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ABSTRACT

Maximum stretching lines in the lower stratosphere around the Antarctic polar vortex are diagnosed using
a method based on finite-size Lyapunov exponents. By analogy with the mathematical results known for
simple dynamical systems, these curves are identified as stable and unstable manifolds of the underlying
hyperbolic structure of the flow. For the first time, the exchange mechanism associated with lobe dynamics
is characterized using atmospheric analyzed winds. The tangling manifolds form a stochastic layer around
the vortex. It is found that fluid is not only expelled from this layer toward the surf zone but also is injected
inward from the surf zone, through a process similar to the turnstile mechanism in lobe dynamics. The vortex
edge, defined as the location of the maximum gradient in potential vorticity or tracer, is found to be the
southward (poleward) envelope of this stochastic layer. Exchanges with the inside of the vortex are therefore
largely decoupled from those, possibly intense, exchanges between the stochastic layer and the surf zone. It
is stressed that using the kinematic boundary defined by the hyperbolic points and the manifolds as an
operational definition of vortex boundary is not only unpractical but also leads to spurious estimates of
exchanges. The authors anticipate that more accurate dynamical systems tools are needed to analyze strato-
spheric transport in terms of lobe dynamics.

1. Introduction

It is now well established that the springtime ozone
depletion in the polar stratosphere depends on the ability
of the polar vortex to preserve the polar air isolated
from mixing with subtropical air (WMO 1999; McIntyre
1995). During winter, sharp gradients on potential vor-
ticity (PV) and concentration of chemical compounds
develop on the edge of the polar vortex as a result of
diabatic descent and weak exchange between the vortex
and the midlatitudes. This observation has led to the
concept of a potential vorticity barrier (McIntyre and
Palmer 1984; Holton et al. 1995) creating an almost
insurmountable obstacle for the penetration of air from
the outside while long and thin filaments of polar air
are frequently ejected (Waugh et al. 1994; Plumb et al.
1994) and irreversibly stirred by Rossby waves in the
surf zone (McIntyre and Palmer 1984; Juckes and
McIntyre 1987) where they eventually mix with mid-
latitude air. Filaments can be seen as sloping sheets of
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PV or tracer, generated by the combined action of hor-
izontal strain and vertical shear. It is also known that
the southern (Antarctic) vortex is generally more stable,
calm, persistent, and isolated than its counterpart in the
Northern Hemisphere (Bowman 1993; Dahlberg and
Bowman 1994). Hence, filamentation events in the
Southern Hemisphere are also generally less intense
than those from the northern vortex (Mariotti et al.
2000).

Over periods of less than about two weeks, diabatic
motion is in general small in the lower stratosphere, so
that the flow is well approximated as layerwise two-
dimensional and incompressible on isentropic surfaces.
Evidence suggests that chaotic advection is relevant to
the stirring of stratospheric air (Pierrehumbert 1991a,b;
Pierce and Fairlie 1993; Pierce et al. 1994; Waugh et
al. 1994; Ngan and Shepherd 1999) down to horizontal
scales of the order of 15–50 km where three-dimensional
motion takes over (Balluch and Haynes 1997; Waugh
et al. 1997) leading eventually to molecular mixing. It
is also clear from the chaotic advection paradigm that
the presence of many scales in the velocity field is not
a prerequisite for complex deformation of material lines
(Hénon 1966; Aref 1984; Ottino 1989).

Over the past two decades, the theory of dynamical
chaos in Hamiltonian systems has found far reaching
applications to chaotic transport and stirring in fluid
mechanics (e.g., Ottino 1989; Zaslavsky 1998; Rom-
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FIG. 1. Sketch of the hyperbolic structure and the turnstile mech-
anism exchanging lobes for a simple idealized flow with two hyper-
bolic points O1 and O2. The Ws and Wu are the stable and the unstable
manifolds associated to O1 and O2, respectively.

Kedar et al. 1990).1 Of central importance is the concept
of local hyperbolicity and recurrence, which can be
translated in common language by saying that stirring
is produced by the repeated action of strain (stretching
and folding) on tracer contours. In a stationary, two-
dimensional (2D) flow, hyperbolic points are saddle-
type stagnation points on the streamfunction map. Con-
vergence of a flow toward a hyperbolic point, forward
and backward in time, occurs along stable and unstable
manifolds, respectively. The same property is also used
to extend the definition of hyperbolic points to space–
time hyperbolic trajectories in a time-dependent system
(Coppel 1978; Malhotra and Wiggins 1999; Haller 2000;
Haller and Yuan 2000). Such trajectories are material
trajectories toward which other trajectories contained on
two particular space–time surfaces are converging, re-
spectively, forward and backward in time. The above
noted surfaces in the time-extended phase space define
the stable and the unstable manifolds of a time-depen-
dent 2D flow.

Hyperbolic trajectories in 2D time-dependent flows
quite often pass close to ‘‘persistent’’ instantaneous sad-
dle points of the streamfunction map, but are different
from them. Pairs of particles, initially straddling the
stable manifold, separate apart along the two branches
of the unstable manifold. This is also true for a sta-
tionary flow with a hyperbolic stagnation point. But the
crucial difference is that, in the time-dependent flow,
stable and unstable manifolds associated to one or sev-
eral hyperbolic trajectories, typically, crosses and gen-
erates a complex tangle. Particle trajectories within such
a tangle of manifolds are chaotic. Thus, stirring in the
time-dependent flow can be very efficient through re-
current action of strain. A blob of fluid, released into
such a chaotically stirring region, is first elongated and
then turned into a complex folded structure as it is cap-
tured within the tangled manifolds. If the fluid can be
assumed incompressible, the blob has to preserve its
area while its perimeter increases exponentially, as do
the length of any material curve. In the well-studied
strictly periodic case, if the manifolds cross once, they
must cross infinitely many times, each crossing being a
past or future image of the first crossing at time instants
that are integer multiples of the period of the Eulerian
flow. Sophisticated perturbation methods can be applied
if, in addition, the system is close to integrable. It is
only recently that the quasiperiodic and the aperiodic
situations (of the Eulerian flow) have been considered
(Beigie et al. 1991, 1994; Malhotra and Wiggins 1999;
Haller and Poje 1998; Haller 2000; Haller and Yuan
2000; Couliette and Wiggins 2000). In the aperiodic
case, which is obviously more relevant from the per-
spective of transport and stirring in geophysical fluid

1 We prefer here, after Eckart (1948), to use the word stirring
instead of mixing, often used in the mathematical literature, to dis-
tinguish the irreversible molecular mixing from the reversible action
of advection.

dynamics, the manifolds may or may not cross or may
only have a finite number of crossings and the hyper-
bolic trajectories may be of finite duration.

