0.1. Mixing and Transport in Dynamical Systems1

Mixing is a widely observed phenomenon in nature. Among other areas, it is well
known to occur in fluid mechanics, biology, chemistry, atmospheric science and ce-
lestial mechanics. Because of its complexity, there is no single accepted approach or
definition for this phenomenon. Physically speaking, mixing is a process that tends
to reduce nonuniformities or gradients in composition, properties, or temperature of
material in bulk (definition from Uhl and Gray [9]). Geometrically speaking, mixing
is a reduction of length scales accomplished by stretching and folding of designated
material lines or surfaces. (definition from Ottino [6]). Mathematically speaking,
mixing is a concept from ergodic theory that roughly requires a transformation to
distribute measurable sets of initial conditions fairly evenly in the phase space (de-
finition from de Vries [10]; see more precise definition below). Despite the different
language and tools used in different disciplines, describing, understanding, predicting
and influencing mixing is one of the most important objectives in various fields of
applied science.

The systematic mathematical treatment of mixing is not an old subject and has
been developed mainly over the past four decades. The reason for this is twofold;
first, the underlying physical phenomenon was believed to be hopelessly complicated
for a long time, and hence experimental description and statistical assessment was
the preferred tool over analysis. Second, the modern concepts of dynamical systems,
ergodic theory and probability that can successfully bear on mixing problems were
not available before the 1950’s.

These notes survey the most important tools of applied mathematics that can
be used to study physical mixing problems. The emphasis is on fluid mixing, the
approach is primarily geometric and applied, and the overall level of the text is in-
troductory. The subject itself is far from being well established, as one might guess
from the number of textbooks having “mixing” in their title. It is therefore our hope
that the reader, having seen the basic ideas and available tools, will synthesize the
material and make new contributions to this dynamically emerging and exciting field.

1Notes by G. Haller, Division of Applied Mathematics, Brown University, Providence, RI 02912;
haller@cfm.brown.edu



1. MAIN PHYSICAL IDEAS

1.1. Fluid mixing

The most easily illustrated example of mixing is “mechanical mixing” in fluids, where
an initial, coherent blob of tracers extends over a larger spatial domain. This can be
viewed as the result of three main factors:

1. Adwvection: The tracer set is viewed as continuum of material points which
are transported under the action of the velocity field v(x,t) in the space of x
coordinates.. In this process, the initial tracer set is stretched and folded into
streaks accumulating on each other (see Fig. 1.1). We consider the tracer well-
mixed if the average width of the layers, the striation thickness' d, is small
enough. Needless to say, this is only relevant measure of advective mixing if the
blob remains confined to a bounded region, a requirement that emerges in all
different approaches to mixing.

s

initial blob advection diffusion breakup

Figure 1.1: The three main components of fluid mixing.

The concept of advective mixing relies on the basic continuum hypothesis that
the macroscopic properties of a fluid can also be defined for its arbitrarily small
subsets. This enables one to define velocity, temperature, pressure for fluid
particles, i.e., limits of volumes shrinking to a point, as the limit of averages

1If dp denotes the width of a typical tracer treak, and da is the average length of ambient uid
streaks, then the striation thickness can be defined as ds = % (dr +da).



over molecules contained in a small volume. This fluid particles are then tagged
forever by the initial value of some nondiffusive scalar ¢ whose mixing is of
interest. However, one has to remember that a fluid particle does not consist of
the same set of molecules while it travels in space. As a result, purely advective
mixing of nondiffusive tracers is an idealization.

2. Diffusion: The interchange of molecules between fluid particles can be taken into
account by tracing the evolution of diffusive properties in the fluid. Tracking
the mixing of diffusive quantities, e.g., temperature, one does not tag individual
fluid particles any more with a constant material property. Rather, one follows
the evolution of the concentration c¢(x,t) of an initial blob. If this diffusive scalar

follows Fick’s diffusion law 5

¢ 2
E =DV C,
then a simple dimension analysis suggest that diffusion becomes important on
time scales of the order of d?/D (Here d, is the striation thickness introduced
above and D is the diffusivity coefficient). Below these time scales mixing is
dominated by advection, and diffusion is only seen to create a “fuzzy” interface
between the tracer and the ambient fluid (see Fig. 1.1). For larger time scales,
however, the global characteristics of mixing become uncorrelated with pure
advection. In that case the mixing of ¢ is determined by the advection-diffusion
equation,
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in which the advection and diffusion terms are comparable.

