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ABSTRACT

The coherent eddy structures that have been discovered to date are reviewed and discussed. These include the near-
wall low speed streaks and quasi-streamwise vortices, hairpin vortices and hairpin vortex packets, large-scale motions
and very large-scale motions. Interactions between the different scales are discussed and the experimental problems
of observing coherent structures in geophysical flows are considered.

2.1 Introduction

Turbulent boundary layers and related flows, in the canon-
ical geometries of pipes, channels and open channels,
share many common characteristics. The effect of vis-
cosity is confined mainly to a thin region above the wall
called the buffer layer, the mean velocity varies logarith-
mically between the buffer layer and a few tenths of the
flow depth, and a region of wake-like behaviour occu-
pies the remainder of the flow. The kinematic viscosity
ν, the wall shear stress τw and the outer length scale δ0

(either boundary layer thickness δ, pipe radius R, or chan-
nel depth h) are the essential parameters of these flows,
and the appropriate nondimensional form of the distance
above the wall y is y+ = yuτ/ν in the inner layer, consist-
ing of the buffer layer plus the logarithmic layer, and y/δ0

in the outer layer, consisting of the logarithmic layer plus
the wake layer. Here, uτ = √

τw/ρ is the friction veloc-
ity and ρ is the fluid density. The buffer layer extends up
to y+ = 30, conventionally; the logarithmic layer extends
from the top of the buffer layer to y/δ0 = 0.1 − 0.2, and
the wake region extends from the top of the log layer to
the full layer depth. The von Kármán number, defined as

the ratio of the outer length scale to the viscous length
scale, is equal to the Reynolds number:

δ+
0 = δ0uτ/ν = Reτ (2.1)

It is a convenient nominal measure of the range of eddy
sizes. Clearly geophysical flows, which have very large
Reynolds numbers, contain eddies whose sizes vary over
an enormous range.

The foregoing definitions are based entirely on the
behaviour of the mean velocity profile, which, for many
years, was the main source of information about turbulent
flow behaviour. More recently, Wei et al. (2005) identified
a four-layer structure based on the changing balance of
the terms in the mean momentum equation governing the
mean velocity U. (The fluctuating velocity components in
the streamwise, wall-normal and spanwise directions will
be denoted by u, v, w, respectively, and position coordi-
nates are x, y, z.) These terms consist of the mean advective
acceleration for boundary layers, or the mean pressure
gradient divided by density for pipe and channel flow or
the streamwise component of gravitational acceleration
for open channel flow balanced by the gradient of the
viscous stress, ν∂2U/∂y2 and the gradient of the Reynolds
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shear stress, ∂ (−uv)/∂y, also called the net force. In the
inner viscous sublayer, viscous force balances convection,
pressure gradient or gravity from the wall to y+ = 3. In the

stress gradient balance layer between 3 < y+ < 1.6
√

δ+
0

viscous force balances the net Reynolds force. This layer
is much like the conventional buffer layer except for the
limit of its upper extent. Interestingly, viscosity plays a
further role above this layer because the gradient of the
Reynolds stress vanishes at approximately

y+
p = 1.8

√
Reτ, (2.2)

the empirical location of the maximum Reynolds shear
stress. Therefore, the mean viscous force is needed to bal-
ance the mean convection or pressure gradient or gravity
at and around this location, as in the inner viscous sublayer
(Sreenivasan, 1989). Above y+

p the net force represented
by the gradient of the Reynolds shear stress decelerates
the mean flow, and below it the net force is accelera-
tive. The range in which the viscous force balances the
advection or the pressure gradient or the gravitational

force is 1.6
√

δ+
0 < y+ < 2.6

√
δ+

0 (Wei et al., 2005). It is

referred to as the mesolayer. Above it, the gradient of the
net Reynolds stress balances the advection or the pressure
gradient or the gravitational force, and the length scale
becomes δ0. The mean velocity varies logarithmically up
to y/δ0 = 0.1 − 0.2, and then transitions into wake-like
behaviour. According to Equation (2.1), yp /δ0 becomes
a vanishing fraction of the layer depth δ0 in the limit of
infinite Reynolds number.