When the flow is time periodic with period T, the
stable/unstable manifolds form intersecting curves on
an instantaneous flow map (or Poincaré map) at a con-
stant phase of the flow, and one may consider lobes of
fluid bounded by the segments of stable and unstable
manifolds (see, e.g., Drazin 1992). In Fig. 1, lobe L3

contains at time t the particles that were in lobe L1 at
time t 2 T when the particles in P0 and P at time t were,
respectively, in P and P9. Conversely lobe L2 contains
the particles that were in lobe L4 at time t 2 T. Con-
tinuity implies that fluid on one side of the stable or
instable manifold is mapped onto the same side. Because
the Poincaré map is orientation preserving, the lobe will
get mapped onto another lobe an even number of lobes
ahead. Since the mapping is area preserving, the height
of the lobe increases as it approaches the hyperbolic
point because its base decreases (which follows from
the fact that successive images or preimages of a point
of intersection of stable and unstable manifolds get clos-
er and closer as they approach the hyperbolic point). It
is convenient to use the stable/unstable manifolds to
define qualitatively different flow domains and to char-
acterize exchanges between such domains. In particular,
we can define a domain limited by the two thick lines
in Fig. 1 joining the hyperbolic points to the crossing
of the stable and the unstable manifold in P at a given
time t. This is what we call a kinematic boundary. The
mapping of the lobes L1–L4 described above generates
a turnstile across the kinematic boundary with the fluid
in lobes L1 and L4 changing side over a period T (Mack-
ay et al. 1984; Rom-Kedar et al. 1990).

This approach is well suited to periodic or quasipe-
riodic flows and has been applied in several instances
to simplified models of geophysical fluid dynamics (see,
e.g., Duan and Wiggins 1996; del Castillo-Negrete
1998; Koh and Plumb 2000). However, one might face
several difficulties when extending such ideas developed
for periodic flows to aperiodic flows. A first difficulty
is that the kinematic boundary is not materially pre-
served in time because one piece of manifold must be
cut and another one pasted recurrently. The operation
relies on the arbitrary choice of one of the many inter-
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sections of the stable and unstable manifolds. For a
periodic flow, where it is done once every period, it is
usually easy to find on a given Poincaré map the inter-
section providing the least distorted boundary and to
calculate the exchange by comparing this curve with
itself one period later. For weakly perturbed periodic
flow (so that no topological bifurcations is anticipated),
it is possible to define and compute the areas of turnstile
lobes, on a given Poincaré map, exchanging fluid from
one side of the kinematic boundary to the other (Mackay
et al. 1984; Rom-Kedar et al. 1990; Miller et al. 1997).
This scheme seems unpractical for an aperiodic flow
since the boundary has to be redefined at irregular in-
tervals as the material line of the initial boundary gets
deformed or because the whole hyperbolic structure
changes along with the birth and death of hyperbolic
trajectories, inducing numerous abrupt and spurious ex-
changes between the inside and the outside of the do-
main. Another difficulty, which is also present for pe-
riodic flows, is that owing to the complex tangle of
intersecting manifolds, particles may go back and forth
across the kinematic boundary. If this exchange is strong
enough, steep tracer gradients, which are considered a
main feature of the barrier effect in observations, need
not develop along the kinematic boundary. We will see
below that the high gradients rather tend to develop on
the boundaries of the mixing region spanned by the
tangle of manifolds. Indeed, some of the difficulties dis-
cussed above have been recognized by Koh and Plumb
(2000), who made a previous attempt to apply the lobe
dynamics approach to the mixing properties of the polar
vortex.

Bowman (2000, manuscript submitted to J. Atmos.
Sci., hereafter BJAS) introduced a numerical method to
detect stable and unstable manifolds of hyperbolic
points as maximum stretching lines and applied it to the
Southern Hemisphere stratosphere. He integrated, re-
spectively, backward and forward in time the trajecto-
ries of particle pairs using interpolated analyzed winds
and showed convincingly that a map of the unstable and
the stable manifolds is obtained by plotting the initial
location of particle pairs undergoing the largest sepa-
ration. The rationale is that pairs straddling the stable
manifolds separate along the two branches of the un-
stable manifold as they pass through the hyperbolic tra-
jectory during a forward integration. Similar argument
holds during a backward integration by exchanging the
roles of the stable and the unstable manifolds. Applying
this method to the springtime Antarctic polar vortex,
BJAS points out long-lived hyperbolic structures on the
vortex edge and the layering and tangling of stable and
unstable manifolds around the vortex.

The major goal of this paper is to present some ad-
ditional points to the study of BJAS. First, we present
a closely related numerical method, based on finite-size
Lyapunov exponents, for constructing hyperbolic man-
ifolds, which like in BJAS are seen as maximum strech-
ing lines. Our definition, however, differs from that of

BJAS in a way on which depends the ability to detect
the hyperbolic manifolds (see the appendix). By apply-
ing this method to the springtime Antarctic stratospheric
flow, we demonstrate the clear connection between man-
ifolds and filamentation events from the Antarctic vortex
edge. We also show how the corotating Montgomery
potential can be used to identify the approximate lo-
cations of hyperbolic trajectories and expected regions
of filamentation. We show for the first time a clear in-
stance where lobes and turnstile exchange can be char-
acterized using observed winds. Finally, we discuss the
relation between hyperbolic manifolds and the observed
edge of the polar vortex.

In section 2, we describe the method used to diagnose
the manifolds. Section 3 describes the data, and the
results are presented in section 4. The notion of vortex
edge is discussed in section 5, and section 6 offers fur-
ther discussion and conclusion. The appendix provides
a theoretical justification of the calculations.

