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ABSTRACT

Rotationally coherent Lagrangian vortices (RCLVs) are identified from satellite-derived surface geo-

strophic velocities in the eastern Pacific (1808–1308W) using the objective (frame invariant) finite-time

Lagrangian coherent structure detection method of Haller et al. based on the Lagrangian-averaged vorticity

deviation. RCLVs are identified for 30-, 90-, and 270-day intervals over the entire satellite dataset, beginning

in 1993. In contrast to structures identified using Eulerian eddy-tracking methods, the RCLVs maintain

material coherence over the specified time intervals, making them suitable for material transport estimates.

Statistics of RCLVs are compared to statistics of eddies identified from sea surface height (SSH) by Chelton

et al. RCLVs and SSH eddies are found to propagate westward at similar speeds at each latitude, consistent

with the Rossby wave dispersion relation. However, RCLVs are uniformly smaller and shorter-lived than

SSH eddies. A coherent eddy diffusivity is derived to quantify the contribution of RCLVs to meridional

transport; it is found that RCLVs contribute less than 1% to net meridional dispersion and diffusion in this

sector, implying that eddy transport of tracers is mostly due to incoherent motions, such as swirling and

filamentation outside of the eddy cores, rather than coherent meridional translation of eddies themselves.

These findings call into question prior estimates of coherent eddy transport based on Eulerian eddy identi-

fication methods.

1. Introduction

The mesoscale (broadly 10–500km) is the most en-

ergetic scale in the ocean (Wortham and Wunsch 2014).

Phenomenologically, the mesoscale comprises a disor-

derly jumble of waves, vortices, fronts, and filaments,

and the word mesoscale frequently appears together

with the word ‘‘eddy.’’ However, a survey of the litera-

ture reveals a wide range of definitions of ‘‘eddy,’’ which

is used as both an adjective and a noun. The standard

Eulerian statistical perspective defines ‘‘eddy’’ (an ad-

jective) simply as a fluctuation about an Eulerian time

and/or spatial mean state. The coherent structure per-

spective attempts to identify specific, discrete ‘‘eddies’’

(a noun) and track them through the ocean. Here we

seek to clarify the relationship between Eulerian eddy

fluxes and coherent structures. Specifically, we seek to

understand what fraction of the Eulerian eddy flux arises

due to trapping and subsequent translation of water

within material coherent structures.

Eulerian mesoscale eddy fluxes (i.e., statistical corre-

lations between velocity and tracer fluctuations, also

known as Reynolds fluxes) play a significant role in the

transport of heat, salt, momentum, and other tracers

through the ocean. Because climate models generally do

not resolve the mesoscale, the subgrid-scale mesoscale

fluxmust be parameterized based on the large-scale flow

properties, commonly using a diffusive closure (Gent

et al. 1995; Treguier et al. 1997; Visbeck et al. 1997;

Vollmer and Eden 2013; Bachman and Fox-Kemper

2013). This important problem has motivated many

studies of Eulerian eddy fluxes (and associated diffu-

sivities) in observations and eddy-resolvingmodels (e.g.,

Morrow et al. 1992; Stammer 1998; Roemmich and

Gilson 2001; Jayne andMarotzke 2002; Volkov et al. 2008;
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Fox-Kemper et al. 2013; Abernathey and Marshall

2013; Klocker and Abernathey 2014; Abernathey and

Wortham 2015). This body of work has been largely un-

concerned with coherent structures, although Abernathey

and Wortham (2015) did note the overlap between eddy

flux spectral characteristics and the lengths scales and

propagation speeds of coherent mesoscale eddies.

Many different methods have been used to identify

coherent structures (CSs). These methods fall into two

general categories: Eulerian1 (based on instantaneous

features of the velocity field) and Lagrangian (based

on time-dependent water parcel trajectories). Early

Eulerian approaches used contours of theOkubo–Weiss

(OW) parameter (Okubo 1970; Weiss 1991) to identify

the boundaries of eddies (Isern-Fontanet et al. 2003,

2004). More recently, closed contours of the sea

surface height (SSH) anomaly field have been employed

(Chelton et al. 2011, hereinafter CSS11). The eddy

census of CSS11 has been widely adopted by the com-

munity, likely due to its open publication on the web.

Other recent Eulerian CS eddy census products include

Dong et al. (2011) and Faghmous et al. (2015). While

these methods differ in certain details, they are all fun-

damentally similar in that they use the instantaneous

velocity field (or streamfunction) to identify eddies at

each snapshot in time, and then track these features

from one snapshot to the next.

This Eulerian approach to eddy tracking, however,

suffers from several shortcomings [seeHaller (2015) and

Peacock et al. (2015) for discussions]. First, the struc-

tures identified in this way are not material; the Eulerian

tracking algorithms associate spatially proximal features

identified at neighboring time snapshots with a single

object, but these features do not necessarily represent

the same fluid. Second, the structures are not objective;

different observers in frames translating and rotating

relative to each other will identify different flow regions

as coherent. This creates a conceptual problem because

material transport by eddies should be independent of

the observer, as required by basic axioms of continuum

mechanics. A related issue is that OW and SSH eddies

depend on arbitrary parameters or thresholds, which are

routinely tuned to match expectations derived from the

same methods. Finally, and most importantly from the

perspective of transport, OW and SSHA eddies are

materially incoherent to a significant extent; under La-

grangian advection, the supposed eddy boundaries be-

come rapidly strained and filamented, implying that

water leaks significantly across the structure boundaries

inferred by the OW and SSH criteria (Beron-Vera et al.

2013; Haller and Beron-Vera 2013).

Contradictions may therefore arise when such Eulerian

eddy-tracking methods are applied to infer material

transport, as in two recent studies. Dong et al. (2014) used

Eulerian eddy tracking, together with vertical structure

functions of potential temperature and salinity derived

statistically from Argo profiles, to estimate the heat and

salt content materially trapped inside the eddies. By

assuming no exchange with the surrounding environ-

ment for the duration of the eddy lifetime, they esti-

mated the meridional fluxes of heat and salt on a global

scale, reaching the conclusion that ‘‘eddy heat and salt

transports are mainly due to individual eddy move-

ments.’’ Zhang et al. (2014) used a similar method to

estimate the eddy mass flux. They employed tracked

Eulerian eddies together with vertical structure func-

tions to estimate the potential vorticity field surrounding

the eddies. The outermost closed potential vorticity

contour was assumed to constitute an impermeable

material boundary for the duration of each tracked

eddy, and the eddy motion was thereby translated to a

mass flux. This method estimated the westward zonal

eddy mass flux in the subtropical gyre regions to be

approximately 30 Sv (1 Sv [ 106m3 s21), a surprisingly

large number that is comparable to the gyre transport

itself. These approaches might seem quite appealing

because they reduce the expensive problem of observing

the turbulent ocean at high spatial and temporal fre-

quency to the more tractable one of identifying and

tracking a finite number of coherent eddies. However,

the work of Beron-Vera et al. (2013), Haller and Beron-

Vera (2013), and Wang et al. (2015) provides evidence

that these methods strongly overestimate the degree of

material coherence in mesoscale eddies, calling into

question the findings.

