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Abstract

We investigate the combined effects of diffusion and stirring on the dynamics of interacting populations which have spatial

structure. Specifically we consider the marine phytoplankton and zooplankton populations, and model them as an excitable

medium. The results are applicable to other biological and chemical systems. Under certain conditions the combination of diffusion

and stirring is found to enhance the excitability, and hence population growth of the system. Diffusion is found to play an important

role: too much and initial perturbations are smoothed away, too little and insufficient mixing takes place before the reaction is over.

A key time-scale is the mix-down time, the time it takes for the spatial scale of a population to be reduced to that of a diffusively

controlled filament. If the mix-down time is short compared to the reaction time-scale, then excitation of the system is suppressed.

For intermediate values of the mix-down time the peak population can attain values many times that of a population without spatial

structure. We highlight the importance of the spatial scale of the initial disturbance to the system.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Many biological populations, and chemical reactive
systems, exhibit time evolving spatial structure, which is
induced by a combination of reaction and diffusion
(Winfree, 1972; Field and Burger, 1985; Murray, 1993;
Hofer et al., 1995) or by fluid stirring (Edouard et al.,
1996; Abraham, 1998). A particular class of systems is
excitable media (Murray, 1993; Dawson et al., 2000) in
which relatively small perturbations can trigger large
excursions in phase space. Reaction with diffusion can
support traveling reactive wave fronts (Murray, 1993)
while reaction with stirring can promote filamentation
and global excitation (Neufeld, 2001; Neufeld et al.,
2002a). Here we consider the combined effects of
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diffusion and chaotic mixing on the gross characteristics
of an excitable reactive system. A natural question to
ask is under what conditions will spatial structure
impact upon the global dynamics of a population (or
chemical constituent).

A number of recent studies have investigated the
formation of spatial patterns in excitable media in the
presence of stirring by a fluid flow, and in particular the
impact on plankton dynamics (the primary motivation
here). These include Neufeld (2001), Neufeld et al.
(2002b), Hernandez-Garcia et al. (2003), Scheuring et al.
(2003) and Hernandez-Garcia and Lopez (2004). In all
these studies the presence of diffusion is necessary for
mixing to take place, but typically the coefficient of
diffusion is set to a small value under the assumption
that there is a high Péclet number limit. Here we show
that the level of diffusion is critical to the behavior of the
system and that a key parameter is the mix-down time,
i.e. the time it takes to stir an initial patch of tracer down
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to a scale where mixing takes place. This puts limits on
the size of the initial patch.
2. Model

We will model the population dynamics of interacting
species by a reaction–advection–diffusion equation.
Thus, the time evolution of the state vector E stirred
by a given velocity field u is governed by

qE
qt
þ ðu � rÞE ¼ fðEÞ þ kr2E, (1)

where f denotes the reaction terms and k is the
diffusivity. Here we consider a two-dimensional velocity
field and a two-dimensional state vector

E ¼
P

Z

� �
. (2)

The interaction terms are taken to be

f ¼ b

Pð1� PÞ � a
ZP2

n2 þ P2

� �

ga
ZP2

n2 þ P2

� �
� ohðZÞ

2
6664

3
7775. (3)

The model is that of Truscott and Brindley (1994),
which is known to exhibit excitable behavior with P

acting as the ‘‘fast’’ growing population (or tracer) and
Z the ‘‘slow’’ population. This model has been applied
to ocean plankton populations (hence the notation, with
P and Z representing phytoplankton and zooplankton
population densities, respectively) (Truscott and Brind-
ley, 1994; Matthews and Brindley, 1997; Brentnall et al.,
2003). The dynamics of the system depend on the
specification of the sink (mortality) term h. Here we
consider a linear sink term, with h ¼ Z. The system is
known to be excitable if g51 and no1=

ffiffiffiffiffi
27
p

. Fig. 1
shows the nullclines (curves in P;Z space on which the
time rate of change of P and Z is zero, respectively) and
those regions of phase space where a given initial
condition leads to excitable behavior. (The parameter
values are the same as those used in Brentnall et al.,
2003, i.e. a ¼ 2:33; n ¼ 0:053; g ¼ 0:05 and o ¼ 0:04.)
We will call this system C1. System C1 has a single
stable equilibrium point at ðP;ZÞ ¼ ð0:038; 0:046Þ. For
large enough displacements from this stable point
(reduced Z and/or increased P) the system will undergo
large changes in P and Z (i.e. the system temporarily
enters an excited state before slowly returning to the
stable point, in analogy to the ‘spring bloom’ in the
ocean). Such a displacement may be brought about by a
localized (in time) increase in the mortality rate of the
predator Z or a sudden increase in the growth rate of P

through an injection of nutrients. The factors that may
give rise to perturbations to the system are further
discussed in Section 4.