2. Manifolds and the finite-size Lyapunov
exponents

The infinitesimal Lagrangian dispersion of tracers is
characterized by the Lyapunov exponent

1 d(x, t, T )
l(x, t) 5 lim lim ln , (2.1)

T d(x, t, 0)T→` d (x,t,0)→0

where d(x, t, T) is the separation at time t 1 T of a
particle pair initially centered in x at time t. Under the
incompressibility assumption, l(x, t) is also the growth
rate of tracer gradient perpendicularly to the direction
of separation (Batchelor 1952). In practice, the Lya-
punov exponent is uniform over any domain that is well
mixed in the long time limit. This does not make it a
very useful measure for space and time-dependent dis-
persion properties.

The finite-time Lyapunov exponent (FTLE), is de-
fined for finite T by removing the first limit in the right-
hand side of (2.1) and taking T of the order of the
integral scale of the flow. The usefulness of this quantity
in identifying qualitatively different mixing regions in
atmospheric flows has been demonstrated in several
studies (Pierrehumbert 1991a; Pierrehumbert and Yang
1993; Pierce and Fairlie 1993; Pierce et al. 1994). The
pair separation method introduced by BJAS approxi-
mates the FTLE when the separating particles stay very
close but differs for finite separation. We show in the
appendix that pairs straddling the hyperbolic manifolds
separate to a finite distance of order the characteristic
scale of the flow faster than all other pairs in their vi-
cinity. It has, however, been pointed out by Haller
(2000), and this is demonstrated in the appendix, that
the distribution of pair separation is typically a ‘‘fuzzy’’
view of the hyperbolic manifolds. Here, we use a closely
related technique, based on finite-size Lyapunov ex-
ponent (FSLE), which results in a less fuzzy distribution
and allows the manifold structures to emerge, more nat-
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urally, as the threshold rate of separation is increased.
FSLE was introduced in the context of predictability in
systems with many characteristic scales by Aurell et al.
(1997) and has been used to study tracer dispersion in
enclosed flow domain (Artale et al. 1997) and buoy
dispersion in semienclosed oceanic basins (Lacorata et
al. 2001).

For a given finite initial separation d(x, t, 0) 5 d0

and a growth factor r, the FSLE is

1
m(x, t, d , r) 5 lnr, (2.2)0 t

where t is such that d(x, t, t) 5 rd0. Hence t is the
required time to increase the separation by a factor r.
When r is of the order of a few units, m describes the
diffusion properties at scale d0 (Artale et al. 1997; Bof-
fetta et al. 2000), which may differ from that at infin-
itesimal scale if the flow is turbulent, in agreement with
Richardson’s theory (Richardson 1926) of relative dis-
persion. When r k 1, the stable and unstable manifolds
are obtained by plotting the extrema of m for, respec-
tively, forward and backward interation in time (see the
appendix). Here the resolution d0 is limited by the need
to grow the separation to synoptic scale within a du-
ration t of the order of the integral scale.

Although the atmospheric flow is much more com-
plicated than the examples used in the appendix, we
assume here that the FSLE method is able to detect the
hyperbolic manifolds of the flow given by the atmo-
spheric dataset described below.

Our implementation of the FSLE method is as fol-
lows. First, we initialize a quasi-uniform distribution of
particles in the flow domain, which is the 500-K isen-
tropic surface covering the entire Southern Hemisphere.
Considering N 5 180 equally spaced parallels from
equator to pole, we put 4N cosf regularly spaced points
on each circle of latitude f, resulting in M 5 82 779
particles to cover the hemisphere with a resolution of
55 km. Then, we consider a slightly perturbed distri-
bution of points about the original reference distribution
that generates a set of M pairs with the reference dis-
tribution. We choose the perturbation d0, for conve-
nience, to be 11 km (0.18) in the meridional direction.
Then, we calculate the evolution of the two distributions
forward and backward in time, and we check the times
tij at which the jth pair separation, measured in great
circle distance, first crosses predefined threshold dis-
tances given by di 5 rid0 where ri is chosen among {5,
10, 20, 50, 75, 100} in our case. Then, we use (2.2) to
define the FSLE m(xj, t, d0, ri) 5 logri/t ij. If a threshold
distance is not reached by the particle in the finite time
of consideration (typically 9 days in our calculations),
FSLE values are zeroed out for such least stretching
points and this threshold. Finally, we map the FSLE
values on to the initial locations {xj} of particles in the
reference distribution. At moderately high threshold dis-
tances (which is typically 50–100 times the initial sep-

aration in this study), we see the emerging structures of
hyperbolic manifolds identified as the maximum stretch-
ing lines.

3. Data and numerical integration

All the calculations included in this study are done
using the wind fields from the spectral T106 meteoro-
logical analyses of the European Centre for Medium-
Range Weather Forecasts (ECMWF) on 15 pressure lev-
els. This is a main novelty of this work to use real
atmospheric data. The required isentropic trajectory and
contour advection calculations are done with modified
versions of the code used in Mariotti et al. (1997). The
available 6-h T106 spectral coefficients of ECMWF
winds are interpolated in time, using cubic splines, to
15-min intervals. The wind is vertically interpolated
from pressure to isentropic levels on the Gaussian col-
location grid using a combination of interpolation meth-
ods (Akima 1991; McAllister and Roulier 1981) in order
to prevent spurious oscillations and is then calculated
on a regular 162 3 256 latitude–longitude spherical
grid. It is further interpolated at the location of the par-
ticle by a bilinear interpolation within the mesh of the
four adjacent points on the grid. Advection of particles
is done in the 3D Cartesian coordinates, followed by a
projection back to the sphere, using a fourth-order Run-
ge–Kutta time scheme with a 30-min time step.

4. Results

a. Manifolds

Figure 2 shows, for 25 October 1996 in the Southern
Hemisphere, the stable and unstable manifolds con-
structed by the FSLE method, superimposed on the PV
map for the same day.2 The hyperbolic manifolds are
localized by pairs that have reached the separation r 5
75 within less than 9 days. Other points are blanked
out. The alignment of the dots suggests, by analogy with
the examples of the appendix, that our algorithm pro-
vides a good approximation of the hyperbolic manifolds.
Both the stable and the unstable manifold exhibit fila-
mentary structures surrounding the vortex and extend-
ing arms within the surf zone. The PV filament that is
ejected from the vortex southwest of Australia follows
one branch of the unstable manifold. On the contrary,
no structure is visible within the PV field in the surf
zone that is associated with the stable manifold. The
manifolds do not self-intersect, as implied by the
uniqueness of solution curves, but the stable and the
unstable manifolds are crossing several times. In par-
ticular, they cross at O1 where the PV filament is emitted,
indicating, according to the terminology of dynamical
systems theory (cf. Haller and Poje 1998; Haller and
Yuan 2000), the presence of a hyperbolic trajectory.