The goal of the present study is to make a more accu-

rate estimate of material transport due to oceanmesoscale

eddies using an objective (i.e., frame independent)

Lagrangian eddy detection method applied to surface

velocity fields derived from satellite altimetry. We focus

on a sector in the east Pacific that has been the setting

for a number of studies on Eulerian eddy fluxes

(Roemmich and Gilson 2001; Abernathey and Marshall

2013; Klocker and Abernathey 2014; Abernathey and

Wortham 2015). We apply the recently introduced ro-

tationally coherent Lagrangian vortex (RCLV) meth-

odology based on a dynamic polar decomposition of the

deformation gradient developed by (Haller 2016). The

key difference between our approach and Eulerian eddy

detection methods is that, by numerically advecting a

dense mesh of millions of Lagrangian particles, we

demonstrate (rather than assume) that our identified

1An Eulerian method for identifying coherent structures should

not be confused with the Eulerian eddy flux.
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vortices actually remain materially coherent throughout a

finite time interval, as guaranteed by their mathematical

construction. Furthermore, the full Lagrangian trajectories

also allow us to estimate a more broadly defined material

eddy flux due to the entire range of turbulent motions in

the flow. By comparing this full flux with the transport due

to the coherent vortices, we obtain an estimate of the rel-

ative importance of material transport by coherent struc-

tures to the full turbulent transport. We consider the

two-dimensional surface geostrophic flow as observed by

satellite altimetry, as this is the only large-scale velocity

observation that resolves mesoscale structures, which

limits our ability to probe subsurface transport. Our

definition of transport by coherent vortices is strict: we

only count water that is trapped and translated within

the coherent eddy core and purposely exclude far-field

effects such as stirring on the vortex periphery. Under

this strict definition, we show that coherent transport

accounts for only a small fraction of the total meridional

eddy flux. Because of the possibility of the existence of a

semicoherent periphery surrounding the coherent eddy

core (Y. Wang et al. 2016), our estimates here might be

considered a lower bound on this fraction.

The paper is organized as follows. In section 2, we

review the RCLV definition and the concepts of

Lagrangian dispersion and diffusivity. In section 3, we

describe the satellite data and the numerical approach

to Lagrangian particle advection. Section 4 provides

some case studies of Lagrangian vortices identified by

our algorithm and summarizes their statistics. In sec-

tion 5, we present the eddy diffusivity and the co-

herent eddy diffusivity. Section 6 contains discussion

and conclusions.

2. Theory of Lagrangian transport and rotationally
coherent vortices

a. Eulerian eddy flux and Lagrangian diffusivity

Consider a conserved two-dimensional scalar c(x, y, t)

advected by a two-dimensional velocity field u(x, y, t)

where u 5 (u, y). The time- and zonal-mean meridional

flux of the scalar across a latitude circle in a sector of the

ocean is given by yc. The overbar represents the time

and zonal average:

yc5 (L
x
T)21

ðx01Lx

x0

ðt01T

t0

yc dx , (1)

where Lx is the zonal extent of the sector and T is the

averaging time period. We observe that yc, as any scalar

flux across a designated surface, is objective, that is, in-

dependent of the observer (see appendix for proof of

objectivity). To capture the contribution of eddies to the

meanmeridional flux accurately, one therefore needs an

observer-independent eddy-identification scheme.

The Lagrangian dynamics of the flow are described by

the kinematic equation

›X

›t
5 u , (2)

where X 5 (X, Y) is the position vector. We denote the

initial fluid parcel positions at t 5 0 as x0 5 (x0, y0). We

can use this initial position to label the fluid parcels at a

later time: X 5 X(x0, y0, t). For homogeneous, statisti-

cally stationary turbulent flow, Taylor (1921) identified

the relationship between the Eulerian mean flux yc and

the Lagrangian statistics as

yc52K
abs

›c

›y
(3)

with

K
abs

5
1

2

›

›t
(DY)2 . (4)

where DY5Y2 y0 is the displacement of a water parcel

from its initial position; (DY)2 represents the mean

squared displacement, that is, absolute dispersion; and

K, the growth rate of this absolute dispersion, represents

the single particle or absolute diffusivity (Taylor 1921;

LaCasce 2008). Regardless of whether the flow statistics

are truly diffusive or not, (3) and (4) represent the ki-

nematic relationship between Lagrangian displacement

and Eulerian flux. The diffusivity Kabs expresses the

fundamental transport properties of the flow, in-

dependently of the background gradient ›c/›y. As

shown in the appendix, Kabs is objective, that is, it is

invariant under a change in observer reference frame

(including Galilean transforms), provided that the dis-

tance between the particle and its initial position is

measured in the observer’s current reference frame.

Subtle differences in definition might explain why pre-

vious authors have claimed that Kabs is not Galilean

invariant (LaCasce 2008). The definition used here is the

one most relevant for material transport.

From an Eulerian perspective, the eddy component of

the flux is readily identified via a standard Eulerian

Reynolds decomposition: yc5 y c1 y0c0, where the

prime indicates the instantaneous deviation from the

Eulerian mean. The second term y0c0 is commonly

termed the eddy flux. Taylor envisioned a homoge-

neous, isotropic turbulent flow with no mean compo-

nent, that is, y5 0, such that yc5 y0c0. In contrast, most

geophysical flows have mean flows, and the mean
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advection can influence Kabs. One way to remove the

effects of the mean flow in the Lagrangian frame is to

instead focus on the relative diffusivity (Batchelor 1952;

Bennett 1984):

K
rel
5

1

2

›

›t
(Y2Y)

2
, (5)

which represents the growth rate of the second moment

of the ensemble displacement. In this case, the ensemble

consists of all water parcels originating at a particular

latitude. [Relative diffusivity can equivalently be cal-

culated from pair separation statistics (LaCasce 2008).

Also note thatKrel is unchanged if DY is used in place of

Y, since y0 5 y0.] A detailed discussion of the relation-

ship amongKabs, Krel, and the mixing of a passive tracer

is given by Klocker et al. (2012). For the purposes of this

study, we shall take Krel to be the most relevant di-

agnostic of net meridional eddy transport in our sector.

Our goal is to identify the contribution of coherent

Lagrangian eddies toKrel. LikeKabs,Krel is an objective

quantity (see appendix). As noted above, a self-consistent

and accurate assessment of the coherent-eddy component

Krel should also be based on objective eddy identification

schemes, such as the one described next.

b. Rotationally coherent Lagrangian vortices

To partition the transport defined in (4) and (5) into a

contribution from coherent Lagrangian eddies, the do-

main must be divided into regions inside and outside a

suitably defined eddy boundary. For the boundary to be

relevant for transport it must be a material line (in 2D)

or surface (in 3D) derived from an objective (frame in-

variant) method. The identification of such boundaries

in unsteady turbulent flows is the subject of much recent

work from the field of dynamical systems, and several

possible criteria exist [for a review, see Haller (2015)].

We emphasize again that the Eulerian eddy identifica-

tion methods of CSS11 are not objective and depend on

choices of thresholds and parameters. Consequently,

they yield boundaries that, when advected as material

lines, rapidly deform and disperse away from the sup-

posed eddy center (Beron-Vera et al. 2013; Haller and

Beron-Vera 2013).

