
y

a
lik
i-

ns

e

ter-

m
lu-
of
ite

,
ing

r to

105Chaos, Vol. 10, No. 1, 2000 Invariant manifolds in velocity fields
widespread strain near the homoclinic tangle. This is to
compared with the Jacobian calculation which consiste
and sharply pinpoints the center of mixing. This illustrat
the point we made earlier: The Jacobian algorithm is
sensitive to the choice of the time of integration; it on
refines itself ast increases.

V. UNIFORM HYPERBOLICITY FOR FINITE TIMES

Here we give a precise definition for uniform finite-tim
hyperbolicity to set the stage for the proof of Theorems 1 a
2 in the next section. For the velocity field~1!, the flow map
Ft0

t :x0°x(t01t,x0) associates the value of the solutio

x(t,x0) at time t01t to its initial conditionx(t0 ,x0)[x0 .
The linearized flow map along a solutionw(t) can be written
as

Dt0
t 5DFt0

t ~w~ t0!!:Rn→Rn. ~13!

Our main interest will be to describe uniform hyperb
licity for solutions on a time interval@ t0 ,t01T#, where 0
,T,`. With numerical applications in mind, our next de
nition of uniform finite-time hyperbolicity is motivated b
similar definitions for discrete dynamical systems~see, e.g.,
Katok and Hasselblatt8!.

Definition 1: We call a solutionw(t) uniformly hyper-
bolic on the time interval@ t0 ,t01T# if for some constants
0,l, m,1 and for sufficiently small h.0, there exists a
splitting Rn5Et

1(h) % Et
2(h) depending continuously ont

and h such that

Dt
hEt

6~h!5Et1h
6 ~h!, iDt

huE
t
2(h)i<12hl,

i@Dt
h#21uE

t1h
1 (h)i<12hm,

for all t P@ t0 ,t01T2h#.
Roughly speaking, uniform hyperbolicity means th

even arbitrarily short segments of the solution behave
‘‘saddles:’’ They attract infinitesimally close initial cond
tions x(t,x0) along certain directions~i.e., alongEt

2! and
repel them along other directions~i.e., alongEt

1!. Unifor-
mity is reflected by the fact that the constantsl andm can be
chosen independently ofh andt.

It is not hard to see that uniformly hyperbolic solutio
are normally hyperbolic on any finite time interval@ t0 ,t0

1T#. Indeed, if for anytP(0,T# we let h5t/N for a large
enough positive integerN, then we obtain

iDt0
t uE

t
2(h)i5iDt01T2h

h Dt01T22h
h

¯Dt01h

h Dt0
h uE

t
2i

<iDt01T2h
h iiDt01T22h

h i¯iDt01h

h iiDt0
h uE

t
2i

<~12hl!N5~12hl!t/h.

Sinceh can be arbitrarily small, we obtain

iDt0
t uE

t
2(0)i< lim

h→0
~12hl!t/h5e2lt, tP~0,T#,

where the limit limh→0ET
2(h)5Et

2(0) exists by continuous
dependence onh. A similar argument yields

iDT
2tuE

t
2(0)i< lim

h→0
~12hm!t/h5e2mt, tP~0,T#.
e
ly
s
t

d

t
e

Therefore, uniformly hyperbolic solutions admit finite-tim
stable and unstable manifolds~see Haller and Poje6!. As op-
posed to regular~infinite-time! invariant manifolds, finite-
time stable and unstable manifolds arenot unique. However,
they are unique up to an error ofO(e2cT) wherec.0 is an
appropriate constant. As a result, on long enough time in
vals their nonuniqueness cannot be resolved numerically~cf.
Haller and Poje6!.

At the same time, hyperbolicity does not imply unifor
hyperbolicity on the same time interval. For instance, so
tions in the stable manifold of the hyperbolic fixed point
the ordinary pendulum are not uniformly hyperbolic on fin
time intervals unless the initial conditionx0 is chosen close
enough to the fixed point.

