
P H Y S I C S W O R L D A U G U S T 2 0 0 5 p h y s i c s w e b . o r g 29

AS ALL of us are no doubt aware, this
year has been declared “world year of
physics” to celebrate the three remark-
able breakthroughs made by Albert
Einstein in 1905. However, it is not so
well known that Einstein’s work on
Brownian motion – the random motion
of tiny particles first observed and in-
vestigated by the botanist Robert Brown
in 1827 – has been cited more times in
the scientific literature than his more
famous papers on special relativity and
the quantum nature of light. In a series
of publications that included his doc-
toral thesis, Einstein derived an equa-
tion for Brownian motion from microscopic principles – a feat
that ultimately enabled Jean Perrin and others to prove the
existence of atoms (see Physics World January pp19–22).

Einstein was not the only person thinking about this type of
problem. The 27 July 1905 issue of Nature contained a letter
with the title “The problem of the random walk”, in which
the British statistician Karl Pearson proposed the following: “A
man starts from the point O and walks l yards in a straight line;
he then turns through any angle whatever and walks another l
yards in a second straight line. He repeats this process n times.
I require the probability that after n stretches he is at a distance
between r and r+δr from his starting point O.”

Pearson was interested in the way that mosquitoes spread
malaria, which he showed was described by the well-known
diffusion equation. As such, the displacement of a mosquito
from its initial position is proportional to the square root of
time, and the distribution of the positions of many such
“random walkers” starting from the same origin is Gaussian
in form. The random walk has since turned out to be inti-
mately linked to Einstein’s work on Brownian motion, and
has become a major tool for understanding diffusive pro-
cesses in nature.

When the mean is missing
In fact, the first person to address the problem of diffusion was
the German physiologist Adolf Fick, who was interested in
the way that water and nutrients travel through membranes 

in living organisms. In 1855 Fick pub-
lished the famous diffusion equation,
which, when written in terms of prob-
ability, is ∂p/∂t=D∂2p/∂x2, where p gives
the probability of finding an object at 
a certain position x, at a time t, and D is
the diffusion coefficient. Fick went on to
show that the mean-squared displace-
ment of an object undergoing diffusion
is 2Dt.

However, Fick’s approach was purely
phenomenological, based on an anal-
ogy with Fourier’s heat equation – it
took Einstein to derive the diffusion
equation from first principles as part 

of his work on Brownian motion. He did this by assuming
that the direction of motion of a particle gets “forgotten”
after a certain time, and that the mean-squared displace-
ment during this time is finite. When Einstein combined the
diffusion equation with the Boltzmann distribution for a
system in thermal equilibrium, he was able to predict the
properties of the unceasing motion of Brownian particles in
terms of collisions with surrounding liquid molecules. This
was the breakthrough that ultimately led to scientists believ-
ing in the reality of atoms.

The fact that Einstein’s explanation of diffusion and Pear-
son’s random walk are both based on the same two assump-
tions – the existence of a mean free path (the length l in
Pearson’s model and the distance between collisions in Ein-
stein’s description) and of a mean time taken to perform a
step or between collisions – revealed just how ubiquitous dif-
fusion processes are in nature. However, by the mid-1970s re-
searchers had started to pay attention to situations in which
the assumptions made by Einstein and Pearson do not hold.
Surprisingly, perhaps, the way that photocopier machines
operated played a major role in these developments.

Today, an increasing number of processes can be described
by this “anomalous diffusion”. From the signalling of biolo-
gical cells to the foraging behaviour of animals, it seems that
the overall motion of an object is better described by steps
that are not independent and that can take vastly different
times to perform.

An increasing number of natural phenomena do not fit 
into the relatively simple description of diffusion developed by Einstein a century ago

Anomalous diffusion
spreads its wings

Joseph Klafter and Igor M Sokolov

Strange behaviour – albatrosses fly by the rules of
anomalous diffusion.
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The best way to study deviations from
normal Gaussian diffusion is to plot the
distributions of the free path of a par-
ticle and of the time taken to travel this
path. These distributions, like all dis-
tributions, have a width: if this width is
narrow, then most values are concen-
trated around the mean value; however,
if this width is large, the mean value
does not represent the typical beha-
viour (figure 1). For example, the dis-
tribution of heights in a population is
narrow because the shortest and tallest
people only differ in height by a factor
of about five. But the distribution of
wealth in a population is very broad,
as first noted by the Italian economist
Vilfredo Pareto. Indeed, the spread between extreme poverty
and wealth is so large that the mean of a Pareto distribution
has no meaning.

Pareto-type distributions also appear in physics. In the
1920s the French mathematician Paul Lévy discovered a
special family of distributions, now known as Pareto–Lévy
distributions, that arise when many independent random
quantities that each follow a Pareto law are added together.
Different physical situations correspond to different modifi-
cations of Pearson’s more basic scheme, where all step lengths
and time intervals are the same. For example, the random
walker might pause between two successive steps, in which
case the time between steps might be distributed according 
to a Pareto–Lévy law. What all these situations have in com-
mon, however, is that the walker’s behaviour is dominated 
by the largest steps or longest periods in which there is no
motion. This means that the system’s “memory” about such
rare events is never erased.