One sensible criterion is to define eddy boundaries as

closed material curves that experience minimal tan-

gential stretching over a finite-time interval, so-called

elliptic Lagrangian coherent structures (LCSs; Haller

and Beron-Vera 2012). A more general approach lo-

cates material eddy boundaries that exhibit uniform

stretching and hence show no filamentation (Haller and

Beron-Vera 2013). The elliptic LCS detection methods

have been applied to study Agulhas rings (Beron-Vera

et al. 2013; Haller and Beron-Vera 2013; Wang et al.

2015). The underlying variational principles guarantee

prefect lack of filamentation for the boundaries and

hence tend to be stringent and computationally

complex. [Recent work by Serra and Haller (2017)

has, however, simplified the necessary computations

considerably.]

Here we opt for a fluid-mechanically more intuitive

approach based on vorticity. Building on the initial ideas

of Farazmand and Haller (2016), Haller et al. (2016)

showed that RCLV boundaries can be identified as the

outermost closed contours of the Lagrangian-averaged

vorticity deviation (LAVD, defined below). The physi-

cal essence of an RCLV is the notion that all fluid par-

cels along a coherent material vortex boundary should

rotate at the same average angular velocity over a finite-

time interval, in analogy to solid body rotation. The

LAVD technique enables the identification of such co-

herently rotating structure boundaries from Lagrangian

trajectory data. Haller et al. (2016) further showed that

the RCLVs identified in this way coincided with struc-

tures identified by the earlier elliptic LCS methods, al-

though the RCLV boundaries were larger.2 Given the

relative computational simplicity and the familiarity of

vorticity to most physical oceanographers, we adopt this

approach as our eddy identification technique. Here we

briefly review the practical elements of the theory and

refer the reader to Haller et al. (2016) for a deeper

mathematical treatment.

The instantaneous relative vorticity in two di-

mensions is

z(x, y, t)52
›u

›y
1

›y

›x
. (6)

The vorticity deviation is obtained by subtracting the

spatial average, that is, z0(x, y, t)5 z2 hzi(t). (Angle

brackets indicate an average over the whole computa-

tional domain.) Subtracting the mean vorticity field re-

moves any solid body rotation of the entire domain and

is required to maintain the frame invariance of the

method (Haller et al. 2016). In practice, however, when

the domain is the entire ocean, the mean vorticity is

rather negligible. A Lagrangian-averaged quantity is the

instantaneous quantity averaged along the evolving flow

trajectory (as opposed to an Eulerian average at a fixed

location). The LAVD is hence given by

2 These larger boundaries are no longer guaranteed to be

completely free from filamentation under material advection.

However, by construction, any filamentation they might exhibit is

tangential to the boundary, and hence the stretched boundary

keeps traveling with the eddy without global breakaway.
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LAVD
t1
t0
(x

0
, y

0
)5

1

t
1
2 t

0

ðt1
t0

jz0[X(x
0
, y

0
, t),Y(x

0
, y

0
, t), t]j dt . (7)

The LAVD is a function of position (x0, y0) but also

depends on the time interval t0, t1. RCLV boundaries at

time t0 are then defined as the outermost convex and

closed LAVD curves surrounding local maxima of the

LAVD field. The maxima themselves are the Lagrangian

vortex centers, which can be proven to be attractors or

repellors for floating debris, depending on the polarity of

the eddy (cf. Haller et al. 2016). Details of the numerical

computation of RCLVs are given in section 4.

Once the RCLVs are identified for a specific time

interval, it is straightforward to compute the associated

contribution to dispersion and diffusivity. We define a

masking function mt1
t0 to be 1 inside each RCLV

boundary and 0 outside. The coherent relative diffusivity

is then defined as

Kcs
rel 5

1

2

›

›t
m

t1
t0
(Y2Y)

2
. (8)

The mt1
t0 factor masks all regions that are not within a

coherent structure, effectively assuming such regions

move only with the mean flow and induce no relative

dispersion. [Note that, regardless of the masking factor,

Y in (8) and (5) is the same; the displacement is always

relative to themean displacement of the full ensemble of

particles deployed at latitude y0.] By comparing Kcs
rel

withKrel, we thereby quantify the fraction of meridional

eddy transport due to coherent structures. If it is true

that eddy transport is ‘‘mainly due to individual eddy

movements’’ (Dong et al. 2014), then Kcs
rel ’ Krel. In

contrast, if most of the transport is due to incoherent

motion outside of the structures, then Kcs
rel � Krel. Note

that Kcs
rel includes two distinct modes of dispersion: co-

herent meridional motion of the whole eddy and rota-

tion of the water within the eddy. Because of the strict

separation of the domain into inside and outside, we

exclude any possible far-field effects of the eddies on

transport, including partial entrainment of water into

the semicoherent eddy periphery [a scenario described

by Y. Wang et al. (2016)] as well as the more general

long-range influence of vorticity anomalies on the

global flow field (as suggested by the potential vorticity

inversion principle). Our aim in (8) is not to account

for every possible way in which coherent eddies in-

fluence transport but simply to measure the fraction of

transport due to trapping and translation of the co-

herent core. Consequently, (8) may represent a lower

bound on the overall contribution of such structures to

transport.

The coherent diffusivityKcs
rel defined in (8) can only be

calculated for material eddies, such as those identified

from objective LCS methods. For nonmaterial eddies,

such as those identified from tracked Eulerian SSH

contours (CSS11) or potential-vorticity contours (Zhang

et al. 2014), the position of the tracked eddy itself gen-

erally diverges from the Lagrangian trajectories of par-

ticles contained within the boundary at t0. This renders

(8) ambiguous: should one follow the actual particles or

the tracked eddy boundaries? For this reason, we do not

attempt to provide an estimate ofKcs
rel for Eulerian eddy

datasets. We also note that the dispersion statistics of

Eulerian vortices have already been studied in some

detail (Hansen et al. 1998; LaCasce 2008) and may be

related to Kcs
rel.

3. Satellite data and particle advection

To identify RCLVs and compute relative dispersion,

we use satellite-derived surface geostrophic velocities to

numerically advect virtual Lagrangian particles. In this

study, we consider only transport by the two-dimensional

near-surface geostrophic velocity. This is, of course, an

incomplete representation of the full flow field, but the

geostrophic flow is by far the dominant component at

the scales of interest here. It was shown by Rypina et al.

(2012) that Ekman currents, the main large-scale ageo-

strophic motion in the open ocean, make a negligible

contribution to mesoscale dispersion compared to the

geostrophic flow. In the conclusions, we speculate about

the possible role of ageostrophic and/or unresolved

motion for the detection of RCLVs.

a. AVISO surface geostrophic velocities

The surface geostrophic velocity field yg is related to

the SSH relative to the geoid h via

k̂3y
g
52

g

f
=h , (9)

where f is the Coriolis parameter, g is the gravitational

acceleration, and k̂ is the unit vector pointing out of the

sea surface. Satellite altimetry measures the SSH h.