Experiments have been performed with a bistable
system, system C2, with a quadratic sink term h ¼ Z2.
The effects of diffusion and stirring on C2 are found to
be broadly similar to those of C1 and will be only briefly
reported in Section 3.4.

The stirring of the populations is done by a simple
kinematic flow field which produces chaotic mixing. The
flow field was introduced by Pierrehumbert (1994) and
used by Neufeld (2001) and others in a context similar to
that used here. The direction of a sinusoidal shear flow
alternates such that it is directed along the x and y

directions for the first and second half of the period, T.
The components of the flow ðu; vÞ in the ðx; yÞ directions
are

u ¼
1

T
Y

T

2
� tðmodTÞ

� �
sin

2py

L
þ fi

� �
, (4a)

v ¼
1

T
Y tðmodTÞ �

T

2

� �
sin

2px

L
þ fiþ1

� �
, (4b)

where Y is the Heaviside step function and fi is a
randomly distributed phase between [0,2p], set at each
half-period, to avoid transport barriers in the flow. The
Lyapunov exponent, l, of the flow is related to the
period, T, with l ’ 1.1/T.

The system is defined to be on a square domain of
length L, which is periodic in both spatial dimensions
ðx; yÞ. We choose to scale the time-scale in Eq. (1) with
the inverse of the maximum growth rate for P, namely b,
and length with L. Solutions depend on two non-
dimensional numbers, namely Da ¼ bT (the Damköhler
number, or ratio of the advection to growth time-scales)
and KL ¼ kð2pÞ2=bL2 (the ratio of growth to diffusion
time-scales). Note the actual growth rate in Eq. (3)
depends on the values of P and Z. We therefore define
an effective growth rate, b0, where

b0

b
¼ ð1� PÞ � a

ZP

n2 þ P2

� �
. (5)

The system is initialized with P, a constant value of
0.045, and Z varying sinusoidally in both x and y with a
wavenumber, k, amplitude equal to 0.02, and mean Z0.
As Z0 is decreased, a greater fraction of the initial state
will be excitable. This fraction we denote as Ai. The
equations are solved numerically by employing the
positive definite advection scheme MPDATA; Smolar-
kiewicz and Margolin (1998).
3. Results

The question we ask is, under what conditions will
fields that are initially heterogeneous become excited in
the mean? Phase trajectories of the domain-averaged P
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Fig. 1. Phase diagram for system C1 (the panel to the right is an enlarged portion of the panel to the left). White lines denote the P and Z nullclines.

The color shading gives the maximum value of P for an initial value of ðP;ZÞ with the darkest red shading corresponding to 1. The filled circles

denote phase plane trajectories of the domain averaged ðP;ZÞ with the same initial conditions at intervals of 0.86 time units (Da ¼ 1:43 and 2.15 for

light and dark gray circles, respectively).
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and Z for two cases with the same initial conditions are
shown in Fig. 1, but one case becomes excited while the
other does not. The details of these particular trajec-
tories will be discussed below, but note that in both
cases the domain-averaged initial values of ðP;ZÞ lie
outside the region of excitability.
3.1. Diffusion alone

First we consider the case with diffusion but no
stirring ð1=T ¼ 0Þ. The maximum value attained by the
domain-averaged P and Z, Pmax and Zmax, for varying
Ai, with no stirring and KL ¼ 5� 10�5, is shown in
Figs. 2a and b, respectively, as open circles. For
comparison, the well-mixed case, i.e. homogeneous
initial Z with the same value of Z0, is shown as the
dashed line. (We choose to use Pmax and Zmax as a
measure of the level of excitation of the system. Using
other measures such as the change in total primary
productivity would yield similar results.) Heterogeneity
in the initial conditions produces increased reaction
rates in the mean. Our reaction system can support
waves of excitation that sweep across the domain and
increase the area of the system that gets into an excited
state. For instance, with Ai ¼ 0:25 (and KL ¼ 5� 10�5),
Pmax is increased by 50% over the case with no
diffusion.