3. Breakup: In our discussion of advection and diffusion, we have assumed that ¢
is passive scalar, i.e., it does not affect the underlying velocity field v(x,t). In
the present context this means that the two fluids have been assumed perfectly
miscible, producing thinner and thinner streaks as time increases. In reality,
there is an end to this process. Below a certain striation thickness, the fluids
become immiscible and the tracer blob breaks up into smaller fragments (see
Fig. 1.1). The resulting new interfaces modify the velocity field due to surface
tension, and hence the observed quantity, ¢, becomes an active scalar (see, e.g.,
Aref and Tryggvason [3]).

We shall primarily be concerned with the advective mixing of passive scalars which
is the most accessible to geometric methods. This implies that our discussion is
primarily aimed at fluids. In contrast, gases typically admit high molecular diffusion
and the dominance of advection is lost in very short times.

1.2. The basic equations of fluid mechanics

Since these notes have an emphasis on mixing in fluid mechanics, it is appropriate
here to recollect the fundamental equations governing the dynamics of fluid. It also



gives us an opportunity to fix the basics of our notation.

1.2.1. The Navier-Stokes equations and a word on notation

The velocity field associated with a moving fluid is of the form
V(Xa t) = (u(x,t),v(x,t), ’LU(X,t)), X = (xa Y, Z)a

where x denotes the location of a material element of the fluid or a fluid particle and t
refers to the time. For two-dimensional flows it will be understood that v and x have
only two components. The first basic set of equations expresses incompressibility, and
is usually referred to as the mass conservation equations:

V-v=0.
The second set of equations is the Nawvier-Stokes (or momentum) equation, given by

g—z-&—vVV: —%Vp+VV2V+f7 (1.1)

where p(x) is the density, p(x,t) is the pressure, f(x,t) is the resultant of the volume
forces per unit mass, and v is the kinematic viscosity. For vanishing viscosity, i.e., for

an inviscid fluid, the Navier-Stokes equation is called Euler’s equation.

While, for the most part, we shall use the usual notational convention for the

operator V = (8%, 8%, %), we will occasionally also use the modern notation from

dynamical systems, where appropriate. For instance, in terms of the accepted notation
in dynamical systems, the Navier-Stokes and the conservation of mass equations could
be rewritten as

1

Div+ (Dxv)v = —=Dyp+vAv +f,
P
divv = 0,

with D referring to differentiation with respect to its subscript, and with the dimension
of the outcome depending on the context. While many results in geometric mixing
theory are easier to drive or explain in this alternative notation, the reader more used
to the classical notation of fluid mechanics may find it confusing initially. For this
reason we enclose a table below that shows the most frequently used operations in
both notations?:

20f course, in the literature one often sees a mixture of the two types of nomenclature.



Equivalent notation

| Fluid mechanics | Dynamical systems
Jacobian Vv Dyv
partial time-derivative % Dyvor v
gradient of scalar Vs Dys or grad s
total (material) derivative | Ls=922+v-Vs | £5=Dys+ Dys-v
divergence V-v divv
Laplacian Viv Av
curl V xv curlv
Jacobian acting on a vector v-Vv (Dxv)v

1.2.2. The vorticity equations

A quantity of central important is the curl of the velocity field, i.e., the wvorticity
field w = V x v. Vorticity characterizes the amount of local rotation in the fluid; in
particular, at any point the vorticity vector is twice the local angular velocity asso-
ciated with the fluid element. We note that locally circular motion of fluid elements
by itself does not create vorticity in the fluid. Nonzero vorticity indicates change in
orientation, i.e., rigid body rotation for fluid elements.

Taking the curl of both sides of the Navier-Stokes equation (1.1), and using V-v =
0 and V - w = 0, one obtains

Ow
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For potential forces V x f =V x VU = 0, the above equation can be rewritten as the
vorticity equation

= v -Vw+ wVv+rVZw+V x f.