We employ precomputed gridded geostrophic velocities

from AVISO. The altimeter products were produced by

SSALTO/DevelopingUse ofAltimetry for Climate Studies

(DUACS) and distributed by AVISO, with support from

CNES (http://www.aviso.altimetry.fr/duacs/). The AVISO

gridding process uses objective interpolation (Barnes 1964;
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their terminology is unrelated to the objectivity of coherent

structures) tomap along-track satellite radar altimetry from

various platforms onto a 1/48 latitude–longitude grid (Ducet

et al. 2000). In addition to providing precomputed geo-

strophic velocities, this product also applies a higher-order

vorticity balance to estimate velocities in the equatorial

region (within 658) where geostrophy does not hold

(Lagerloef et al. 1999). While this provides a complete

global surface velocity field, the results in this equatorial

band are less reliable. The data were downloaded in 2015

and reflect the most recent AVISO algorithm and pro-

cessing available at that time. We use the delayed-time,

reference, all-satellite merged product. We consider the

time period from 1 January 1993 to 17 October 2014.

An additional processing step was undertaken: we

applied a small correction to the AVISO geostrophic ve-

locity field to remove the divergence due to themeridional

variation of f and to enforce no-normal-flow boundary

conditions at the coastlines. The resulting velocity

field, henceforth denoted simply y, is an exactly two-

dimensional nondivergent flow. The correction pro-

cedure is described in detail by Abernathey and

Marshall (2013), who demonstrate that the corrections

are small in magnitude compared to the original geo-

strophic velocity. We compared corrected versus

noncorrected LAVD fields and found a negligible im-

pact on the identification of RCLVs in the open ocean.

b. Advection of Lagrangian particles

As noted by Haller et al. (2016), the LAVD field may

contain structure on smaller scales than the scales of the

velocity field itself. This is related to the fact that a rela-

tively coarse chaotic advection field can produce very fine

structure in passive tracers (Pierrehumbert 1991). Prac-

tically, it means that an extremely dense mesh of La-

grangian particles is required to properly resolve the

LAVD. This leads to a significant computational burden

if, as here, one wishes to study a large geographical area

and temporal extent. The AVISO product is gridded at

1/48 resolution and resolves SSH anomalies of roughly

50km and larger (CSS11). However, sensitivity tests in-

dicated that an initial particle spacing of 1/328 is necessary
to achieve sufficient accuracy in the LAVD field and

identification of RCLVs. The mesh of initial positions is

located between 1808 and 1308W longitude and 808S and

808N latitude, a total of 8 192000 points. (In retrospect,

many of the high-latitude particles were not useful, since

they lie within land points or within the marginal sea ice

zone where AVISO velocities are not available. We re-

strict the analysis to the latitude range 658S–608N.)

The initial particle positions (at time t0) determine the

discrete coordinates of the LAVD field. These initial

positions can therefore be chosen to facilitate the

identification of RCLVs. In particular, the first step in

the algorithm requires the maxima of LAVD to be

identified (Haller et al. 2016). The most obvious initial

deployment, a rectangular grid, is actually not ideal for

the robust identification of maxima because the re-

lationship between diagonally connected points is am-

biguous; a better choice is a hexagonal grid, in which

each point has six unambiguous neighbors (Kuijper

2004). To transform a rectangular mesh to a hexagonal

one, every other row is offset by Dx/2, where Dx5 1/328
is the spacing in the zonal direction.

We seek to identify RCLVs with lifetimes of 30, 90,

and 270 days. Accordingly, we segment the time domain

into nonoverlapping N-day intervals (265 intervals for

30-day periods, 88 intervals for 90-day periods, and 29

intervals for 270-day periods).While the specific interval

bounds are arbitrary, RCLVs are structurally stable by

construction, that is, small changes in the extraction in-

terval will have a small effect. If we identify an RCLV

over a given time interval, this structure will generally

be a subset of a larger RCLV that we would obtain in the

same location for shorter time intervals. Thus, we would

not lose any of the RCLVs if we picked shorter time

intervals (unless we pick such short intervals that

Lagrangian coherence can no longer be established

from the available data). Rotational coherence is a

finite-time notion, and hence the same water mass may

become incoherent over longer times. It is still possible

that we miss some short-lived RCLVs over longer time

intervals.

The Lagrangian trajectories are determined by solv-

ing the equation dX/dt 5 y numerically using the

MITgcm (Adcroft et al. 2018), an ocean general circu-

lation model. Although this model is primarily designed

for prognostic ocean simulations, it has several features

that make it an attractive choice for computationally

demanding Lagrangian simulations. First, it can operate

in offline mode, in which velocity fields are read from

files. Second, it supports Lagrangian particle tracking

(via the flt package) and implements fourth-order

Runge–Kutta integration. Finally, MITgcm can run ef-

ficiently in a massively parallel configuration on many

nodes of a high-performance computing cluster, pro-

viding the necessary memory and CPU performance to

enable large Lagrangian ensembles.

An MITgcm run was performed for each of the tem-

poral segments described above, and particle data were

output daily. (Relative vorticity was calculated on the

Eulerian grid and interpolated bilinearly to particle

positions.) The total data volume of output generated

for the study was over 2 TB. The identification of

RCLVs from these data is described in the following

section.
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4. Identification and statistics of Lagrangian
vortices

a. Algorithm

The algorithm employed for identifying RCLVs fol-

lows Haller et al. (2016), with some slight modifications

for computational efficiency.

1) At time t0, initialize a hexagonal mesh of Lagrangian

particles over the domain.

2) Advect particles forward until time t0 1 T, where T

is the desired vortex lifetime (here 30, 90, and

270 days). Output particle position and relative vor-

ticity every day.

3) Average the vorticity deviation (absolute value of

relative vorticity minus global mean vorticity) over

particle trajectories and map back to initial positions

x0. The resulting field is the LAVD.

4) Identify maxima of LAVD. (Maxima are unambig-

uously identified on a hexagonal mesh.) These are

the RCLV centers.

5) Find the largest closed and convex curves around

LAVD maxima. These are the RCLV boundaries.

The regions are grown iteratively by adding points;

iteration stops when the next point to be added lies

within the convex hull of the current region. This

method admits a small convexity deficiency (usually

of order 0.01) in the curves to account for the discrete

nature of the numerically computed LAVD field.

6) Filter the RCLVs by discarding features with area

below a minimal admissible size (here chosen to be

the area of a circle with a diameter of 30 km).

This algorithm, as well as other general-purpose data

processing routines for MITgcm particle trajectories,

was implemented in a Python package called floater

(available at https://github.com/rabernat/floater). An

example of the LAVD field, together with the positions

of identified RCLVs, is shown in Fig. 1.

b. Example vortices

The initial and final locations of two randomly se-

lected 90-day RCLVs are shown in Fig. 2, superimposed

on the SSH anomaly field. One is located in the North

Pacific subtropical gyre, while the other is in the Ant-

arctic Circumpolar Current. These vortices clearly re-

main materially coherent over the 90-day lifetime,

consistent with the results of (Haller et al. 2016). We

examined hundreds of examples and found similar be-

havior. This should be contrasted to the behavior of SSH

eddies, whose boundaries are rapidly deformed under

advection by the surface geostrophic flow (Beron-Vera

et al. 2013).

One noteworthy feature of these example RCLVs is

that they do appear embedded within SSH anomalies.

However, the coherent core is much smaller than the

SSH anomaly. Here we do not attempt to comprehen-

sively compare the RCLVs with tracked SSH eddies

on a feature-by-feature basis, but a statistical compari-

son (next subsection) suggests that this difference in size

holds in general.

c. Vortex statistics

In this section, we calculate some statistics of all the

identified RCLVs and compare them to the statistics of

the tracked SSH eddies of CSS11, whose data are publicly

available (http://wombat.coas.oregonstate.edu/eddies/).