2 Other sequences of October 1996 are presented in BJAS.
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FIG. 2. Contours: potential vorticity map at 1200 UTC 25 Oct 1996
and on the isentropic level u 5 500 K from the T106/L15 spectral
analysis of ECMWF. Color scale is in PV units (PVUs) (1 PVU 5
1026 K kg21 m2 s21). Dots: initial locations of pairs that have grown
their separation by a factor r 5 75 within 9 days; red: backward
integration (unstable manifold); blue: forward integration (stable
manifold).

FIG. 3. Montgomery potential for the same time and the same level
as Fig. 2 after removing a solid body of angular velocity V 5 5 3
1026 s21 around the polar axis. Units are in 104 m2 s22.

Several intersections also occur in the South Atlantic
east of Patagonia where the absence of PV filament does
not allow us to formally identify which one is a hy-
perbolic trajectory. We know, however, from the to-
pology of the flow and the manifolds, that the most
likely location of the hyperbolic trajectory in this map
is O2, as will be confirmed shortly.

The branches of stable and unstable manifolds lying
between O1 and O2 and connecting these two points
delineate a fairly well-defined kinematic boundary. It
is, however, visible that the vortex edge defined by the
maximum PV gradient lies inside this boundary. For the
moment, we denote as the collar the region enclosed
between these two boundaries. See section 5 below.

We also applied Bowman’s method to the same data
and found a good agreement with our results. It appears
that the saturation effects (see example II in the appen-
dix) are not important over 1 to 2 weeks for the polar
vortex.

b. Stagnation points

Since stratospheric flow is largely nondivergent, the
saddles of the streamfunction map are instantaneous
stagnation points of the flow. Under the quasigeostroph-

ic approximation, the streamfunction on isentropic sur-
faces is the Montgomery potential M 5 cpT 1 gz. In
order to account for the rotation of the vortex, a solid
body rotation with angular velocity v is removed from
M. From the visual inspection of vortex rotation during
October 1996, we choose v 5 5 3 1026 s21, corre-
sponding to a period of 14.5 days. Figure 3 shows the
contours of M 2 ½R2Vv cos2w, where V is the earth’s
angular velocity, R is its radius, and w is the latitude,
for the same time and level as Fig. 2. The saddles in
this map can be followed by continuity over (at least)
3 weeks surrounding 25 October 1996 although they are
moving slowly in the rotating frame. It is natural to
expect that persistent stagnation points indicate the pres-
ence of hyperbolic trajectories but the hyperbolic tra-
jectories do not generally coincide with sequences of
stagnation points. While hyperbolic trajectories are in-
dependent of the frame, the stagnation points depend
on the value of v and there is no simple way to define
the appropriate moving frame at a given time, which
indeed may vary from one stagnation point to another.
It is only when the flow pattern is weakly unsteady, as
it is the case here in the rotating frame, that the saddle
points and the hyperbolic trajectories are in close prox-
imity (see also Haller and Poje 1998).

c. Turnstile

Figure 4 shows an enlargement of the manifold struc-
ture in Fig. 2 near the location of the hyperbolic tra-
jectory O2. A smaller value of r has been used here to
gather more points but this at the cost of a fuzzier ap-
pearance of some branches. We have also halved d0 to
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FIG. 4. Enlargement of the manifold structure near the hyperbolic
point O2 in Fig. 2 for r 5 50. In green and orange, locations of the
blobs of points used to sample the two lobes L1 and L2 formed by
the crossing of the stable and the unstable manifold near O2.

0.058 and doubled N to 360. We see that the hyperbolic
manifolds intersect in a complex way generating a tangle
of lobes. In particular, two well-defined lobes L1 and L2

are identified west of the hyperbolic point. Lobe L1 lies
within the collar while L2 lies outside. Other more elon-
gated lobes are visible along the branch covering the
south of Latin America. We know from dynamical sys-
tems theory (see, e.g., Mackay et al. 1984; Rom-Kedar
et al. 1990, for a discussion) that this structure should
be associated with an exchange mechanism. In order to
check this property, a set of trajectories have been cal-
culated backward and forward in time for the initial
conditions shown in Fig. 4 within the two adjacent lobes
L1 and L2.

Figure 5 shows the result of the forward integration.
The orange points are dispersed along the edge of the
vortex while the green points move away, being fully
separated by more than 2000 km from the vortex within
2 days, along the unstable manifold associated to O2.
Figure 6 shows the results of the backward integration
where it appears that the green points are coming from
the edge of the vortex while the orange points were all
at distance 7 days before 25 October along the stable
manifold of O1. To our knowledge, this is the first time
that this turnstile effect based on lobe dynamics has
been demonstrated using atmospheric analyzed winds.3

Notice that the separation of the two clouds of points
does not occur near the same hyperbolic trajectory in

3 One application using oceanographic data has been done by Cou-
liette and Wiggins (2000).

the forward and in the backward direction. This is an
effect of the heteroclinic connection between the two
hyperbolic trajectories, which illustrates also that the
exchange process is highly nonlocal. On 3 November,
part of the orange set is being expelled within a filament.
Its residence time within the collar has not exceeded 10
days.

Henceforth we see that the ejection of filamentary
structure is not one way but is accompanied by the
injection of midlatitude air that gets incorporated within
the collar. By estimating the area of the two lobes de-
lineated in Fig. 4 we could in principle estimate the
ratio of the injected fluid to the ejecta. This cannot be
done accurately here owing to the lack of resolution of
the unstable manifold bounding L2 but, since lobe L1

appears larger than lobe L2, there is more fluid entering
the collar than in the ejecta. If the flow was periodic,
the two should be equal but there is not such a constraint
for aperiodic flows. We do not know, however, from
our purely Lagrangian analysis whether the injected air
will get mixed within the collar air or will be part of a
new ejecta before being totally mixed, as on 3 November
1996. As time proceeds with new events, the collar of
the vortex will contain a sandwich of air of different
origin, which is often reported from airborne sections
(Tuck 1989).