D
F‘;J = wVv+rViw, (1.2)

where D/ Dt refers to the material derivative (cf. the table on notation above). For
two-dimensional, inviscid flows, we therefore have

Dw
— =0 1.3
—2 =0, (13)
since w-Vv =(DyV) w, and w lies in the kernel of the operator Dyv. In other words, in
two-dimensional inviscid flows w is conserved along fluid particle motions. A similar
result hold for three-dimensional inviscid flows with circular symmetry.

1.3. Applicability of dynamical systems to fluid mixing

The modern theory of dynamical systems, the study deterministic evolutionary processes,
has a strong geometric flavor. One of its most basic concepts, the idea of a flow, gives
a natural geometric tool to study the evolution of sets of initial conditions in phase
space. For this reason the advective component of laminar mizing, i.e., mixing in



a velocity field v(x,t) with known time-dependence is accessible to dynamical sys-
tems methods, as we shall see below. The structures identified in laminar mixing
also suggest paradigms for turbulent mixing, i.e., mixing induced by a velocity field
with random time dependence. In fact, mixing between isolated coherent structures
and their surroundings in a turbulent flow appear to follow the geometric templates
identified for laminar mixing.

While dynamical systems theory has significantly changed the way mixing is
viewed in applied science, there are still limitations of its applicability to “real-life”
problems.

e Dynamical systems theory assumes that the velocity field v(x,t) is at ones
disposal at arbitrary x and ¢. In reality, v is typically known experimentally
or numerically, i.e., at discrete spatial and temporal locations, and on a finite
time interval. At the same time, the most important concepts in dynamical
systems, such as attractors, invariant manifolds, hyperbolicity, are defined for
infinite time intervals.

e There exists a conceptual difference between the classical theory of dynamical
systems, focused primarily on asymptotic behavior, and engineering applica-
tions, where one typically wants to accelerate mixing on short time scales.

e Inspired by classical mechanics, many dynamical systems results have been de-
veloped for systems that are small perturbations of an integrable one. While
in rigid body dynamics near-integrable systems are often good models for a
physical phenomenon (e.g., planetary motion), recent results indicate that two-
and three-dimensional integrable fluid flows are typically unstable: Their small
perturbations will grow rapidly in time (see, e.g., Lifshitz and Hameiri [5], Fried-
lander and Vishik [4], and the references cited in these papers). This questions
the relevance of dynamical systems results obtained for small, bounded per-
turbations of steady flows. While an abundance of such results exists in the
literature, one has to be aware of their limited validity in time.

In these notes we first survey the most important classical results of dynamical
systems pertaining to mixing. In addition, we discuss recent developments that enable
the theory to bear on real-life problems. These developments include techniques for
aperiodic numerical or experimental velocity fields that are only known for a finite
time, and are far from integrable.



2. GEOMETRIC CONCEPTS

2.1. Phase space and trajectories

Assuming that a velocity field v is given, the equation governing the motion of fluid
particles is
x = v(x,t), (2.1)

where x €X, with X denoting either R? or R3, and # denotes the time. The set X is
typically called the phase space, while its product with the time axis, X x R is called
the extended phase space.

By fundamental results from the theory of ordinary differential equations, any
initial location xg and initial time ¢, the above equation admits a unique solution
x(t; to, Xo) provided that v is a differentiable function of x and a continuous function
of t." While the solution does not automatically exist for all times, we shall assume
that it makes sense to write x(¢; tg, Xg) for any ¢. This is certainly the case if the fluid
motion is known to be bounded a priori (see, e.g., Arnold [2]). By classic results, the
solution x(#; %9, Xg) is also known to be as many times continuously differentiable in
its arguments as the velocity field v.

When visualized in the phase space X, a solution x(t;tp,Xg) appears as a curve
which is parametrized with ¢. This curve, the set of positions occupied by the particle
as time increases, is called an pathline, particle path, or orbit. In general, a pathline
can intersect itself; an intersection simply means that the fluid particle crosses at the
same physical point at different times. = However, pathlines cannot intersect if the
right-hand side of (2.1) has no explicit time dependence, i.e., we have a steady velocity
field v(x). In such a case it is easy to verify that

x(t + T;tp + 7, %X0) = x(¢; 1, X0) (2.2)

for any choice of 7, i.e., the evolution of the solution is independent of the initial
time chosen. As a result, orbits in the phase space cannot intersect, since that would
violate their uniqueness. To eliminate intersections in the unsteady case, one can also
visualize solutions in the extended phase space X xR, in which case the corresponding
curve, shown in Fig. 2.1, is called a trajectory. One can also think of trajectories as
orbits for the extended, time-independent velocity field x = v(x,s), § = 1 on the
phase space X x R.