In the case of excitable media the excitation wave is
‘‘pushed’’ by the nonlinear dynamics of the system (cf.
Murray, 1993). For the Fitz–Hugh–Nagumo (FHN)
model, an exact solution exists (under certain condi-
tions) for the speed of the excitation wave, cr (Neufeld,
2001). No analytic solution exists for the Truscott–
Brindley (TB) model but, based on the FHN solution,
we may expect the wave speed for the TB model to be
expressed as

cr�
ffiffiffiffiffiffiffiffi
b�k

p
, (6)

where b� is an effective reaction rate taking into account
the suppression caused by the grazing of the background
Z population and the location of the threshold of
excitability. Indeed, numerical experiments demonstrate
that the speed of the reaction wave conforms to
expression (6) when b� is taken as the effective reaction
rate b0 at the excitability threshold. For the parameters
considered here, this is approximately 15% of b.
3.2. Stirring with diffusion

Stirring by fluid motions can either promote or
suppress excitation of the fields depending on the value
of Da (Neufeld, 2001). Two phase trajectories for the
domain averaged P and Z are shown in Figs. 1a and b
for Da ¼ 1:43 and 2.15. For the higher value of Da the
system undergoes a global excitation, in the sense that
elevated values of P are attained for (almost) all fluid
elements. For the lower value of Da (increased stirring
rate) excitation is suppressed.

The behavior of the system also depends on the
fraction of the system initially exceeding the excitability
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Fig. 2. (a) The maximum value attained by the domain average

P;Pmax, as a function of the fraction of tracer initially exceeding the

excitability threshold, Ai, with no stirring (open circle), Da ¼ 4:3
(closed circles) and Da ¼ 1:43 (closed diamonds): Km ¼ 0:001 (see Eq.

(9) for definition). The dashed line is the well-mixed case. (b) As (a) but

for Z.
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Fig. 3. Snapshot of the distribution of P for two different values of Ai ,

(a) Ai ¼ 0:25 and (b) Ai ¼ 0:09: t ¼ 21:5;Da ¼ 4:3;KL ¼ 5� 10�5.
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threshold, Ai, and the relative diffusion rate, KL.
Figs. 3a and b show P at t ¼ 21:5 with two different
values of Ai. The structure along y ¼ 0:5 for both fields
is shown in Figs. 4a and b, respectively. Stretching by
the flow produces filamentary structures. For the lower
value of Ai only a small fraction of the system exceeds
the excitability threshold and the filaments are isolated.
For the higher value of Ai merging filaments produce
enhanced excitation.
The width, wf , of a filament is governed by the
balance between the straining of the flow, which is
tending to thin the filament, and diffusion and excitation
waves which are tending to broaden it. When the
balance is between the straining flow and the speed of
the excitation wave we expect

wf�
cr

l
�

ffiffiffiffiffiffiffiffi
b�k

p
l

. (7)

(Neufeld, 2001; McLeod et al., 2002; Neufeld et al.,
2002b; Hernandez-Garcia et al., 2003). Again, for the
TB model we have no analytic solution, but we expect cr
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Fig. 4. Filamentary structure along y ¼ 0:5 for the reactive tracers

with (a) Ai ¼ 0:25 and (b) Ai ¼ 0:09 (from Fig. 3). (c) The same but for

an inert tracer (b ¼ 0) initialized with a concentration between 0 and 1.
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Fig. 5. (a) The critical value of the inverse Damköhler number for

which excitability is suppressed as a function of Ai, for system C1

(closed circles). The critical inverse Damköhler number for which

transition to an excited state is suppressed for system C2 (closed

diamonds) is also shown. (b) Pmax as a function of the non-dimensional

diffusion coefficient Km with Da ¼ 4:3: Km varied by varying k (closed

circles) and the wavenumber of the initial distribution (open circles).

The dashed line is the well-mixed case.
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to be given by Eq. (6) and b� to be given by the effective
growth rate at the threshold of excitability. We also
expect there to be a lower bound on wf given by the inert
tracer case, namely wf ¼

ffiffiffiffiffiffiffiffi
k=l

p
(McLeod et al., 2002).