VI. PROOFS OF THE MAIN THEOREMS

A. Proof of Theorem 1

1. Setup

We start by introducing the change of coordinatesy5x
2x(t), which puts Eq.~1! in the form

ẏ5Dxu~x~ t !,t !y1O~ uyu2!, ~14!

whereO(uyu2) terms do depend ont. Under the first condi-
tion in Eq.~6!, for anytP@ t0 ,t01T# the matrixDxu(x(t),t)
admits two real eigenvalues2l1(t),0,l2(t). We can
then define the matrixM (t) of eigenvectors as in Sec. III
and pass to a frame moving with the eigenvectors by lett
y5M (t)z. The transformed system takes the form

ż5L~ t !z1P~z,t !2Q~z,t !, ~15!

with L(t)5diag(2l1(t), l2(t)), P(z,t)5O(iM 21iuMzu2)
andQ(z,t)5M 21Ṁz. By Eq. ~3!, from the definitions ofa
andb from Eq. ~4! we obtain

uP~z,t !u<
2&C

a
uzu2, uQ~z,t !u<

&b

a
uzu,

with an appropriateC.0 for tP@ t0 ,t01T#. Note that in the
z coordinates the original solutionx(t) satisfiesz[0.

2. Integral equations

We fix two small constantsd, D.0 and modify Eq.~15!
in a C` fashion such that the modified vector field

ż5L̃~ t !z1 P̃~z,t !1Q̃~z,t !, ~16!

is smooth for allzPR2 andtPR, coincides with Eq.~15! for
uzi u<d and tP@ t01D,t01T2D#, and obeys

L̃11~ t !<2l1 min,0,l2 min<L̃22~ t !,

L̃12~ t !5L̃21~ t ![0, tPR,
~17!

uP̃~z,t !u<d
2&C

a
uzu, uQ̃~z,t !u<

&b

a
uzu,

P̃~z,t !5Q̃~z,t ![0, t¹@ t0 ,t01T#, or uzu.2d.

~For more details of this construction we refer the reade
Haller and Poje6!.

Introducing the notation
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z5~zs ,zu!, P̃5~ P̃s ,P̃u!, Q̃5~Q̃s ,Q̃u!,

l̃15L̃11, l̃25L̃22,

then dropping the tildes, we obtain by integration from E
~16! the equations

zs~ t !5e2* ts

t l1(t)dtzs~ ts!1E
ts

t

e2*t
t l1(s)ds@Ps~z~t!,t!

1Qs~z~t!,t!#dt,
~18!

zu~ t !5e* tu

t l2(t)dtzu~ tu!1E
tu

t

e*t
t l2(s)ds@Pu~z~t!,t!

1Qu~z~t!,t!#dt.

We want to construct a stable setWs to the solutionz(t)
[0. The subset of this set falling in the intervaltP@ t0

1D,t01T2D# will serve as a finite-time stable set for th
original solutionx(t). We defineWs as

Ws5$z0usup
t>0

uz~ t;z0!u,`%.

In other words,Ws contains the set of initial conditions tha
remain bounded in forward time.Ws is a positively invariant
set by definition, and for any solutionz(t)PWs and for any
fixed tPR, we have

lim
tu→`

ue* tu

t l2(t)dtzu~ tu!u<K lim
tu→`

e* tu

t l2(t)dt50.

As a result, taking the limittu→` in Eq. ~18!, setting ts

50 andzs(ts)5zs , we obtain that solutions inWs satisfy the
integral equation
er
.

zs~ t !5e2*0
t l1(t)dtzs1E

0

t

e2*t
t l1(s)ds@Ps~z~t!,t!

1Qs~z~t!,t!#dt, ~19!

zu~ t !5 È t

e*t
t l2(s)ds@Pu~z~t!,t!1Qu~z~t!,t!#dt.

We shall prove that this integral equation has a unique s
tion z(t) with zs(0)5zs , which will imply that Ws is a non-
empty set.

3. Normal hyperbolicity of x „t …

We rewrite Eq.~19! in the form

z~ t !5F~z~ t !!, ~20!

which shows that a solution of Eq.~19! is a fixed point of the
mapF. We shall use the norm

izi5sup
t>0

uz~ t !u

on the function space

BK5$z~ t !:@0,̀ !→R2uzPC0@0,̀ !, izi<K%,

which is a complete metric space in the normi•i . We want
to show thatF is a contraction mapping onBK in order to
conclude the existence of a unique solution to Eq.~20!.