Mn fact, it is enough if v(x,t) is locally Lipschitz near (xo,to) (see, e.g., Arnold [2]).



Figure 2.1: Pathline in the phase space X, and the corresponding trajectory in the
extended phase space X x R.

Exercise 2.1.1. Verify the identity (2.2).

2.2. Streamlines and streaklines

There are two other techniques to visualize the fluid flow associated with (2.1). First,
for any fixed t one can look for lines that are tangent to the velocity field at every
point. Such curves are called streamlines, and they satisfy the differential equation

d
%X(S): v(x(s),t),

where s is a parameter along individual curves. For steady velocity fields, streamlines
coincide with orbits as they both satisfy the same differential equation. For unsteady
velocity fields, streamlines are time-dependent and generally differ from particle paths
(see Fig. 2.2).

The second technique of flow visualization is the experimentally preferred one,
obtained by releasing dye into the flow at a fixed point. A streakline through xq is
the defined as the curve spanned by all fluid particles released from xg on the time
interval [tg,#1]. Classic examples of streaklines include the line of smoke emanating
from the tip of a cigar or a chimney. Again, for steady velocity fields streaklines
coincide with streamlines and pathlines, but for unsteady flows they are generally all
different objects.

Exercise 2.2.1. Find expressions for the trajectories, streamlines and pathlines associated
with the velocity field v = x 4+ ¢.

2.3. Time-t maps, flows, and Poincaré maps

A convenient way to describe the evolution of initial conditions is through the map

FiOZXO — x(t; to, Xg),



X;

streamlines at t=t,

X(4 1, Xg)

X
Figure 2.2: Streamlines and pathlines for an unsteady flow.

that relates initial particle positions at time g to their later location at time ¢. Clearly,
we have

Fp’ =1,

where I denotes the identity map. The action of F} on an initial “blob” is shown in
Fig. 2.3 in the extended phase space. By the properties of the solution z(t; ¢y, Xq),

X

Figure 2.3: The map Ffo in the extended phase space.

the mapping Fio is well-defined, differentiable, and one-to-one with a differentiable

inverse .
(F,)  =F,

i.e., it is a diffeomorphism. In fact, Fio is a family of mappings, depending smoothly
on the parameters ¢ and tg. By uniqueness of solutions, it also satisfies

t to _ |t
F! oFY = F,



where o denotes the composition of two maps. To simplify notation, we may fix the
initial time t5 = 0, and define the time-t map as

F' = th

which will then describe evolution of particles with respect to the fixed initial time
t=0.

The time-t map has additional properties in the case where the vector field v is
steady. Namely, in such a case we have

Fi+7 =F' o F" (2.3)

for any choice of £ and 7. Together with this last property, F? satisfies the definition of
a flow: a one-parameter family of diffeomorphisms which satisfy the group property
(2.3).

For a flow, we can fix a time T > 0 and track the evolution of particles at time
T,2T,3T,... by applying the iterates of FZ, ie., [F1]* = F2Z [F!]° = F37,. .
Such an iterated map or discrete dynamical system provides us with a stroboscopic
picture of the fluid motion, and, in many cases, simplifies the geometric study of the
motions considerably, since one only has to keep track of a single map F7, often called
the advance-T mapping. This mapping is also well-defined for T-periodic unsteady
velocity fields, i.e., for the case where v(x,t) = v(x,t + T) for all x and ¢t. Intu-
itively, this should be clear since for such periodic velocity fields the evolution rule
determining fluid particle motions repeats itself periodically in time.

Exercise 2.3.1. Verify that x(t + T;to + T, X0) = x(¢; 9, X0) for a T-periodic velocity
field.