5. The vortex edge

It has already been mentioned in the introduction that
using pieces of stable and unstable manifolds to define
vortex boundary is inconsistent for aperiodic flows. We
see here that the complexity of the exchanges with air
moving rapidly in and out the collar hardly matches
with the one way flux from the vortex to the outside
which is one condition of the observed isolation of the
vortex (Koh and Plumb 2000). In fact, the question is
to properly define the vortex edge.

A practical definition of the edge is the location of
the highest gradient in PV or in chemical compounds.
In a simple model using a PV patch and contour dy-
namics with surgery on the sphere, Koh and Plumb
(2000) show that the vortex edge which is a single vor-
ticity contour does not coincide with the manifolds and
state that ‘‘there are certain parameter range in which
a few events occur in which material is stripped off the
vortex, following which transport across the edge ceas-
es, even though turnstile transport continues indefinitely
within the critical layer.’’

In the stratosphere, the vortex cannot be prescribed
but has to be maintained as a balance between diabatic
and kinematic processes. Since the vortex is not circular,
the location of the edge is best plotted in terms of equiv-
alent latitude fe that is defined from the area A of a
given PV contour as A 5 2pR2(1 2 sinfe). We see (in
Fig. 8) that the PV gradient is sharply peaked near fe

5 658S when we use the PV calculated from the T106
analysis. Using instead a reconstructed PV obtained by
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FIG. 5. Forward temporal evolution of the blobs contained within the two lobes defined in Fig. 4 at 1200 UTC 26, 28 Oct and 1, 3 Nov
1996. Solid lines are PV contours.

contour advection over 8 days (not shown) provides
essentially the same result. This indicates that the max-
imum gradient also tends to follow a PV contour that
is close to a material line as long as the diabatic effects
are neglected.

Setting the edge as the location of the maximum gra-
dient is a purely diagnostic definition calling for a dy-
namical explanation of gradient generation and main-
tenance. The effective diffusivity has been introduced

(Nakamura 1996; Haynes and Shuckburgh 2000) for the
consideration of the evolution of a conservative tracer
c(x, t) governed by two-dimensional advection–diffu-
sion. For each value C of the concentration, the function
A(C, t) is defined as the area of the region for which
the tracer concentration c(x, t) is greater than or equal
to C. By definition A(C, t) is a monotonic function of
C and can be inverted as C(A, t). Nakamura (1996)
showed that the function C(A, t) satisfies the equation
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FIG. 6. Same as Fig. 5 but for backward integration and at 1200 UTC 18, 20, 22, and 24 Oct 1996.

]C(A, t) ] C(A, t)
5 kL , (5.1)e[ ]]t ]A ]A

where the equivalent length of the contour C is de-
fined by

22
]C ]

2 2L (A, t) 5 A (|=c | ), (5.2)e 1 2]A ]A

in which A denotes the integral of a scalar over the area
bounded by the contour C.

The effective length is estimated from a contour ad-
vection of PV over a duration of 10 days ending on 27
October 1996 (cf. Mariotti et al. 1997). As contour ad-
vection generates endless increasing contour length, we
apply contour surgery (Dritschel 1989) with surgery
scale d 5 20 km. It can be demonstrated for advection
diffusion equation that contour length is a lower bound
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FIG. 7. Contour length growth for contour advection with surgery
and a contour corresponding to 225 PVU located within the surf
zone. The curves are ordered from top to bottom in increasing order
of the surgery scale. Values of the surgery scale are d 5 {5, 10, 20,
30, 40} km. The contour length is normalized by the length of the
latitude circle for the corresponding equivalent latitude.

FIG. 8. Dash: PV gradient; unit: PVU per degree. Mixed: equivalent
length normalized by the length of the latitude circle for the corre-
sponding equivalent latitude. Solid: density of the stable manifold
calculated as the number of points shown in Fig. 2 falling within
latitude bands of width 0.098 in equivalent latitude; unit: number of
points per surface area of the sphere with radius unity, divided per
2000. Dotted: same for the unstable manifold.

of the effective length (Haynes and Shuckburgh 2000)
but it has been shown that in practice the two quantities
stay always very close (E. Shuckburgh 2001, personal
communication). Although contour surgery is not ex-
actly a diffusive process, we use the contour lengths
from our calculations as estimates of the effective
lengths with a diffusive scale equal to 20 km. Figure 7
shows that the contour length saturates in about 10 days
for this value of d and a contour within the surf zone.
Figure 8 shows the smoothed equivalent length averaged
over five adjacent days (23rd to 27th) centered on 25
October. The maximum at 508S is associated to the ef-
ficient cross-latitude stirring within the surf zone. The
minimum coincides with the maximum PV gradient. Its
very low value corresponds to a contour length less than
two times that of the equivalent latitude circle, indi-
cating the stability of material trajectories on the edge
of the vortex.

In order to relate these diagnostics to the kinematic
structure of the flow, Fig. 9 shows the distribution of
points retained on the manifolds in Fig. 2 as a function
of the equivalent latitude, and Fig. 8 shows the manifold
density, that is the normalized number of points falling
within a latitude bin.4 This is a measure of space filling
by the resolved manifolds or, in other words, of the
stirring efficiency within a latitude band. It is striking
that, for both the stable and the unstable manifolds,
density maxima are observed within a layer of approx-
imately 108 in latitude between 558 and 658S, north of
the vortex edge. We call this layer, which embeds the

4 In purely periodic flows, the manifolds are dense objects but may
exhibit apparent anomalous scaling over a finite time interval (as
numerically shown by Benettin et al. 1986) and our counting would
scale with the sampling resolution. In aperiodic flows and for finite-
time hyperbolic structure, the manifolds are defined up to some un-
certainty due to incomplete convergence and thus can be considered
as thick structures (Haller 2000; Haller and Yuan 2000). A more
elaborate discussion on this matter is beyond the scope of this study.

previously defined collar, the stochastic layer because
the density of the manifolds and their numerous inter-
sections indicates strong stirring, and probably mixing,
with midlatitude air. The distribution tail in Fig. 8, ex-
tending toward midlatitude, is tracing the dilution of the
manifolds as the distance is increasing from the sto-
chastic layer.