The amplitude of filaments is enhanced if b0=l41, and
suppressed otherwise (Martin, 2000). For comparison, a
cross-section of an inert tracer is shown in Fig. 4c. The
inert tracer was initialized between 0 and 1 and placed in
the same flow field as the reactive tracers shown in Figs.
4a and b. The amplitude of the filaments for the inert
tracer is much reduced compared to the reactive tracer.
However, there is little difference in the width of
filaments. In the cases considered here there is little
broadening of the filaments by reactive waves.

Pmax and Zmax are shown in Figs. 2a and b,
respectively, as a function of Ai for two values of Da.
We see an abrupt change from suppressed excitation
(when Pmax is close to the well-mixed value) to an
excited state as Ai is increased. For Da ¼ 4:3, and lower
values of Ai, the value of Pmax is less than that with
diffusion alone, while for values of Ai above the
transition stirring enhances the excitability of the
system. For Da ¼ 1:43 there is very little enhancement
by stirring. For a given value of Ai there is a critical
value of Da above which global excitation takes place.
The inverse of this critical value is shown in Fig. 5a as a
function of Ai. A higher value of Ai requires larger
stirring rates to suppress excitation.

3.3. Mix-down time

An important time-scale is the time, Tm, it takes to
stir a patch initially of size Lp down to the filament size,
wf . This time-scale is sometimes referred to as the ‘‘mix-
down time’’ (Thuburn and Tan, 1997; Hu and Pierre-
humbert, 2001). The straining flow produces an
exponential reduction with time of the cross-patch scale,
so that the mix-down time is given by

Tm ¼
1

l
ln

Lp

wf

� �
. (8)

For times longer than Tm, subsequent stretching and
folding by the flow will cause filaments to merge and
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mixing to take place. For times shorter than this little
mixing will occur. If Tm is short compared to the time-
scale for the growth of the population P, then mixing
will have smeared out perturbations to the system before
significant reaction has taken place. (The importance of
the mixing time for pattern formation has been noted by
Nugent et al. (2004) in their experimental study of a
reaction–advection–diffusive system.)

Eq. (8) involves the filament width, which is con-
trolled not only by stirring but also by diffusion.
Diffusion, therefore, plays a crucial role in the system:
too many and initial perturbations are smoothed away,
too little and insufficient mixing takes place before the
reaction is over. An appropriate scaling for the diffusion
coefficient k comes from the ratio wf =Lp. We define

Km ¼
k

lL2
p

, (9)

where Lp is the length scale of the region which initially
exceeds the excitability threshold (Lp�

ffiffiffiffiffi
Ai

p
). Km is an

inverse Péclet number based on the patch size.
Pmax as a function of Km is shown in Fig. 5b with

Da ¼ 4:3 and Ai ¼ 0:25. Note it is inappropriate to talk
of a high Péclet number limit. The curve for Pmax peaks
at a value of Km ’ 0:001. For lower values of Km the
mix-down time is long compared to the reaction time.
For large values of Km significant mixing takes place
before the reaction peaks.

Returning to the critical Damköhler number for
excitability (Fig. 5a) we can now write this in terms of
the mix-down time, Tm, relative to the inverse reaction
rate. As Ai increases so does the maximum in the initial
reaction rate, bmax (Ai is increased by reducing Z0, the
mean value of the initial Z field, which, referring to Eq.
(5), increases b0). For system C1, to a good approxima-
tion, we find the critical value for Tm is given by

1

Tmc

¼ 0:54ðbmax � b�Þ, (10)

where, as before, b� is the reaction rate at the threshold
of excitation. For Da ¼ 4:3 and Ai ¼ 0:25, this value of
Tmc is equivalent to Km ¼ 0:01 (cf. Fig. 2d). For higher
values of Km (smaller Tm), Pmax is much reduced.

But note there is an upper limit to the value of Tm for
which a significant enhancement of population growth
will occur. The growth and subsequent decay of the
population occurs over a finite time. If Tm is too large,
then the ‘‘bloom’’ will have taken place before mixing
can have an impact (see Fig. 5b). Subsequent stirring
will have little effect.