For T-periodic velocity fields the advance-T mapping is called the Poincaré map.
Because of periodic ¢t-dependence, the velocity field can be imagined on cylindrical
extended phase space X x S!, where S! denotes a circle of perimeter 27/T. The
geometry of the Poincaré map is then shown in Fig. 2.4. We stress that the motion
of fluid particles in an aperiodic velocity field cannot be tracked via the iteration
of a single Poincaré map since such velocity fields do not give rise to a flow. As a
result, the stroboscopic images of an initial condition xg can only be followed by sub-
sequently applying the members of the infinite map family Fig“'T, Figi%T, Figig’;, o
. These maps are all different, and hence passing to a map description does not bring
simplification in the general aperiodic case.

We must point out that there is considerable confusion in terminology in the
literature, since in fluid mechanics the velocity field itself is often referred to as the
flow. In addition, people often call F* (i.e., F})) a flow for a general unsteady flow,
although in such a case (2.3) is not satisfied. The fluid mechanical notion of the flow
predates its mathematical definition given above, and also agrees with ones intuition
about the meaning of the word. For this reason, we will also use this term quite freely,
pointing out its strict mathematical meaning only when necessary.

10



Figure 2.4: The Poincaré map.

2.4. The Eulerian and Lagrangian points of view

The two main approaches to the description of the velocity field (2.1) are known
as the Eulerian and the Lagrangian point of view. The FEulerian point of view is
concerned with the “global picture”, i.e., with the properties of the velocity field v
as it changes in space and time. At the same time, the Lagrangian approach is to
monitor the evolution of individual particles, i.e., solutions of (2.1). This duality can
be extended to any scalar or vector quantity c¢(x,t) associated with a given physical
problem. Accordingly, the Eulerian time derivative of ¢ is 9¢/0t, while the Lagrangian

or material derivative is defined as
Dc Oc
D Ve

which is the time derivative of ¢(x(t),t). The quantity c(x,t) is called a first integral,
an integral of the motion, or an invariant, if

Dec
— =0 2.4
Do (24)

i.e., ¢ does not change along fluid particle motions.

Example 1. As we recalled in Section 1.2.2, for two-dimensional flows the single not-
identically-zero component of the vorticity is a first integral.

Example 2. For steady, inviscid flows without forcing, the Navier-Stokes equation takes
the form

1
v-Vv =—-Vp.
P

11



Integrating this equation along a particle path x(t), we obtain the well-known Bernoulli
theorem

L

—plv]” +p = const,

2 0

i.e., the Bernoulli sum or dynamic pressure is a first integral.

2.5. Invariant manifolds

For geometric mixing theory, the basic point of view is Lagrangian. The main rea-
son for this is that the advective part of mixing will turn out to be governed by
distinguished invariant surfaces (or manifolds) in the extended phase space X x R.
An invariant manifold for the dynamical system (2.1) is a smooth set of trajectories
in X x R. By definition, a solution starting on an invariant manifold stays on it, as
shown in Fig. 2.5. For a three-dimensional velocity field, invariant manifolds can be
of dimension one (a single trajectory), two (trajectories starting from a curve), three
(trajectories starting from a two-dimensional surface), or four (trajectories starting
from a three-dimensional blob). For two-dimensional velocity fields, only one, two,
and three-dimensional invariant manifolds are possible. The t = const slices of an
invariant manifold are called material lines and material surfaces, respectively, in
fluid mechanics. These are time-dependent lines and surfaces that always consist of
the same fluid particles (see Fig. 2.5).

invariant manifold
ey’

material line

Figure 2.5: An invariant manifold and a material line.

Note that a curve or surface I' of initial conditions always generates an invariant
manifold through the trajectories passing through it. However, most of these mani-
folds have no special significance. Below is an example of invariant manifolds that are
dynamically distinguished: they separate regions of different qualitative behavior.

12



Example 3. Consider the steady velocity field v(x) = AX with the constant matrix

(1),

The phase portrait of the system X = v(x) is shown in Fig. 2.6a, from which one can
reconstruct the geometry in the extended phase space, as shown in Fig. 2.6b. Two invariant
manifolds, M and My, emanating from the line 1 = 22 = 0 at £ = 0, have special
significance. They divide the plane into four regions. The regions differ from each other in
the forward or backward asymptotic behavior of trajectories. Also, the four regions do not
mix with each other: they themselves are three-dimensional invariant manifolds in X x RR.
Note that nearby trajectories are either attracted to, or repelled from, M7 and My,which
will be a characteristic feature of manifolds with dynamical significance for mixing.