We now see clearly the relation between the hyper-
bolic manifold structure and the vortex edge. The hy-
perbolic points and the manifolds are embedded within
the stochastic layer outside the vortex edge. This latter
is nothing but the southward closure of the stochastic
layer. For a periodic two-dimensional flow such bound-
aries exist as invariant KAM tori and are perfect barriers
for nondiffusive motion. In this case, an initially smooth
tracer gradient across this barrier is soon transformed
into a steep profile because stirring brings fluid with
very different tracer concentration on the stochastic side
of the barrier assuming that the stochastic layer spans
a wide enough range in the space of tracer concentration.
Though this mechanism has not yet been generalized to
aperiodic flows in the literature, our results clearly sug-
gest that it is relevant to the maintenance of the polar
vortex edge.

In order to demonstrate that this property is not ob-
served by chance at a given date, we show in Fig. 10
the same analysis performed at two other dates, which
entirely corroborates our findings.

6. Discussion

We have applied a technique based on FSLE to iden-
tify hyperbolic manifolds in the Antarctic lower strato-
sphere. Hyperbolic manifolds found in this study rough-
ly follow the instantaneous heteroclinic connections de-
ducible from a dominant wavenumber 2 pattern in the
corotating streamfunction. The stable and unstable man-
ifolds span a stochastic layer just outside of the vortex
edge and extend far outside the vortex within the surf
zone. The lobes generated by intersecting hyperbolic
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FIG. 9. Distribution of points belonging to the manifolds in Fig. 2 and value of the FSLE as
a function of equivalent latitude. The threshold is due to the selection of pairs separating by r
5 75 in 9 days or less. Unit: day21.

FIG. 10. Same as Fig. 8, but for 5 and 15 Oct 1996.

manifolds appear to govern the exchange between the
stochastic layer and the surf zone in good agreement
with dynamical systems theory.

We have shown, however, that the instantaneous ki-
nematic boundary formed by pieces of hyperbolic man-
ifolds surrounding the vortex does not match the contour
of maximum PV gradient around the vortex across
which exchanges reach a minimum. Identifying the ki-

nematic boundary as the vortex boundary leads to di-
agnose spurious exchanges between the vortex and the
outside as already found by Koh and Plumb (2000).

The vortex edge appears, in fact, as the interior clo-
sure of the stochastic layer. Consequently, the exchanges
between the vortex and the exterior are not related with
the turnstile effect of lobe dynamics. Under the idealized
approximation of a periodic flow and vanishing diffu-
sion, they may vanish while lobe dynamics still contin-
ues to transfer fluid parcels back and forth between the
stochastic layer and the surf zone. Under aperiodic mo-
tion, the tangle of intersecting manifolds is evolving
and changing structure with time as hyperbolic points
and associated manifolds appear and disappear. There-
fore, the stochastic layer and its interior closure need
to be defined over time intervals whose length is such
that isentropic advection dominates over diffusion and
diabatic processes. From one interval to the next, the
new stable manifolds may penetrate inside the previ-
ously isolated vortex, stripping away some poaches of
vortex air that are incorporated into the stochastic layer.
It is also possible that the new closure lies outside the
old one, resulting in intrusion of subtropical air inside
the vortex where it is eventually mixed by the horizontal
shear and diffusion (Rhines and Young 1983). Many
minor events of this type may produce significant ex-
changes between the vortex and the stochastic layer and
by induction between the vortex and the surf zone. No-
tice that this dynamic was partly uncovered by Sobel
and Plumb (1999), who diagnosed an entrainment layer
surrounding the vortex.

It was recently shown (Plumb et al. 2000) that mixing
across the vortex edge is able to produce separate com-
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pact tracer relations within the vortex that cannot be
attributed to chemistry. The effect is enhanced if mixing
occur between several reservoirs. This is the case if the
turnstile effect is able to bring air from a broad range
of latitudes into contact with the vortex edge.

Contour advection or reverse domain filling tech-
niques do provide a high-resolution instantaneous pic-
ture of the deformed nature of contours at any given
instant. But it is not an easy task, by piecing together
many such pictures, to deduce the (Lagrangian) trans-
port characteristics or boundaries causing exchanges
from one subdomain to another. In contrast, manifold
structures do contain Lagrangian information, and they
allow one to say where do the lobes come from or where
do they go.

Our result and discussion relies on the presence of
persistent hyperbolic trajectories near the edge of the
polar vortex. In the examples shown here, this is due
to a stable wavenumber 2 pattern that dominates over
most of October 1996. The mathematical definition of
hyperbolic trajectories for aperiodic flows (Malhotra and
Wiggins 1999; Haller and Poje 1998; Haller 2000) is
based on the local convergence of trajectories for back-
ward and forward integrations and the stable and un-
stable manifolds can be constructed as the nonlocal ex-
tension of the local eigenspaces. Hyperbolic trajectories
defined over a finite time T are not unique, they all lie
within a tube in the space–time domain with a diameter
of order exp(2sT) where s is the average magnitude of
the strain (Haller 2000). The length of the manifolds is
also finite, of order UT where U is the average mag-
nitude of the velocity. Therefore, it is only when the
hyperbolic trajectories survive for durations of the order
of the integral time of the flow that the hyperbolic man-
ifold structure may develop and span a sufficiently wide
domain for lobe dynamics to be relevant. In this case
the manifolds fill a layer just outside the vortex edge
where they form a complex tangle which can be treated
as a stochastic layer while their structure within the
much wider surf zone remains essentially untangled and
should be treated as long-range ballistic transport.

On the contrary, when hyperbolic trajectories are of
short duration compared to the integral scale, the as-
sociated domain spanned by the manifolds is small, and
stirring processes are local in space and time. As a limit
one should recover the random strain Kraichnan’s model
where the velocity is uncorrelated in time. It is worth
noticing that it has been recently shown (Kraichnan
1994; Chen and Kraichnan 1998; Frisch et al. 1998) that
advection of passive scalars by random flows generi-
cally produces large plateaus of passive scalar concen-
tration separated by sharp transitions as soon as the
velocity contains many scales of motion.