3.4. A bi-stable system

In order to assess the applicability of the above results
to other reactive systems, experiments have been per-
formed with a bi-stable system, by setting the sink term in
Eq. (3) to be quadratic, i.e. h ¼ Z2. By a suitable choice of
parameters (the values used here are the same as those
used in Brentnall et al. (2003)) the system, C2, now has
two stable equilibria with relatively low and high values of
P, respectively. Modest displacements from the low P

state can cause the system to transition to the high P

(excited) state. The effects of diffusion and stirring are
found to be qualitatively similar to those for system C1, in
terms of promoting or suppressing this transition to the
excited state, for spatially varying initial conditions. The
critical value of D�1a for the excitation to be suppressed is
shown in Fig. 5a as a function of Ai. For system C2 the
constant of proportionality in Eq. (10) is found to be 0.2
for Ai less than 0.25.
4. Discussion

The similarity of the behavior of the two systems
considered, C1 and C2, with respect to the impact of the
combined effects of diffusion and fluid stirring, suggests
that the results may be applicable to a broad class of
biological populations or reactive systems which exhibit
excitable dynamics or that are bi-stable. A key measure
of the combined effects of diffusion and stirring is the
ratio of the mix-down time, Tm, to the inverse of
the growth rate. Regard therefore needs to be given to
the initial scale of the spatial variability of the system
(and the processes controlling that scale) as well as the
mixing and reaction processes. Diffusion is crucial for
the mixing process. However, the right amount (relative
to the reaction and stirring rates) is required to enhance
the reaction. With strong diffusion properties are
smeared out before significant reaction takes place,
while with weak diffusion little mixing occurs before the
reaction is over.

To illustrate the implications of the above findings we
consider a particular situation, that for plankton in the
ocean. A typical value of the strain rate by oceanic
mesoscale eddies is l�0:1 day�1 (e.g. Abraham et al.,
2000). (Mesoscale eddies are sometimes referred to as
the weather systems of the ocean and are responsible for
the lateral stirring of properties on scales of a few Tens
of kilometers and less.) If we assume that spatial
variations in the distribution of zooplankton, or
injection of nutrients, have increased the effective
growth rate of phytoplankton locally by 0:1 day�1, then
the critical mixing-down time given by Eq. (10) is
Tmc ¼ 20 days. If the actual mix-down time, Tm, is
greater than this value we expect the fluid stirring to
impact on the populations dynamics of the plankton.
Tm is given by Eq. (8) and, therefore, with the above
values the critical ratio of initial patch size to filament
width, Lp=wf , is approximately 7. Taking k ¼ 1m2 s�1

for the background diffusivity (a rough estimate for the
effect of unresolved turbulent scales t1 km, using
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Okubo (1971)) then, from Eq. (7), wf ¼ 1 km. For
stirring to be important we require initial patch sizes to
be of the order of 7 km or more. Note that the critical
value of Lp is a strong function of the strain rate.
Increasing the stirring rate by a factor of two in the
above example increases the critical initial patch size to
�40 km.

The above raises the question as to how the initial
perturbation to the system is produced, something we
will not explicitly consider here. Spatial variations in the
full marine ecosystem may be brought by a number of
factors and include spatial variability in the over-
wintering zooplankton and phytoplankton populations,
the supply of nutrients to the euphotic zone through
eddying and frontal activity, and the depth of mixing
induced by the air/sea interactions (cf. Martin, 2003).
The parameters of the model used here are constant in
time and space and therefore the nullclines of the system
are fixed. Assuming constant parameters is a reasonable
first step to studying the impact of stirring and mixing
and assumes that any temporal change is sufficiently
rapid that the system is unable to track the change in
stable equilibria points in P;Z space. However, many of
the processes listed above will affect the growth and
decay rates of the components of the system and
therefore induce spatial and temporal variations in the
parameters of our simple model. Matthews and Brindley
(1997) have studied the impact of temporal variations in
the parameters of the TB model and find a lower limit to
the rate of increase of the phytoplankton growth rate for
excitation of the system to occur. The study of the
effects of temporal and spatial variability of the TB
model parameters on the behavior of the system in the
presence of fluid stirring is the next step the present
authors will take.

In practice, the geometry of a flow may well be more
complex than considered here. In particular, either
transient or permanent barriers to tracer transport may
exist (Ottino, 1989), which will impact on the population
dynamics (cf. Bracco et al. (2000); Martin et al. (2002)
for marine ecosystem examples). In addition, of course,
the population dynamics of the ecosystem will be more
complex. However, it is clear that heterogeneity in the
distribution of a population impacts on the overall
dynamics of the system and needs to be taken into
account in developing models of such systems. The
above highlights the need to determine the factors that
control the spatial distribution of anomalies, or pertur-
bations, to the distributions of populations as well as the
impact of stirring and mixing.
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