The boundaries of geophysical flows are very often
rough, causing the layers near the wall to be disrupted.
Even so, above the layer influenced by roughness, the log-
arithmic layer persists with substantially the same von
Kármán constant, but an additive constant is needed to
represent the velocity at the top of the roughness elements.
This behaviour implies that the layers near the wall are not
essential to the formation of the eddies that characterize
the logarithmic layer.

2.2 Eddy structures

The study of coherent eddies in turbulent flow is an
attempt to reduce the complexity of random three-
dimensional turbulent motions to a collection of simpler
motions that can be classified according to shared char-
acteristics of their flow patterns. Eddies usually possess
vorticity in a compact region and persist for a period
long enough to make significant contributions to the

time averaged statistics of the flow. In this sense, they
are coherent structures or organized motions (Marusic and
Adrian, 2012).

2.2.1 Near-wall quasi-streamwise
vortices

Above a smooth wall, the buffer layer contains high-
speed and low-speed streaks of fluid whose mean spac-
ing, in viscous wall units, is λ+ = 80 at the wall. (The
more commonly quoted value of λ+ = 100 pertains to
the mid-point of the buffer layer.) The streaks are caused
by quasi-streamwise vortices, (long, thin tubes of vor-
ticity that are oriented mainly in the streamwise direc-
tion, Figure 2.1a) whose diameters are about 40+, cor-
responding to 22 Kolmogorov length scales. The vortices
occur in counter-rotating pairs such that, in the region
between the pair, a left clockwise and right counter-
clockwise pair induces flow downward toward the wall,
and a left counterclockwise-right clockwise pair moves
fluid upward away from the wall. The downflows carry
high momentum fluid and create high-velocity streaks,
and vice versa for the upflows. The correlations between
the velocities in downflows v < 0, with positive stream-
wise fluctuations, u > 0 and upflows v>0, with negative
streamwise fluctuations, u < 0 produce the net positive
mean Reynolds’ shear stress, −ρuv.

Eddies take various forms throughout the boundary
layer, but in all cases the upward transport of low stream-
wise momentum and the downward transport of high
steam wise momentum is the fundamental mechanism
responsible for the creation of Reynolds shear stress. This
is very much like the arguments in classical mixing length
theory, except that the eddies are allowed to have varying
orientations and shapes.

2.2.2 Hairpins and hairpin vortex packets
In the log-layer, the main eddy shape is that of a hairpin
with legs emerging from the quasi-streamwise vortices
(Figure 2.1b). This is an average shape that is necessarily
symmetric with respect to the x–y plane. Instantaneously,
the shapes are almost always asymmetric, with one leg
stronger than the other, looking like canes, rather than
hairpins. The term turbines propensii has been suggested
to encompass the full class of inclined vortices and avoid
implying that the geometry of the eddies is too specific
(Marusic and Adrian, 2012). The turbines propensii con-
stitute the attached wall vortices in the sense of Townsend
(1976). If a hairpin emerges from the buffer layer with
sufficient rotational strength, it can create secondary



2 Structure of Turbulent Boundary Layers 19

Uc1 <Uc2 < Uc3

+u +u +u +u +u +u +u +u +u +u +u +u

+u +u +u +u +u +u +u +u +u +u +u +u

–ν
+ν

–ν

0
0

200

200 400 600 800 1000 1200

400

600

800

1000

1200

1400

1600

1800

–u –u –u –u –u –u –u –u –u –u –u –u –u –u –u –u

Yet older packet from upstream

Smaller, slower, younger packet

Larger, faster, older packet 

Flow Direction

Induced Low

Speed Fluid 

X+

Z+

y

x

(b)

(a) 

y+

z+

x+

Idealization 

Realization 

(c)