Commonly, natural flows fall between two extrema,
the periodic flow on one side and the fully random flow
on the other side, for which theoretical results are well
established. Accurate diagnostics of the distribution of
hyperbolic trajectories and of their duration is required

to better understand the dynamical processes of mixing.
The FSLE method is probably only a first step and a
simple diagnostic tool that should be supplemented by
more sophisticated approaches such as that described in
Malhotra and Wiggins (1999), Haller (2000), Haller and
Yuan (2000), or Haller (2001).
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APPENDIX

Identification of Hyperbolic Invariant Manifolds
by FSLE

The fundamental concept behind the separation meth-
ods, Bowman’s and ours, is that pairs of particles strad-
dling the stable manifold of a hyperbolic trajectory sep-
arate faster than other pairs in their vicinity under for-
ward temporal evolution. Hence, the stable manifold is
visualized as the local maxima of the pair separation or
of the FSLE. The unstable manifold is obtained in the
same way by backward temporal integration.

Near a simple stagnation point of a stationary two-
dimensional flow, the velocity field is locally described
by (u 5 gx, y 5 2gy) with g . 0. Within the region
where this approximation is valid, all pairs separate in
the x direction at the same exponential rate g without
regard to their initial location. All trajectories have the
same stability properties for this simple linear flow and
this is correctly highlighted by the separation methods.
This is still true for the trajectories of any linear system
(homogeneous or inhomogeneous). This teaches us that
nonlinearity is essential to distinguish hyperbolic tra-
jectories as unique among other trajectories.

As we shall see in the following examples, it is ap-
parent that the two methods work because the expo-
nential separation of pair trajectories is localized near
the hyperbolic trajectories while pairs separate much
slowly, generally linearly with time, in other regions.
For nonintegrable systems, separation is not only di-
rectly associated with the hyperbolic trajectory but with
all intersections of the stable and unstable manifolds.
We believe that these properties are common to most
bounded or periodic incompressible flows.

It is, however, clear that maximum separation lines
may sometimes generate artifacts. A simple parallel flow
with a strong shear maximum at some point of its section
generates there a line of maximum stretching. Over a
short enough time interval and with limited resolution
data it may not be possible to distinguish strong linear
growth from an exponential growth.

a. Example I: Locally hyperbolic flow

We first consider the stationary flow described by the
streamfunction c(x, y) 5 2tanhx tanhy, which is locally
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FIG. A1. (a) Pair separation at time t 5 8 as a function of x0 for
y0 5 2 and d0 5 0.1. (b) FSLE as a function of x0 for y0 5 2, dx0

5 0.1 and a final separation dx 5 4.

hyperbolic near the origin and reduces to a pure shear
flow at distance. The y axis and the x axis are trivially
the stable and the unstable manifolds of the hyperbolic
fixed point at the origin.

For one point initially located at (x0, y0) the required
time to reach abscissa x is

2 21 21 1 c 1 (1 1 c ) cosh2x
t 5 log ,

2 2 2[ ]2(1 1 c ) 21 1 c 1 (1 1 c ) cosh2x0

(A.1)

which can be written as
21 2 c

cosh2x 5 w cosh2x 2 (w 2 1) , (A.2)0 21 1 c

with w 5 exp[2t(1 1 c2)].
We assume that all trajectories start from a given y

5 y0. Hence we need only to consider the dispersion
in the x direction. We also assume that trajectories are
in the vicinity of the hyperbolic invariant manifolds,
that is c 5 2x0 tanhy0 is a small parameter. If we further
assume that the final position x is such that ex k e2x,
(A.2) reduces to

2 2| x | 5 t(1 1 x tanh y ) 1 log | x | 2 log coshy .0 0 0 0

(A.3)

For a pair initially located at {x0 1 ½dx0, x0 2 ½dx0},
with both points on the same side of the y axis, the
separation at time t under the above assumptions is

1 
x 1 dx0 0 2 

2dx 5 2t |x |dx tanh y 1 log . (A.4) 0 0 0 1 x 2 dx0 02 

If x0 k dx0/2, the second term on the right-hand side
can be neglected and we have

2dx 5 2t | x | dx tanh y .0 0 0 (A.5)

If now the pair straddles the y axis and t is large
enough to satisfy (A.3) for both elements of the pair,
the separation at time t is

1 1
2 2 2 2 2dz 5 2t 1 2t x 1 dx tanh y 1 log dx 2 x0 0 0 0 01 2 1 24 4

2 2 log coshy ,0 (A.6)

which is approximated by

1
2 2dx 5 2t 1 log dx 2 x . (A.7)0 01 24

This separation is maximum at x0 5 0. The ratio with
that given in (A.5) is ( | x0 | dx0 tanh2y0)21.

This is illustrated in Fig. A1, which shows the pair
separation and the FSLE for the same set of parameters.

Both methods provide a clear identification of the stable
manifold within a spatial resolution equal to the pair
distance. A sharp drop of the pair separation and the
FSLE occurs near x 5 6d0/2 as one element of the pair
crosses the y axis.

b. Example II: The pendulum flow

We now consider the case of the stationary flow de-
scribed by c 5 ½y2 2 cosx, which is equivalent to the
standard pendulum problem. This is a kinematic model
of a shear layer with an elliptic fixed point at the origin
and hyperbolic points in y 5 0 and x 5 6p. We assume
that the domain is periodic in x with period 2p. Tra-
jectories with 21 , c , 1 are rotating around the
elliptic fixed point while trajectories with c . 1 move
always in the same direction. The separatrix between
these two families of trajectories connects the hyper-
bolic points for c 5 1.

This problem is integrable in terms of elliptic func-
tions and elliptic integrals (Lawden 1989). All trajec-
tories except those on the separatrix are periodic with
a period T 5 4F[p/2, (1 1 c)/2] when 21 , c , 1
and T 5 2[2/(1 1 c)]1/2 F[p/2, 2/(1 1 c)] when 1 ,
c, where F is the incomplete elliptic integral of the first
kind. The period diverges as 2log | 1 2 c | when the
trajectory approaches the separatrix.