We identified 41 875 RCLVs for the 30-day intervals,

1182 RCLVs for the 90-day intervals, and only 1 RCLV

for the 270-day intervals in the period 1993–2015. The

trajectories for all the 30-day RCLVs are plotted in Fig. 3.

The average number of RCLVs per degree of latitude per

year is plotted in Fig. 4. (270-day RCLVs are excluded

FIG. 1. A close-up example of a 90-day LAVD field from the region near Hawaii. Identified

RCLVboundaries are shown asmagenta contours.Note that the large local LAVDmaximum just

west of Hawaii is not associated with an RCLV because the LAVD field near the maximum

exhibits a spiraling filamentary structure. (This is indicative of vortex breakup during the interval.).
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from all subsequent discussion, since they are almost

nonexistent.) Both figures reveal the densest con-

centration of RCLVs in midlatitudes, with very few

RCLVs detected in the tropics. This is broadly sim-

ilar to SSH eddies.

The comparison of the occurrence of 30-day versus 90-day

RCLVs in Fig. 4 reveals that the shorter-lived vortices are

much more prevalent. There are actually more 30-day

RCLVs that SSH eddies with lifetimes larger than 30 days.

However, the reverse is true for 90-day RCLVs; there are

many more SSH eddies with equivalent or longer lifetimes.

The comparison with 270-day RCLVs, which are essentially

nonexistent, is even more extreme; the census of CSS11

identifies 2076 SSH eddies with lifetimes at least that long.

We now examine the statistics of eddy size. The

RCLV horizontal area Axy is converted to a radius r via

the formula r5
ffiffiffiffiffiffiffiffiffiffiffiffi
Axy/p

p
. Most of the RCLVs are approx-

imately circular (e.g., Fig. 2), and this conversion yields a

familiar unit for assessing length scales. InFig. 5,weplot this

radius and compare it to the radius of SSH eddies from

CSS11. Statistics are calculated in 58 latitude bins.

Outside of the tropics (where RCLVs are rare), Fig. 5

reveals a familiar inverse relationship between eddy size

and latitude, which likely reflects the dependence of the

Rossby deformation radius on the Coriolis parameter

(Chelton et al. 1998). The largest median RCLV radius

occurs near 6308, where it approaches 40km. Comparing

withCSS11, themedianRCLVradius is roughly about half

of the median SSH eddy. This is consistent with the ex-

ample vortices shown in Fig. 2. The SSH size statistics di-

verge qualitatively from the RCLVs in the tropics.

In Fig. 6, we examine the zonal propagation speed cx
of RCLVs and SSH eddies. In both cases, the zonal

propagation speed is calculated as the total zonal dis-

tance traveled over the eddy lifetime. From this point of

view, RCLVs and SSH eddies look very similar, with

much faster propagation at low latitudes due to the

larger gradient in Coriolis parameter (i.e., b effect;

FIG. 2. The (left) initial and (right) final locations of two randomly selected 90-day RCLVs in the (top) northern

and (bottom) southern hemispheres. The points contained within each RCLV boundary are visualized as magenta

dots, overlaid on the contours of SSH anomaly. The contour interval for SSH is 2 cm.
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CSS11; Klocker and Abernathey 2014; Abernathey and

Wortham 2015). Again, the statistics diverge in the

topics, where there are vanishingly few RCLVs.

Since the RCLVs and SSH eddies propagate at the same

speed, onemight expect that theEulerianmethods ofCSS11

and the Lagrangian method used here identify broadly

similar structures. However, the radius statistics suggest that

the rotationally coherent core of mesoscale eddies is con-

siderably smaller (by half) than the radius inferredbyCSS11.

Furthermore, there is a significant difference in eddy life-

time; the SSHeddies lastmuch longer than theRCLVs. This

might indicate that many SSH eddies represent materially

leaky dynamical structures, which exchange water with their

surroundings. While we have not conducted a comprehen-

sive investigation of RCLV lifetime, the fact that there were

essentially zero 270-day RCLVs in the sector provides an

upper bound for the time scale of this leaky exchange. On

the other hand, Wang et al. (2015) found numerous mate-

rially coherent Agulhas eddies with 360-day lifetimes,

suggesting that different regions of the ocean may generate

less leaky eddies. This discrepancy may be addressed in fu-

ture work by applying the RCLV method at a global scale.

5. Transport by Lagrangian vortices

Having described the method of identifying coherent

Lagrangian vortices, we now turn to the central question of

our study: the role of these RCLVs in material transport.

a. Advective transport

First, we address the question of advective volume

transport by the RCLVs. By combining radius and zonal

FIG. 3. The trajectories of the center points of all 46 486 thirty-day RCLVs identified in the period 1993–

2015. Trajectories represent actual Lagrangian water parcel paths under advection by the surface geo-

strophic flow. Cyclonic vortices are shown in blue and anticyclonic are shown in red.
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propagation and assuming a vertical depth scale, we can

arrive at an estimate of the advective volume transport by

the RCLVs that is directly comparable with Zhang et al.

(2014). First, we define the approximate cross-sectional

area of each RCLV in the latitude–depth plane asAyz5
2rh, where h is a representative depth scale of the RCLV

in the vertical. In reality, each RCLV will have its own

unique depth profile, which is likely strongly dependent

on latitude and stratification. However, the satellite data

give us no information about the depth dependence of

the flow, so wemake an extremely crude assumption: we

just take h 5 const 5 500m for all eddies. The scale

depth of 500m was chosen based on the findings of

Roemmich and Gilson (2001), who analyzed the depth

FIG. 4. Number of eddies per year per square degree of latitude/longitude in the east Pacific

sector for RCLVs (this study; solid line) and SSH eddies (CSS11; dashed line). The colors corre-

spond to the eddy lifetime; black shows lifetimes of$30 days and red shows lifetimes of$90 days.

FIG. 5. Radius statistics of (top) 30-dayRCLVs and (bottom) all SSH eddies. Statistics of all

eddies in 58 bins are shown using a box-and-whisker plot. The red line indicates the median.

The blue box spans the middle two quartiles (25th–75th percentiles) of the distribution. The

black whiskers span the 10th–90th percentiles. Outliers are shown using the black1 symbol.
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dependence of mesoscale temperature anomalies in

this sector. We consider the resulting transport esti-

mate to be accurate only within an order of

magnitude.

Following Wang et al. (2015), we identify all RCLVs

crossing specific longitude lines (1708, 1608, 1508, and
1408W) over their 30- and 90-day lifetimes. The in-

stantaneous zonal transport of each individual RCLV is

given by cxAyz. We sum the individual contributions in

58 bins and then time average over the whole 25-yr study

period. The results of this calculation are shown in Fig. 7.