First we show thatF mapsBK into BK . From the inte-
gral equation@Eq. ~19!# and the estimates@Eq. ~17!# we ob-
tain
uF~z~ t !!u<e2*0
t l1(t)dtuzsu1E

0

t

e2*t
tl1(s)ds@ uPs~z~t!,t!u1uQs~z~t!,t!u#dt1E

t

`

e*t
t l2(s)ds@ uPu~z~t!,t!u1uQu~z~t!,t!u#dt

<de2*0
t l1(t)dt1Fd 2&C

a
1
&b

a G max
tP@ t0 ,t01T#

E
0

t

e2*t
tl1(s)ds uzudt

1Fd 2&C

a
1
&b

a G max
tP@ t0 ,t01T#

max
tP@ t0 ,t01T#

E
t

`

e*t
tl2(s)dsuzudt. ~21!
e

if we let uzsu<d. Taking the supremum of both sides ov
t>0 and usingizi<K gives

iF~z~ t !!i<d1Fd 2&C

a
1
&b

a G S 1

l1 min
1

1

l2 min
DK.

This inequality shows thatiF(z(t))i,K will hold if

dS 2&C

a
1

1

K D S 1

l1 min
1

1

l2 min
D

1&
b

a S 1

l1 min
1

1

l2 min
D,1.
But this last inequality is always satisfied ford.0 small
enough under the second assumption in Eq.~6!.

We now want to argue thatF is a contraction mapping
on the spaceBK . For any two functionsz,ẑP BK with
zs(0)5 ẑs(0), theintegral equation@Eq. ~19!# holds, and an
estimate similar to~21! gives

iF~z~ t !!2F~ ẑ~ t !!i

<S d
2&C

a
1
&b

a D S 1

l1 min
1

1

l2 min
D iz~ t !2 ẑ~ t !i .

Again, this inequality will hold ford.0 small under the
second assumption in Eq.~6!. We can, therefore, conclud
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that Eq.~19! has a unique solution for anyuwsu,d if d is
small enough. The derivative of the solution with respect
ws obeys similar estimates; thus we obtain that the solu
of Eq. ~19! is a C1 function of ws, i.e., the setWs is a C1

manifold.
The existence of aC1 manifold of solutions

Wu5$z0usup
t<0

uz~ t;z0!u,`%

follows from a similar construction.

4. Uniform hyperbolicity of x „t …

In order to derive further conditions under whichx(t)
becomes uniformly hyperbolic, we need a better understa
ing of theO(z) part of the integral equation@Eq. ~19!#. This
is equivalent to studying the system

ż5~L~ t !1 P̄~z,t !!z, ~22!

where fortP@ t01D,t01T2D#

P̄~z,t !5H M 21~ t !Ṁ ~ t ! uzu<d

0 uzu.2d
.

For t¹@ t01D,t01T2D#, L(t) andP̄(z,t) again denote the
appropriately extended matrices used in Eq.~19!. We also
recall that

uP̄~z,t !u<
&b

a
. ~23!

A contraction mapping argument identical to that in S
VI A 3 shows that under the second condition in Eq.~6!, the
z[0 solution of the system of ODE~ordinary differential
equation! ~22! admits two-dimensional stable and unstab
manifolds,Us andUu. For uzu<d, the t5const slices ofUs

and Uu are lines by the linearity of Eq.~22!. Solutions in,
say,Us again satisfy the integral equation

zu~ t !5 È t

e*t
tl2(s)dsP̄u~z~t!,t!dt, ~24!

which gives the global bound

uzuuuUs,
&bd

al2 min
, ~25!

after one uses thea priori estimateuzu<d in Eq. ~24!. A
similar argument leads to

uzsuuUu,
&bd

al1 min
. ~26!

We now introduce a time-dependent linear change
coordinates alongz[0 that will transform the manifoldsUs

andUu into orthogonal planes. Such a change of coordina
can be chosen asz5S(z,t)w with

S~z,t !5S 1 e2~ t !

e1~ t ! 1 D , uzu<d.

The functionsei(t) obey the estimates
o
n

d-

.

f

s

ue1~ t !u<
&b

al1 min
, ue2~ t !u<

&b

al2 min
. ~27!

This follows from the inequalities~25! and~26! and the lin-
earity of t5const slices ofUs and Uu for uzu<d. In the w
coordinates~22! becomes

ẇ5C~w,t !w ~28!

with

C~w,t !5S21~z,t !~L~ t !1 P̄~z,t !!S~z,t !

2S21~z,t !Ṡ~z,t !.

Note thatC(w,t) is a diagonal matrix by construction
As a next step in our construction, we will estimate the sig
of the diagonal elements ofC(w,t) for small enoughw. We
first note that foruS(z,t)wu<d

iṠ~z,t !i5O~d!,

as one concludes by differentiating the integral equation@Eq.
~24!#, as well as the analogous equation for solutions onUu.
Since S21(z,t) is uniformly bounded, a direct calculatio
gives the following expression for the first diagonal eleme
of C(w,t):

C115
2l11 P̄111e1P̄122e2P̄212e1e2~l21 P̄22!