NZ

-

(a) (b)

X, X2

Figure 2.6: (a) Saddle point in the phase space. (b) The corresponding invariant
manifolds in the extended phase space.

An important class of invariant manifolds is generated by first integrals. If ¢(x, t)
is a first integral (see (2.5)), then individual trajectories are confined to level sets of
c.

Example 4. As follows from Example 1, for two-dimensional inviscid velocity fields,
fluid particle motions are confined to the level sets of the vorticity w(x,t) in the
extended phase space.

Example 5. As follows from Example 2, for steady, inviscid velocity fields, the tra-
jectories lie in the level sets of the Bernoulli sum %p v|® + p.

By the implicit function theorem of real analysis, such a level set is locally a
smooth surface around a point (xg, #g) if

(Ve 5) 20,
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with V referring to the gradient with respect to x. In three-dimensional vector-
fields the above conditions assures that the level set of the integral is locally a three-
dimensional manifold in X x R. For two-dimensional v the level set is locally two-
dimensional manifold in the extended phase space. Such manifolds, with their di-
mension being one less than that of the ambient space, are called codimension one
manifolds or hypersurfaces.

2.6. Change of volume

Perhaps the simplest question one might ask about the geometry of mixing is the
following: How does, if at all, the measure of a blob Dy of initial conditions change in
time? By measure here we simply mean area if x is two-dimensional, and volume if
x is three-dimensional. The most convenient answer to this question can be given in
terms of the instantaneous rate of change of the volume (or area) V() of the evolving
blob D(t) = F} (D(to)) (see Fig. 2.7).

X

Figure 2.7: The geometry of Liouville’s theorem.

Theorem 6 (Liouville’s Theorem). The rate of change of V obeys the formula

V(to) = V- v(x,to) dx.
Do

Proof: Since the volume of D(t) is given by the formula V(t) = f D) dzx, by the change

of variables formula from multivariable calculus we have V(t) = fVo det [VF%U (X)] dz,
from which we obtain

- d
V(t) = / = [det VFY, ()] do. (2.5)
D
To calculate the integrand, we first Taylor-expand F’ %U (x) around t :

F! (%) = x + vixto)(t — to) + O((t — 10)?).

14



From this we obtain
VF! (x) = I+ Vv(xto)(t — to) + O((t — to)?).
By direct calculation, for any matrix A,
det(I+ A7+ O(13)) =1+ tr A+ O(1?),

and hence

det VF} (x) =14 V- v(x,t0)(t — to) + O((t — t9)?).

Therefore, differentiating of this last equation with respect to , setting ¢ = ¢, and substi-
tuting into (2.5), we obtain the statement of the theorem.[]

Liouville’s theorem identifies the basic action of the flow on volume elements with-
out using actual trajectories of velocity field. Namely, a vector field with negative
divergence compresses volume, while one with positive divergence expands volume.
Typical fluid velocity fields are closer to the case of V - v =0, i.e., they are incom-
pressible.

2.7. Two-dimensional incompressible fluids

2.7.1. Hamiltonian structure: the streamfunction

For a two-dimensional velocity field v(x,t)= (u(z,y,t),v(x,y,t)), the incompressibil-
ity condition V - v =0 takes the form

ou n ov 0
oxr  dy
This implies, that for the three-dimensional velocity field w = (—v,u,0), we have
V x w =0. Then, by a well-known result from potential theory, the irrotational field
w admits a potential function ¢ on a simply connected domain, i.e., w = V. The

last component of this equation gives 9y/9z = 0, ( ¢ does not depend on z), while
the first two components give

b= ey = 2000

In classical mechanics, an equation of this kind is called a one-degree-of-freedom
Hamiltonian system with the Hamiltonian ¢. In fluid mechanics the Hamiltonian
is called the streamfunction.? The name refers to the fact that for any fixed ¢, the

2Tt is equally common in the literature to call —i) the streamfunction, in which case the velocity

field is of the form
_ OY(z,y, 1) j = N(z,y,t)
dy ’ ox ’

T =

15



level curves of i coincide with streamlines. This can be seen by noting that v-Vy = 0,
i.e., the velocity field is everywhere perpendicular to a vector that is normal to the
level curves of .