The peak value of the zonal transport for 30-day RCLVs

is between 20.1 and 20.2 Sv per degree latitude, with a

net meridionally integrated transport of approximately

3Sv across the whole sector. The standard deviation (error

bars in Fig. 7) is much greater than the mean, indicating

the intermittent nature of the zonal transport. For com-

parison, in this sector Zhang et al. (2014) obtained peak

values of around 20.5Sv per degree latitude, with a net

transport of around 30Sv (their Fig. 3). Notwithstanding

the uncertainty due to our use of a constant depth scale, it

is clear that our 30-day RCLVs are associated with con-

siderably less zonal transport than that estimated byZhang

et al. (2014). For the 90-day RCLVs, the estimated zonal

transport is an order of magnitude lower.

We also compute the meridional advective transport

across latitude circles. The results, shown in Fig. 8, re-

veal that the mean meridional advective transport is

extremely small compared to its standard deviation.

(The standard deviation is related to the meridional

dispersion examined in the next subsection.) Neverthe-

less, in the mean of the 30-day RCLVs, a similar pattern

to Zhang et al. (2014) is discernible, with northward

transport throughout the South Pacific and tropi-

cal North Pacific and southward transport in the mid-

latitude North Pacific. The transport values again

are roughly an order of magnitude less than those of

Zhang et al. (2014). For both meridional and zonal ad-

vective transport, the magnitude appears to be highly

dependent on the eddy lifetime.

b. Meridional dispersion and diffusion

Now we examine the dispersion and diffusion associ-

ated with the RCLVs, which is the diagnostic most rel-

evant to tracer transport. For each 30- and 90-day

interval, we compute the absolute diffusivityK [(4)] and

relative diffusivity Krel [(5)] as a function of latitude

using the full ensemble of Lagrangian particles. We also

compute the fractional relative diffusivity Kcs
rel [(8)], us-

ing only particles inside the RCLVs. As discussed in

FIG. 6. As in Fig. 5, but for eddy zonal propagation speed.
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section 2,Kcs
rel represents the diffusivity that would result

if water parcels outside of the RCLVs moved only with

the zonal-mean flow and induced no relative dispersion.

The results of these diffusivity calculations are shown

in Fig. 9. First, we note that there is minimal difference

between K and Krel, revealing that there is negligible

mean meridional advection throughout the sector. The

value ofKrel ranges from 500 to 6000m2 s21, with highest

values found in the tropics. This is broadly consistent

with previous estimates from this sector (Zhurbas and

Oh 2003; Abernathey and Marshall 2013; Klocker and

Abernathey 2014; Abernathey and Wortham 2015).

Precise agreement with previous studies is not neces-

sarily expected, since relative diffusivity depends sensi-

tively on the time interval (Okubo 1971; Ollitrault et al.

2005; LaCasce 2008). For homogeneous flows, conver-

gence is expected for long time scales (Klocker et al.

2012), but the diffusivities here correspond precisely to

30- and 90-day time intervals. The difference between

the 30- and 90-day results show that convergence has not

been reached everywhere.

The emphasis here is not the precise value of Krel but

rather the comparison with Kcs
rel (Fig. 9, middle). The

most striking difference is the order of magnitude: Kcs
rel

does not exceed 10m2 s21 for 30-day RCLVs and does

not exceed 1m2 s21 for 90-day RCLVs. We can quantify

the fraction of transport accomplished by RCLVs at

each latitude via the ratio RK 5Kcs
rel/Krel, as plotted in

Fig. 9 (bottom). This fraction would be close to one if

most of the transport was by coherent vortices; instead,

we observe that it never exceeds 0.005 for 30-day

RCLVS and is an order of magnitude smaller for

90-day RCLVS. This small contribution of RCLVs to

the meridional transport mirrors the finding of Wang

et al. (2015) that materially coherent Agulhas eddies

make a very small contribution to net transport in that

region—we return to this point in section 6.

The similarity between the shape of Kcs
rel and the av-

erage density of RCVLs (Fig. 4) suggests that the pri-

mary control on Kcs
rel is simply the density of RCLVs

found at a particular latitude. To test this hypothesis, we

compute the RCLV area fraction RA (Fig. 9, bottom),

which represents the average fraction of the ocean sur-

face area that lies within anRCLV in each latitude band.

For 30-day RCLVs, RA peaks at around 0.025 and is an

order of magnitude smaller for 90-day RCLVs. This is

significantly higher than RK, the diffusivity fraction, re-

vealing that the RCLVs are actually regions of

FIG. 7. Zonal advective transport across four different longitude lines for the RCLVs,

calculated assuming a depth scale of 500m. The error bar indicates one standard deviation of

the time average over all time windows (30 days and 90 days).
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anomalously low meridional dispersion. This is un-

surprising, since the RCLVs remain coherent by con-

struction and undergo relatively low filamentation

compared to the background flow. In other words, ran-

domly selected patches of ocean with the same surface

area as the identified RCLVs would experience stronger

meridional diffusion than the actual RCLVs.

6. Discussion and conclusions

Many prior studies have attempted to track mesoscale

eddies by following anomalies in the SSH field (and

associated instantaneous surface geostrophic velocity

field) through time (e.g., CSS11; Dong et al. 2011;

Faghmous et al. 2015). While such tracked Eulerian

eddies may be useful for some applications, the work of

Beron-Vera et al. (2013) and Haller and Beron-Vera

(2013) has shown that structures identified in this way

are not generally materially coherent: significant mate-

rial leakage can occur through the supposed structure

boundaries. This finding calls into question studies such

as those of Dong et al. (2014) and Zhang et al. (2014),

who attempt to infer heat, salt, and mass transports

based on the displacement of tracked Eulerian eddies.

The goal of our study was to examine the material

transport of mesoscale eddies defined as Lagrangian

coherent structures.

We identified coherent eddies across a broad sector in

the eastern Pacific using an objective, Lagrangian

method based on the vorticity, the so-called RCLV ap-

proach of Haller et al. (2016). This computationally

demanding task required the numerical advection of

millions of virtual Lagrangian particles over a period of

25 years, the length of the satellite altimetry record. To

our knowledge, our study is the largest-scale application

of objective Lagrangian eddy detection to date. This

comprehensive census of RCLVs in the sector allowed

us to 1) calculate some statistical properties of RCLVs

and 2) compute their contribution to net meridional

transport via the coherent relative diffusivity Kcs
rel.

The occurrence frequency, length scales, and propa-

gation speeds of RCLVs in this sector were found to be

qualitatively similar to those of SSH eddies identified by

CSS11. RCLVs were larger at low latitude, consistent

with the meridional variations in the baroclinic Rossby

deformation radius; the RCLV radii, however, were

smaller than the SSH eddy radii by about a factor of 2. A

more striking difference was the eddy lifetime; while we

FIG. 8. Meridional advective transport latitude lines, calculated assuming a depth scale of

500m. The error bar indicates one standard deviation of the time average over all time

windows (30 days and 90 days).
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did not systematically examine the dependence on the

extraction interval, we found essentially no RCLVs with

lifetimes longer than 270 days. We suggested that this

sets an upper bound on the leakiness time scale of me-

soscale eddies in this sector. The comparison between

RCLVs and SSH eddies raises many further questions

about the relationship between the different methods.

How often are RCLVs embedded inside SSH eddies? Is

it possible to quantify the leakiness of the SSH eddies? Is

the Eulerian nonlinearity parameter U/c (with U the

azimuthal eddy velocity and c the translation speed) of

CSS11 related to the presence of RCLVs? These ques-

tions are ripe for exploration in future work.