12e1e2

1O~d!. ~29!

Using the estimates~25! and ~26! together with the first in-
equality in condition~7!, we conclude that 12e1e2.0. As a
result, the sign ofC11 is determined by the sign of the nu
merator in Eq.~29!. If

2l11uP̄11u1ue1uuP̄12u1ue2uuP̄21u1ue1uue2u~l21uP̄22u!,0,
~30!

then we can selectd small enough so thatC11(w,t),0. Now
Eqs.~23! and ~27! together show that Eq.~30! holds if

l12
2b2

a2l1 minl2 min
l2.g,

with g defined in Eq.~5!. But this last inequality is satisfied
by the second assumption in condition~7! of Theorem 1,
therefore, we conclude thatC11(w,t),0 for uS(z,t)wu<d
and d small enough. A similar argument shows th
C11(w,t).0 holds foruS(z,t)wu<d andd small enough by
the third assumption in condition~7!.

With all this knowledge about system~28!, we rewrite
the full set of ODEs@equivalent to the integral equation~19!#
in the w coordinates to obtain

ẇ5C~w,t !w1O~ uwu2!.

In this coordinate system the variational equation along
solutionw[0 is of the form

ż5C~0,t !ż,

where we used the fact thatC has no explicitw dependence
for w sufficiently small. The fundamental matrix solutio
F(t1h) with F(t)5I of this system is just the represent
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tion on the linearized flow mapDt
h[DFt

h(u(t)) of the origi-
nal velocity field~1!. Consequently, in thew coordinates we
can write

Dt
h5I 1hC~0,t !1O~h2!.

For anyh.0, the splittingRn5Et
1(h) % Et

2(h) with

Et
2~h!5$wuw250%, Et

1~h!5$wuw150%,

is invariant under the linearized flow, i.e.,Dt
hEt

6(h)
5Et1h

6 (h). Furthermore,

iDt
huE

t
2(h)i511C11~0,t !h1O~h2!,

i@Dt
h#21uE

t1h
1 (h)i512C22~0,t !h1O~h2!,

for all tP@ t0 ,t01T2h#. Since both C11(0,t),0 and
C22(0,t).0, the solutionx(t) is uniformly hyperbolic by
Definition 1 with the choice

l5 min
tP[ t0 ,t01T]

uC11~0,t !u
2

, m5 min
tP[ t0 ,t01T]

C22~0,t !

2
.

B. Proof of Theorem 2

Since x(t) is assumed to be uniformly hyperbolic o
@ t0 ,t01T#, for any fixed t in this interval the matrixP(t)
described in the statement of the theorem is defined. Ap
ing the change of coordinatesy5P(t)z to the transformed
equation@Eq. ~14!# then gives

ż5L~ t !z1O~ uzu2!,

where

L~ t !5P21~ t !Dxu~x~ t !,t !P~ t !1P21~ t !Ṗ~ t !

5S 2n1~ t ! 0

0 n2~ t !
D ,

with n1(t),n2(t).0. ~As in our earlier calculations, the
O(uzu2) terms have a general, explicit time-dependenc!
Consequently, we must have

det@E~ t !1F~ t !#,0, ~31!

where

E~ t !5P21~ t !Dxu~x~ t !,t !P~ t !, F~ t !5P21~ t !Ṗ~ t !.

Now, a direct calculation shows that

det@E~ t !1F~ t !#

5detE~ t !1detF~ t !1(
iÞ j

@Eii ~ t !F j j ~ t !2Ei j ~ t !F ji ~ t !#

>detE~ t !2udetF~ t !u2udetF~ t !uuE~ t !F21~ t !u
y-

.

>det@Dxu~x~ t !,t !#2
udetṖ~ t !u
udetP~ t !u

2
udetṖ~ t !u
udetP~ t !u

3uE~ t !uuF21~ t !u

>det@Dxu~x~ t !,t !#2
udetṖ~ t !u
udetP~ t !u

2
2&

udetP~ t !u2

3uṖ~ t !uuDxu~x~ t !,t !u, ~32!

where we used the fact thatuP(t)u5& by assumption. Then
combining Eq.~31! with Eq. ~32! and with assumption~8! of
Theorem 2, we obtain that det@Dxu(x(t),t)#,0 must hold.
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