So how does all this affect the simple diffusion equation?
Once again, the anomalous nature leads to a surprise, be-
cause it turns out that the ordinary derivatives in Fick’s equa-
tion need to be replaced by fractional ones such as ∂1/2y/∂x1/2.
Mathematicians have been aware of fractional derivatives for
over 300 years, but, like the strange Pareto distributions that
have no mean value, these derivatives only found their way
into the physical sciences due to the relatively recent observa-
tions of anomalous diffusion.

The best examples of fractional derivatives in action can be
found in the modern office: both the photocopier and the
laser printer rely on the transport of electrons or “holes” in
amorphous semiconductors in an electric field. In the early
1970s it became clear that the movement of these charge car-
riers could not be described by the classic diffusion equation
(figure 2). The issue was resolved in 1975 when Harvey Scher
and Elliot Montroll, then at Xerox and the University of Ro-
chester, respectively, realized that charges moving in amor-

phous media tend to get trapped by local imperfections and
then released due to thermal fluctuations. This means that
the trapping times are more likely to be described by a Pareto
distribution than a Gaussian distribution.

This idea did not go down well with other researchers
because it implied that a distribution that did not have a mean
value might have a physical meaning. However, the trapping
times were indeed found to follow a Pareto law in many cases,
which meant that the charge carriers diffused more slowly
than they would in the case of normal diffusion. This type of
anomalous diffusion is called “subdiffusion”, since the mean-
squared displacement of particles grows slower than the first
power of time in Fick’s diffusion equation.

1 Mean distributions

2 Anomalous diffusion in photocopiers
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In the 1970s researchers measured the transient photocurrent in amorphous
thin films that form the core of photocopier machines (data points). The blue
dashed line indicates the expected behaviour if this diffusion process
followed Fick’s equation, which led Scher and Montroll to describe the
process using broad distributions of waiting times. Both axes are logarithmic.
This became the best known example of anomalous subdiffusion in nature.
From H Scher and E Montroll 1975 Phys. Rev. B 12 2455–2477

A statistical distribution can be characterized by its mean (blue) and its median (green). The mean is a
conventional average, whereas the median divides the distribution such that half the values are higher
than the median and half are lower. In the Gaussian distribution (left) the mean and the median coincide,
while in the exponential distribution (middle) the mean is slightly larger than the median. The tails of both
of these distributions decay very quickly, which means that very large values are highly improbable.
However, in a Pareto distribution (right), which describes the distribution of wealth in a population, the
mean is not well defined and there is a non-zero probability for finding very high values.
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Subdiffusion
More recent examples of subdiffusive behaviour come from
hydrology. In 2000 James Kirchner and co-workers at the
University of California at Berkeley showed that as a result 
of trapping, the travel times of contaminants in groundwater
are much longer than is expected from the classic diffusion
picture. Here, the mean flow of the groundwater plays the
role that the electric field plays in the photocopier machine,
while stagnant regions of zero velocity (such as side channels
of the main flow) correspond to the traps. By modifying 
the diffusion equation, researchers can therefore work out
how long pollutants from environmental accidents, for ex-
ample, will remain before they are flushed out into lakes or
the sea.

In 2004 Marco Dentz and colleagues, including Scher at
the Weizmann Institute in Israel, formulated a theory that
takes into account these extremely long retention times and
distinguishes between normal and anomalous diffusion. In
particular the researchers investigated the effects of the sys-
tem memory on contaminant patterns over long periods,
concluding that the standard diffusion equation needs to be
replaced by the fractional version.

Biology also contains a wealth of subdiffusive phenomena,
such as the way some that proteins diffuse across cell mem-
branes. This process is central to the transmission of signals 
to the inside of cells, but its precise details are controversial
because the process cannot be explained by normal Brown-
ian motion. Earlier this year, Akihiro Kusumi and co-workers
at Nagoya University in Japan performed experiments in
which they tracked a single protein molecule in the plasma
membrane of live cells. Fluorescent-molecule video imaging
revealed that the molecules spend relatively long times trap-
ped between nanometre-sized compartments in the actin
cytoskeleton of the cell (figure 3). This, claimed Kusumi and
co-workers, was the origin of the anomalous diffusion.

Subdiffusion has also been observed in fluctuating proteins
– systems in which the distance between a donor and an ac-
ceptor within a single protein constantly changes. Earlier this
year Sunney Xie and co-workers at Harvard University used
the electron-transfer reaction to measure how this distance
fluctuates in real time. The result was a strong departure from
Brownian behaviour, which could help biologists understand
the specific functions of certain proteins.