By assuming a fixed depth scale for our RCLVs, we

calculated their advective volume transport and com-

pared with the Eulerian PV-based estimate of Zhang

et al. (2014). For 30-day RCLVs, we found similar spa-

tial patterns to zonal and meridional advective volume

transport, but lower by roughly one order of magnitude.

The 90-dayRCLVswere rare enough that the associated

transport estimates were somewhat noisy; however, they

clearly showed even lower values of advective transport.

The primary focus and innovation of this paper is the

definition and calculation of meridional diffusive trans-

port by RCLVs. Since most climatically relevant gradi-

ents (temperature, salinity, nutrients, etc.) are strongest

in latitude, meridional transport has the greatest rele-

vance for the climate system. Our key finding is thatKcs
rel,

representing the diffusive meridional transport due to

RCLVs, is hundreds of times smaller than Krel, the dif-

fusive meridional transport of the full flow. This means

that transport by RCLVs makes a negligible contribu-

tion to the net meridional dispersion. By a process of

elimination, we can then conclude that, in this sector,

meridional dispersion is primarily by incoherent mo-

tions, outside of the RCLV boundaries. This conclusion

is in contradiction with the claims of Dong et al. (2014)

regarding the role of coherent eddies in meridional heat

FIG. 9. (top) Full absolute (4) and relative diffusivity (5) averaged for all 30- (black) and 90-

day (red) intervals. (middle) Coherent relative diffusivity (8) due only to the motion of

RCLVs. Note the different scale on the y axis. (bottom)Nondimensional ratios of RCLVarea

(RA) and diffusivity (RK) to total area and diffusivity.
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and salt transport. Our conclusion is, however, highly

consistent with the findings of Wang et al. (2015), who

used a different objective Lagrangian eddy identification

method to quantify material transport by Agulhas rings.

Indeed, Wang et al. (2015) found that the cross-Atlantic

transport by materially coherent Agulhas eddies was two

orders of magnitude smaller than prior estimates based on

Eulerian eddy tracking. Since Agulhas rings move only in

one direction,Wang et al. (2015) described the transport in

terms of advection. In our sector, where eddies drift both

north and south with equal frequency, transport was

quantified in terms of diffusion. The overall conceptual

agreement between their study and ours, which used a

differentmethod and examined a different region, suggests

that relatively small material transport by coherent La-

grangian eddies is a robust result.

This finding does not mean, however, that coher-

ent mesoscale eddies are insignificant for meridional

transport. Indeed, studies in the spectral domain (e.g.,

Killworth et al. 2004; Abernathey and Wortham 2015)

show that the eddy flux peaks at length scales and phase

speeds associated with mesoscale eddies. Our results

here, however, suggest that the meridional eddy trans-

port is likely driven by stirring and filamentation on the

periphery of coherent eddies, rather than by coherent

meridional motion of the eddy core. This mechanism

was illustrated clearly by Hausmann and Czaja (2012),

who studied eddy heat transport by examining the

cross-correlation structure between satellite-observed SSH

and SST anomalies. Using the cross-correlation, they de-

composed the Eulerian eddy heat flux into a drift compo-

nent (associated with translation of fluid within the eddy

core) and a swirl component, associated with peripheral

stirring. They found that the swirl component was large

enough tomake a leading-order contribution to the oceanic

heat budget, but that the drift component was negligible.

This finding is compatible with our results, but not with

Dong et al. (2014), who reached the opposite conclusion

through methods similar to Hausmann and Czaja (2012).

A follow-up study by Y.Wang et al. (2016) challenges

the notion of a binary division of the domain into inside

and outside coherent eddies. That study examined a

single Agulhas ring and documented a small, long-lived

(2 years) vortex core embedded in a larger peripheral

region with intermittently coherent boundaries contin-

uously forming and decaying. The peripheral region was

partly coherent but also exchanged fluid with the outside

environment. Because some fluid was dragged along

in the peripheral region as the eddy translated across

the South Atlantic, Y. Wang et al. (2016) concluded

that their earlier calculation (Wang et al. 2015) was

potentially an underestimate of the material transport

by Agulhas rings. Unfortunately, at this time there is

no objective method for identifying such peripheral

semicoherent regions surrounding RCLV cores. We

present our results as the transport due only to the

strictly coherent rotational eddy core, acknowledging

that, if such peripheral regions are commonplace,

they would constitute an additional component of

meridional transport.

Another limitation of the results we have presented is

their reliance on the AVISO surface geostrophic veloci-

ties, which we have simply accepted at face value as ade-

quately representative of the near-surface flow. In reality,

there are many potential sources of error in these velocity

fields, including measurement error of the altimeter itself,

limited spatial and temporal sampling, mapping errors

related to the gridding of satellite tracks, and the presence

of ageostrophic and vertical velocities. LCSs represent

stable attractors of the flow and are robust to the presence

of small noise (Haller 2015). The spatial and temporal

sampling issue, however, is likely more serious; Keating

et al. (2012) showed that such subsampling can seri-

ously degrade the finite-time Lyapunov exponent field in

idealized turbulence simulations. It is an open question

how the presence of submesoscale flows and internal

waves impacts the leakiness of mesoscale transport

barriers and eddies. A comprehensive investigation of

the observational errors in the detection of LCSs

from satellite altimetry observations would indeed

be a valuable contribution. The full three-dimensional

structure of RCLVs also remains an open question

that is not possible to address using satellite obser-

vations alone. Analysis of a high-resolution general

circulation model would be a good way to probe this

question. Exploration of the prevalence of RCLVs,

and their associated transport, in idealized models of

baroclinic turbulence (e.g., the two-layer quasigeo-

strophic model; L. Wang et al. 2016) would also shed

light on the relation of these structures to classical

geophysical turbulence theory.

We see this study as the first step toward a fully global

characterization of mesoscale coherent structures. It is

our hope that this sort of detailed description of the

Lagrangian kinematics of mesoscale transport will

eventually lead to more accurate parameterization of

mesoscale transport in coarse-resolution climate models.

In the case of the eastern Pacific, it appears that we can

reliably neglect long-range meridional transport due to

fluid trapping within coherent eddy cores. This is good

news from the perspective of parameterization, since the

swirling mode of eddy transport seems more amenable to

representation via diffusive closures.Determiningwhether

such a conclusion holds more generally will have to await

the completion of a global-scale Lagrangian eddy census,

which is a serious computational challenge.
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APPENDIX

Proofs of Objectivity

Here we show that (3)–(5) are objective with respect

to a change in observer reference frame. We consider

Euclidean observer changes of the form

x5Q(t)y1 b(t) , (A1)

where x labels a point in the original frame, y labels a

point in the new frame, Q(t) is a proper orthogonal

tensor [and hence QT(t)Q(t) 5 I], and b(t) is a time-

dependent translation vector; both Q(t) and b(t) are

smooth functions of the time t.