In dynamical systems theory, it is customary to use a more compact notation for
system (2.6). Let us introduce the skew-symmetric matrix?

0 -1
=13
Using this matrix, we can rewrite (2.6) as
% =JVi(x,t),

which makes it easier to discuss the structure of the velocity field. For instance, the
velocity field is easily seen to be tangent to streamlines since the inner product of the
gradient V¢ and JV must be zero®.

The streamfunction is only unique up to an additive function of time. For steady
velocity fields, one can choose v time-independent, in which case its level curves
coincide with fluid particle trajectories. In other words, v is a first integral in the
steady case.

2.7.2. Basic topology of streamlines

For incompressible, two-dimensional fluids the streamlines are level sets of 1. Their
geometry changes in time, but for any fixed ¢, it must obey some basic properties.

1. Any boundary is necessarily a streamline (see Fig. 2.8a)

2. A streamline can end on a boundary, but not away from the boundary (see Fig.
2.8a).

3. Any streamline on which Vi # 0 is a smooth curve. As a consequence, non-
smooth streamlines, including self-intersecting streamlines, always contain a
stagnation point, i.e., a point where the velocity field vanishes (see Fig. 2.8¢). In
case of no-slip boundary conditions, the whole boundary is filled with stagnation
points.

4. At any stagnation point p the trace of the Jacobian Vv = JV?2 is zero, which
implies that for any ¢, the eigenvalues A; and Ay of JV24(p,t) add up to zero.
As a result, any stagnation point is one of the following four types:

(a) A\ <0< Ay : Hyperbolic stagnation point or saddle. In this case p is at the
intersection of two streamlines, that asymptote to the eigenvectors of the
matrix JV2¢(p,t). As a result, they always intersect at a nonzero angle

3This matrix is usually referred to as the two-dimensional canonical symplectic matrix in the
theory of Hamiltonian systems.
AV - JV = 0 since J is skew-symmetric.

16



Y = const.

(a) (b) (©)

Figure 2.8: Basic streamline topology in two-dimensional incompressible flows.

(b) Ay 2 = tiw : Elliptic stagnation point or center. The point p is surrounded
by closed streamlines with nonvanishing velocity.

(c) A\ = Ay = 0, and JV?¢(p, ) has only one linearly independent eigenvector.
The stagnation point p may or may not be isolated in this case. In the
former case we have a cusp and the latter case involves most frequently a
boundary point on a boundary with no-slip boundary condition.

(d) A1 = Ay =0, and JV2¢(p,t) has two linearly independent eigenvector. In
this case, the velocity field at p has no linear component. The geometry
of streamlines depends on the given problem. One extreme case is where
p is just a point in a flow at rest. A more common case is where p is
a distinguished boundary point on a boundary with no-slip boundary con-
ditions. A distinguished stagnation point, such as a separation point or
reattachment point, is one where a streamline emanating from the interior
connects to the boundary.

The four main types of stagnation points are shown in Fig. 7?. Geometrically,
stagnation points are local extrema of the level surfaces of 1(x,t) for fixed t.
Hyperbolic stagnation points indicate a saddle on a level surface, while elliptic
stagnation points correspond to local maxima or minima (see Fig. 2.10).

. Hyperbolic and elliptic stagnation points are called nondegenerate, as they cor-
respond to det [J V24 (p, t)] = (). Typical stagnation points away from bound-
aries are nondegenerate. By the implicit function theorem, they are structurally
stable, i.e., they may move as 1 changes in time, but will persist for forward
and backward times close enough to t. In contrast, degenerate stagnation points
away from the boundary are not structurally stable: as ¢ is changed, they ei-
ther disappear or turn into one or more nondegenerate stagnation points, which
will in turn be robust in time. The latter case is called a bifurcation of stag-
nation points. The structural stability of nondegenerate stagnation points also
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Figure 2.9: The four basic stagnation points in two dimensional, incompressible ve-
locity fields.

involves another property: they will also persist under small perturbations of
the streamfunction.

6. A stagnation point may be connected to itself through a homoclinic® streamline.
Homoclinic streamlines attached to hyperbolic stagnation points are structurally
stable in the sense described above: they might deform but will persist for nearby
times and for small perturbations of the streamfunction. This readily follows
if one pictures the of the corresponding contour line on a ¢ = const surface,
as shown in Fig. 2.11. Indeed, a nearby, similar contour line will clearly exist
under small smooth deformations of .