Superdiffusion
The examples of anomalous diffusion we have discussed so
far describe random walks in which particles halt between
steps. However, another possibility for anomalous diffusion 
is that the random walker remains in motion without chan-
ging direction for a time that follows a Pareto–Lévy distri-
bution. In this case the step lengths and the waiting times –
not just the former – have a broad distribution. Such “Lévy
walks”, so named by one of the present authors ( JK) and
Michael Shlesinger of the US Office of Naval Research in
1985, correspond to a process in which the mean-squared dis-
placement grows faster than it does in normal diffusion. Such
processes are therefore termed superdiffusive.

Unlike the spread of Pearson’s mosquitoes, which was des-
cribed by a simple random walk, the flight of albatrosses can
be described by a Lévy-walk model, as Eugene Stanely of
Boston University and co-workers discovered in 1996. These
large seabirds fly at an approximately constant velocity, and
the broad distribution of times between changes of direction
leads to a pattern of long straight lines interrupted by local-
ized random motions. Such trajectories can be rationalized as
an efficient search strategy that leads the birds to new areas,
rather than a simple diffusion trajectory in which places are
revisited many times.

The search patterns of many animals resemble those of
the albatross, with the behaviour of bacteria, plankton and
even jackals following the Pareto–Lévy law. Indeed, last year
Gabriel Ramos-Fernandez and co-workers at Mexico Uni-
versity found that the movement of spider monkeys also fol-
lowed a Lévy walk (figure 4). While the actual reason for this
anomalous behaviour is not clear, it has been shown that Lévy
walks outperform normal Brownian random walks as a strat-
egy for finding randomly located objects.

Similar to these Lévy-walk trails are the trajectories of par-
ticles in some inanimate systems. For example, in the periodic
“egg crate” potential – which represents the motion of a par-
ticle on the surface of a perfect crystal – the only turning
angles allowed are those obeying the symmetry of the crystal.
This can lead to very long steps in the motion of heavy parti-
cles on crystalline surfaces, although the precise form of this

3 Subdiffusion in cells

Researchers have found that the way proteins diffuse across cell
membranes can be described by anomalous diffusion that is slower than the
normal case. (a) This is a simulation of such a random walk, which shows a
2 ms timeframe over which a protein “hops” between 120 nm2

compartments thought to be formed by the cell’s cytoskeleton. (b) The
experimental trajectories of proteins in the plasma membrane of a live cell
(shown in a 0.025 ms timeframe) provide evidence for this trapping nature,
as shown by the different colours. The long residence times in these
compartments is thought to be the origin of the anomalous behaviour.
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4 Superdiffusion in monkey behaviour

The typical trajectories of spider monkeys in the forest of the Mexican
Yucatan peninsula display steps with variable lengths, which correspond to a
diffusive process that is faster than that of normal diffusion. An example of
such a trajectory is shown on the left. A magnified part of it is shown on the
right; this image looks qualitatively similar to the larger-scale trajectory, which
is an important property of Lévy walks. Similar behaviour is found in the
foraging habits of other animals, and could mean that anomalous diffusion
offers a better search strategy than that of normal diffusion.
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diffusion depends on the friction between the surface and the
particle. Last year Jose Maria Sancho of Barcelona Univer-
sity and co-workers, including one of the present authors (IS),
simulated the motion of large molecules and metal clusters
across crystalline surfaces. The result was Lévy-walk behavi-
our that was able to explain the unusual diffusion observed
experimentally in such systems.

Lévy walks have also been seen in the transport of particles
in flows. In a classic experiment performed in 1994, Harry
Swinney’s group at the University of Texas at Austin used
tracer particles to reveal superdiffusion in a rapidly rotating
annular tank. Like the foraging behaviour of the spider mon-
key, this process combines long flights with a broad distri-
bution of trapping times at flow vortices, which has helped
researchers to understand how particles such as pollutants
spread in the ocean and the atmosphere.

Anomalous is normal
Our picture of diffusion 100 years after Einstein published his
groundbreaking papers has clearly become much broader,
quite literally. We now know that the simple picture based on
the diffusion equation is just one of a whole range of possible
behaviours that stem from a random-walk picture. Broad dis-
tributions with no mean values seemed unphysical at the
beginning of the 20th century but have now been found to be
extremely useful tools that are not that exotic after all.

The challenge now is to find the actual reasons for the 
sub- and superdiffusion we observe in particular natural sys-
tems, and how to apply this knowledge so that we can mani-

pulate dynamical processes on various scales. In particular,
we would like to know what the biological implications of an-
omalous diffusion are. But the clear picture that has emerged
over the last few decades is that although these phenomena
are called anomalous, they are abundant in everyday life:
anomalous is normal!
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The shape of space
Recent astronomical measurements suggest that we
could be living in a finite and relatively small universe
with an exotic topology

Silicon limit
The relentless miniaturization of microelectronics cannot
go on forever, forcing the semiconductor industry to
develop new ways to cram transistors onto chips

Astronomer supreme
As well as confirming Einstein’s general theory of
relativity with his expedition to study the 1919 solar
eclipse, Arthur Eddington also thought deeply about
religion and politics
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