Wewill work in aEuclidean space, as frame indifference

with respect to (A1) is onlymeaningful in linear spaces. To

reach a similar conclusion for objectivity on a curved sur-

face (such as the Earth), one has to pull back the quantity

of interest to (Euclidean) local coordinates, perform the

observer change, and show objectivity in this coordinate

space, then lift up the objectivity conclusions to the surface

via its local parameterization [cf. Haller et al. (2016) for a

similar calculation].

a. Objectivity of meridional tracer flux

The instantaneous, pointwise Eulerian flux of a pas-

sive tracer c(x, t) under the velocity field v(x, t) through a

(possibly moving) straight line x‘(t; s) parameterized by

the parameter s is, by definition,

Flux
x
[x

‘
(t; s)]5 c[x

‘
(t; s), t]

�
v[x

‘
(t; s), t]2

›

›t
x
‘
(t; s)

�

� n
‘
(t; s) , (A2)

where n‘(t; s) denotes the unit normal to line at time t, at

the location x‘(t; s), and ›/›t[x‘(t; s)] is the instantaneous

velocity of the point x‘(t; s) of the straight line. Using

(A1), the quantities c[x‘(t; s)], v[x‘(t; s), t], ›/›t[x‘(t; s)],

and n‘(t; s) involved in (A2) are linked to the counterparts

ĉ[y‘(t; s), t], w[y‘(t; s), t], ›/›t[y‘(t; s)], andm(t; s) in the y

frame as follows:

c[x
‘
(t; s), t]5 c[Q(t)y

‘
(t; s)1 b(t), t]5 ĉ[y

‘
(t; s), t],

v[x
‘
(t; s), t]5 _Q(t)y

‘
(t; s)1Q(t)w[y

‘
(t; s), t]1 _b(t) ,

›

›t
x
‘
(t; s)5 _Q(t)y

‘
(t; s)1Q(t)

›

›t
y
‘
(t; s)1 _b(t) ,

n
‘
(t; s)5Q(t)m(t; s) .

Substituting these relations into (A2) gives

Flux
x
[x

‘
(t; s)]5 c[x

‘
(t; s), t]

�
v[x

‘
(t; s), t]2

›

›t
x
‘
(t; s)

�
� n

‘
(t; s)

5 ĉ[y
‘
(t; s), t]

�
Q(t)

�
w[y

‘
(t; s), t]2

›

›t
y
‘
(t; s)

��
�Q(t)m(t; s)

5 ĉ[y
‘
(t; s), t]

�
w[y

‘
(t; s), t]2

›

›t
y
‘
(t; s)

�T

QT(t)Q(t)m(t; s)

5 ĉ[y
‘
(t; s), t]

�
w[y

‘
(t; s), t]2

›

›t
y
‘
(t; s)

�
�m(t; s)

5Flux
y
[y

‘
(t; s)] ,

and hence the pointwise instantaneous Eulerian flux is

objective. As a consequence, its average with respect to

the parameter s along the line x‘(t; s) is also objective,

and its subsequent average in time is also objective. In

addition, linear lengths and time spans are constant

under Euclidean observer changes, and hence

1

T � length(x
‘
)

ðt01T

t0

ð
s

Flux
x
[x

‘
(s)] ds dt

is also an objective quantity. But this last quantity is

just a specific form of (1), with line x‘(t; s) being a steady

zonal line y5 const, and with the role of the parameter s

played by x0.

b. Objectivity of Kabs in (3)

When (3) is taken as a definition of Kabs, then Kabs is

necessarily objective, as the quotient of two objective quan-

tities. If (4), by contrast, defined a nonobjective Kabs, then
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Taylor’s result would be incorrect, given that a nonobjective

quantity cannot be identically equal to an objective quantity.

Let us therefore show that the coordinate-independent

version of Taylor’s (4) for Kabs is objective. Specifically,

we need to show that the mean-squared Lagrangian dis-

tance of particles released at the same time t0 from a

(possiblymoving) straight line x0(t; s) of initial conditions is

independent of the observer, which will imply the ob-

jectivity of Kabs as defined in (4) of the paper. This mean-

squared Lagrangian distance, by definition, is

dist
x
(t)5

ð
s

f[x(t; s)2 x
0
(t; s)] � n

0
(s; t)g2 ds , (A3)

where x(t; s) is the current position of the particle

released from the point x0(t0; s) at time t0 and n0(t; s) is

the normal along the line of initial conditions at time

t We stress that the observer needs to assess dis-

tances of particles at time t from the currently observed

position of their release location. In the frame of

the Earth, the release location does not move, and

hence x0(t; s) 5 x0(t0; s) for all times. In a moving ob-

server’s frame, however, the observed release location

y0(t; s)5QT(t)x0(t; s)5QT(t)x0(t0; s) does change with t.

Focusing on the square root of the integrand in (A3)

first, we use (A1) to note that

[x(t; s)2 x
0
(t; s)] � n

0
(t; s)5 fQ(t)[y(t; s)2 y

0
(t; s)]g �Q(t)m

0
(t; s)

5 f[y(t; s)2 y
0
(t; s)]gTQT(t)Q(t)m

0
(t; s)5 f[y(t; s)2 y

0
(t; s)]g �m

0
(t; s) , (A4)

and hence the integrand in (A3) is pointwise objective,

rendering the full integral objective:

dist
x
(t)5 dist

y
(t) . (A5)

As noted above, this implies thatKabs in (4) is objective.

Indeed, (A3) is just (DY)2 in (4), when the initial con-

dition line x0(t0; s) is specifically chosen to be y0 5 0,

parameterized via s [ x0.

Most past studies have claimed that Kabs is not Gali-

lean invariant (e.g., LaCasce 2008, their section 2). Since

the Euclidean observer reference-frame changes rep-

resented in (A1) include Galilean transformations, our

finding of objectivity contradicts a widely held view. In

LaCasce (2008), it is claimed that ‘‘absolute dispersion is

not Galilean invariant’’ because it reflects the particle drift

from the starting location and is therefore influenced by

the presence of a mean flow. However, advection by a

mean flow is not equivalent to translation of the observer.

Using our definition, all observers will measure the same

absolute dispersion due to mean drift from the starting

location. This objectivity is only achieved when distance is

measured from the initial position as observed in the ob-

server’s current reference frame. Advection by a mean

flowdoes not cause the initial position tomove, butmotion

of the observer does. This subtle distinction explains the

dichotomy between our definition and the conventional

wisdom that Kabs is not objective.

c. Objectivity of Krel in (5)

It is sufficient to show that the quantity, whose rep-

resentation is (Y2Y)
2
in the frame of the Earth and in

longitude–latitude coordinates, is objective. First we

note that

(DY2DY)
2
5 [(Y2 y

0
)2 (Y2 y

0
)]

2

5 [Y2Y2(y
0
2 y

0
)]

2
5 (Y2Y)

2
, (A6)

since y0 5 y0 by definition. This quantity is the mean-

squared deviation between the distance function of parti-

cles from their line of release and the mean of the same

distance function. In other words, the quantity of interest is

defined as

[dist
x
(t)2 dist

x
(t)]

2
5

ð
s

f[x(t; s)2 x
0
(t; s)] � n

0
(s; t)

2 dist
x
(t)g2 ds . (A7)

Wehave already concluded in (A4) that [x(t; s)2 x0(t; s)] �
n0(s; t) is objective, and also in (A5) that distx(t) is objec-

tive. As a consequence, the integrand of (A5) is pointwise

objective, and hence (A5) itself is objective. This con-

cludes the proof of objectivity of Krel in (5).
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