7. Streamlines connecting different stagnation points are called heteroclinic. Unlike
homoclinic streamlines, heteroclinic streamlines are not robust with respect to
changes of ¢ in time, or with respect to perturbations of ¢ (x,t), unless some
special symmetry is present. The reason is that at two distinct stagnation points
1 will typically have different value, in which case they cannot be connected by
level curves of 1. In the absence of some special symmetry, such a connection
is seen only at isolated time instances. Figure 2.12 shows the typical fate of an
instantaneous heteroclinic streamline as ¢ is varied.

2.7.3. Flux across a curve

There is another meaning of the streamfunction, related to mixing, which also holds
in the unsteady case. Consider a smooth curve T" joining two points A and B. The

5The term homoclinic is originally due to Poincaré, and was introduced to describe solutions
of differential equations that approach the same equilibrium point in forward and backward time.
Solutions connecting different equilibria are called heteroclinic.
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VY (x,t,)=const.

Figure 2.10: Nondegenerate extrema of a level set of the stream function, and the
corresponding stagnation points.

V(x,5)=c

y(x,t)=c

2

Figure 2.11: Persistence of a homoclinic streamline for times near ;.

instantaneous flux of the velocity field across I is defined as

Flux(t) = /B v(x,t) dn,

A

where n denotes the normal direction to T' . Using (2.6), we can actually compute
this flux by introducing the unit normal N to I' and writing

Flux(t) = /B v(x,t)dn = /B v(x,t) - N(x,t)dx

A A
B B
= / udy — vdx = 8—wdy + 8—wd$
A A 8y Ox

_ /A Vipdx = (B, t) — (A, 1).
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Figure 2.12: Breakdown of a heteroclinic streamline as time is varied.

Thus, we obtain that the flur through a curve I' is equal to the difference in the values
of the streamfunction at the endpoints of I'. This also implies that the flux is the same
for any two oriented curves connecting A to B. That, in turn implies, that the flux
with respect to a closed curve is zero (see Fig. 2.13), which is of course no surprise
by incompressibility.

Figure 2.13: The flux across I is the sam as the flux across IV, which in turn implies
zero flux across I' U —T".

It is important to note that a zero net flux across a curve does not imply that there
is not fluid mixing through the curve. In fact, mixing can be quite intense through I'
and is independent of the value of the net instantaneous flux relative to I.

2.7.4. Flux into a ring

In some cases one is interested in the instantaneous flux of fluid particles relative to a
structure that changed its shape in time. For instance, in geophysical fluid dynamics a
set of closed streamlines is often referred to as a ring (Fig. 2.14). A ring may grow or
shrink in time, i.e., the closed streamline T'; that one selects as a ring boundary at time
t will be time-dependent. Even though the velocity field is always tangent to the ring
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Figure 2.14: A ring with time-dependent boundary T';.

boundary by definition, the flux of particles into a growing ring is clearly positive.5
The flux of trajectories can then be better visualized in the extended phases space,
where the growing ring boundary appears as a two-dimensional cylindrical surface.
Between two fixed times, the flux through this surface must be equal to the difference
of ring areas. As a result, the instantaneous flux is obtained as

dA(t)
Flux(t) = ——
wx(t) = 20
where A(t) denotes the time-dependent area of the ring.”

Example 7. A singular example of a ring is the “corner eddy” indicated in Fig. 2.15.
From an Eulerian point of view, the boundary of the eddy is defined by the streamline

Figure 2.15: Instantaneous streamline configuration for a corner eddy.

6The fluid is incompressible, so the mass of fluid enclosed by a larger ring boundary must be
larger.
"We assumed that the are function is continuously differebtiable in time.
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connecting the stagnation points A and B. If the velocity field is unsteady, the points A and
B will typically move along the walls, and the time dependence of the area of the eddy may
not be known. However, the instantaneous net flux into the eddy must be zero regardless of
its size The reason is that the walls are always streamlines, and hence, by the continuity of
the streamfunction, A and B are contained in the same level set of v, implying

Flux(t) = / v(x,t)dn =y(B,t) — (A, t) = 0.

A
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