If all particles are initially located along the semiaxis
(x0 5 0, y0 . 0), the required time to move to the
abscissa x passing once across the x axis when 21 ,
c , 1 is

1/2
p 1 1 c 2 x 2

t 5 2F , 2 F , , (A.8)1 2 1 2 1 22 2 1 1 c 2 1 1 c

and the required time to move to a location x passing
once across x 5 p when c . 1 is

1/22 p 2 x 2
t 5 2F , 1 F 2 p, .1 2 1 2 1 2[ ]1 1 c 2 1 1 c 2 1 1 c

(A.9)

Near the separatrix, taking c 5 1 2 e with e K 1 and
using asymptotic properties of elliptic integrals, (A.8)
and (A.9) can be both simplified as

32 1 2 tan(x/4)
t 5 log . (A.10)) )[ ]|« | 1 1 tan(x/4)
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FIG. A2. (a) Separation as a function of c at time t 5 15 for pairs
initially located on the y axis and n 5 0.01. (b) Same as (a) but for
FSLE calculated for a final separation | dx | 5 3.

FIG. A3. The unstable manifold of the forced Duffing equation in
a rotating frame plotted at time t 5 0. See the text for the construction
of this figure.

FIG. A4. The FSLE for the forced Duffing equation in a rotated
frame plotted at time t 5 0 for a separation dx 5 1.5 and a backward
integration time T 5 15. Values are as indicated in the caption.

Therefore the separation of a pair {x1, x2} with e1 5 e
1 n/2 and e2 5 e 2 n/2, after passing once by the
hyperbolic point and if n K e, is

n x
dx 5 2 cos , (A.11)

2 2

where dx 5 (x2 2 x1)/2 and x 5 (x2 1 x1)/2. If the two
particles are on both sides of the separatrix, with e1 .
0 . e2, the abcissas after passing once by the hyperbolic
point are given by

1 1 
1 1 tan x 1 2 tan x2 1 4 4  2«22log 5 log . (A.12) 

1 1 «1 21 1 tan x 1 1 tan x2 14 4 

If e2 5 2e1, we have p 2 x1 5 x2 2 p. After passing
once by the hyperbolic point, a straddling pair is sep-
arated by a distance of O(1) when the time is O(2logn)
since there is always one particle of the pair starting at
a distance to the y axis located between n/2 and n. Ac-
cording to (A.11), a nonstraddling pair needs to pass
O(1/n) times by the hyperbolic point during a time of
O(2(loge)/n) to separate over a distance of O(1). Hence,
for n small enough, the separation occurs much faster
for the straddling pair.

This reasoning corroborates the results found for ex-
ample I but neglects the fact that the trajectories are
periodic in time and, therefore, that the separations are
quasiperiodic. If pairs separate by a distance O(1) over
a time T they meet again over a time of a few T. Owing
to this saturation effect, the separation oscillates strong-
ly within the vicinity of the separatrix introducing spu-
rious patterns. Figure A2a shows the separation at time
t 5 15 for pairs initially aligned on the y axis. The
expected maxima on c 5 1 is turned into a minima and
spurious maxima occur on both sides. In a more general
flow with a variety of scales, portions of the hyperbolic
structure are visible at a given time and then blurred
out by saturation effects at later time.

The FSLE, in turn, is not sensitive to saturation effects
because one calculates the shortest time required to
reach a given separation. Figure A2b show the FSLE
calculated using the same data as Figure A2a. The max-
ima is still sharply defined and surrounded by zeros for
points which did not reach the required separation with-
in the observation period.

c. Example III: The forced Duffing equation in a
rotated frame

It is undoubtly a difficult task to extend the above
analytical considerations to a nonintegrable system. Our
demonstration here is purely numerical. We consider the
case of the forced Duffing equation in a rotating frame
already used by Haller (2000). This system is given for
x 5 (x, y) by
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0
x 5 Bx 2 N 1 , (A.13)1 2sinvt

where

sin2vt v 1 cos2vt
B 5 and1 22v 1 cos2vt 2sin2vt

sinvt
3N 5 (x cosvt 2 y sinvt) .1 2cosvt

Here we take v 5 0.9 and we first find the location yc

of the hyperbolic point in the Poincaré map at time t 5
0 on the y axis by integrating forward and backward in
time a small half-circle surrounding the expected hy-
perbolic point as in Miller et al. (1997). Using 27-digit
arithmetic, we obtain yc 5 0.170042170231512. . . with
15-digit accuracy. Then we integrate for 5 periods, using
22-digit arithmetic, a set of points initially regularly
spread along two small segments of length 1028 along
the unstable direction in order to generate the unstable
manifold. At each period, the generated curve is ren-
oded. The results have been checked by dividing the
initial length of the segment by 10 and increasing the
accuracy by 2 digits. Figure A3 shows the unstable man-
ifold within the window [21, 1] 3 [21, 1]. Owing to
the symmetries of the problem, the stable manifold is
obtained by reversing the x axis. The hyperbolic point
is located where the densest bunch of lines crosses the
y axis.

The FSLE algorithm is now applied on a grid of
dimension 101 3 101 over the window [21, 1] 3 [21,
1]. For a given trajectory x(x0) the pair separation is
calculated as

2dx 5 [|x(x 1 «i) 2 x(x 2 «i)|0 0

2 1/21 |x(x 1 «j) 2 x(x 2 «j)| ] ,0 0

where i and j are the unit vectors in the x and y directions
and e 5 0.01. The pair separation is calculated for each
point of the grid over a backward temporal integration
of duration T 5 15. Figure A4 shows the FSLE for a
final separation | dx | 5 1.5. The agreement with Fig.
A3 is striking. It is clear that the simple calculation of
the FSLE is able to capture much of the detail of the
unstable manifold.

These three examples allow us to conjecture that the
maxima of FSLE map the location of the invariant hy-
perbolic manifolds in a large variety of flows. It would
be desirable to pursue the theoretical investigations to
further check this conjecture, in particular in flows with
many scales of motion. We expect in this case that hy-
perbolic structures at various scales will be revealed by
varying the distance over which the FSLE is calculated.

The study of simple diagnostic tools of the hyperbolic
structure should also encompass related methods that
were previously proposed like escape time plots (Rom-
Kedar et al. 1990) or patchiness (Malhotra et al. 1998).
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