Figure 2.1 Coherent structures of wall turbulence. Idealized depictions are presented in the left column for clarity, and sample
realizations are presented in the right column. (a) Low speed streaks in the buffer layer. Regions of up flow +v and down flow –v are
associated with low speed fluctuations –u and high speed fluctuations +u; (b) First generation hairpin vortex generated above the
buffer layer; (c) Hierarchy of hairpin vortex packets convecting at velocities Uc1 < Uc2 < Uc3; (d) Large scale motions (LSM) or
turbulent bulges formed at the edge of the turbulent layer. I and II denote first and second generation packets, U0 is the free stream
velocity and δ is the boundary layer thickness; (e) Very large scale motions (VLSM) in pipe flow. R is the pipe radius. In all panels
streamwise, vertical and spanwise directions are x, y and z, respectively.
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Figure 2.1 (Continued) (b left) Reprinted from Zhou et al., 1999, with permission from Cambridge University Press. (c left)
Reprinted from Adrian, et al., 2000, with permission from Cambridge University Press. (c right) After Hommema and Adrian, 2003.
With kind permission from Springer Science and Business Media. (d left) Reprinted with permission from Adrian, 2007. Copyright
2007, American Institute of Physics. (e left) Reprinted from Baltzer et al., 2013, with permission from Cambridge University Press. (e
right) Reprinted from Wu et al., 2012, with permission from Cambridge University Press.

hairpins upstream and downstream of the parent, a pro-
cess referred to as auto generation of hairpins (Zhou et al.,
1996, 1999). Once started, the secondary hairpins can auto
generate tertiary hairpins, and so on, leading to a packet
of hairpins in which the tallest hairpin is the parent and
the smallest hairpin is the most recently born. Auto gen-
eration proceeds at roughly equal time intervals, so the
hairpins are spaced fairly equally, and packets take the
form of ramps (Figure 2.1c). Evidence, mostly from lab-
oratory investigations (Bandyopadhyay, 1980; Head and
Bandyopadhyay, 1981; Adrian et al., 2000), indicates that
ramp angles lie between 13 and 18◦. Using experiments
in the atmospheric surface layer, Marusic and Heuer
(2007) have demonstrated invariance of this angle over
a 1000:1 range of Reynolds numbers with a mean angle
of 14.5◦.

Early direct numerical simulations of the evolution
of initially symmetric disturbances predicted symmetric
hairpin packets (Zhou et al., 1996). But later simulations
starting from slightly asymmetric disturbances predicted
much more complex behaviour, with the vortices tan-

gling, cutting, and reconnecting, as in Figure 2.1b (right).
Despite this complexity, the packets retain the characteris-
tic ramp shape. Observations in higher Reynolds-number
laboratory flows with smooth surfaces reveal the ramp
patterns at several levels throughout the boundary layer
(Adrian et al., 2000; Carlier and Stanislas, 2005; Ganap-
athisubramani et al., 2003). They are also observed above
rough surfaces (Detert, et al. 2010; Guala, et al., 2012),
indicating a robust propensity for the flow to generate
ramps, and presumably packets of vortices, even when
the viscous buffer layer is destroyed.

A limited number of atmospheric flow experiments
(Hommema and Adrian, 2002; Marusic and Heuer, 2007;
Morris et al., 2007) confirm the occurrence of packets,
and theoretical considerations demonstrate their impor-
tance (Marusic, 2001). Because of the scale of atmospheric
observations, it is difficult experimentally to visualize the
hairpin vortices per se, and proof of their existence is
indirect, resting mainly on the ramp shapes and what
looks like the heads of hairpins on the edges of the ramps
(Figure 2.1c, right). Observations of ramp-like vortex
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packets at heights greater than 1 m above the ground imply
that small, first-generation packets, with typical height of
10–50 mm, somehow grow into much larger packets. The
mechanism for this growth is thought to be the merging
of packets as they grow into each other. This process can
be seen in direct numerical simulation of first-generation
packets growing into second generation packets, but it
has so far eluded unequivocal experimental observation,
in part because larger eddies have weaker vorticity and are
harder to visualize.

The linear growth of the packets in the logarithmic layer
produces a linearly increasing length scale (Tomkins and
Adrian, 2003) that is consistent with the linear variation
of the mixing length known from mixing length theory
and, indeed, any other scaling theory of the log-layer. The
ramp angle is a fundamental characteristic of the linear
growth of the hairpins, and constancy of the ramp angle in
the log-layer is likely to be involved in theoretical deriva-
tion of von Kármán’s constant. Packets are not, however,
confined to the logarithmic layer. They are observed to
sometimes poke well above it, reaching even to the outer
edge of the boundary layer, as in the seminal observations
of Bandyopadhyay (1980) and Head and Bandyopadhyay
(1981).

2.2.3 Large-scale motions
The well-known turbulent bulges (Kovasznay, et al., 1970;
Cantwell, 1981) share many similarities with large hairpin
packets, and it is possible that they are one and the same
(Figure 2.1d). The visualizations of Head and Bandyopad-
hyay (1981) would certainly suggest so. But better evidence
is needed to fully establish the links between bulges and
packets. Current practice classifies bulges as large-scale
motions (LSM) whose lengths are approximately two-
to-three times the boundary layer thickness. Large-scale
motions also occur in pipe, channel and, probably, open-
channel flows with streamwise lengths of about two-to-
three layer depths, but without, of course, the bulge geom-
etry. The evidence for LSMs in these flows comes from
frequency power spectra of the streamwise velocity. The
large-scale motions persist out to about y/δ∼ 1, consistent
with the bulges observed in visualizations (Balakumar and
Adrian, 2007). The departure of the mean velocity profile
from the logarithmic law occurs in the region dominated
by the bulges, suggesting a close relationship. In particular,
the irrotational fluid between the intermittent bulges (see
Figure 2.1d) implies a reduction in the average Reynolds
shear stress, consistent with the increased mean velocity
gradient observed above the logarithmic layer.

2.2.4 Very large-scale motions
Very large-scale motions (VLSM) were discovered in pipe
flow from close examination of the spectra of the stream-
wise velocity (Kim and Adrian, 1999). They are defined
as motions longer than two-to-three layer thicknesses,
and they can extend more than 15–20 pipe radii in the
streamwise direction. Later work in pipe flow (Guala et al.,
2006) showed that they extend from the wall to about
one-half pipe radius and were strongest in the log layer.
Most importantly, they contain substantial fractions of
the total turbulent kinetic energy and the Reynolds shear
stress, making them essential to consider when modelling
turbulence. Recent studies of a direct numerical simu-
lation of a 30R long pipe flow with Reynolds number
24 500 (Wu et al., 2012; Baltzer et al., 2013) show that the
very large-scale motions are concatenations of LSMs and
smaller motions, as originally conjectured by Kim and
Adrian (1999). However, the concatenation occurs along
an angle to the pipe axis, and it is associated with spiral roll
cells. The roll cells are similar to those inferred from the
behaviour of surface motions in open-channel flows. Evi-
dence of large, long, meandering and streamwise-inclined
eddies in open channel flows supports the paradigm just
described (Adrian and Marusic, 2012).

Very large-scale motions also occur in channel flows
(Balakumar and Adrian, 2007) where, as in pipe flow,
they account for large fractions of the energy and Reynolds
shear stress. In boundary layer flow they are shorter, of the
order of 6–7δ, and there is some uncertainty as to whether
they are different from the bulges or merely longer than
average bulges (Hutchins and Marusic, 2007, Monty et al.,
2009). Evidence for VLSMs in the atmospheric surface
layer also comes from Hutchins and Marusic (2007),
who used arrays of hotwires to infer lengths of 10δ, or
more. Support for the concatenation hypothesis of Kim
and Adrian (1999) applying to the turbulent boundary
layer comes from atmospheric surface layer and labora-
tory measurements found in Hambleton et al. (2006) and
Hutchins et al. (2012).

2.3 Interactions of eddies
on different scales

The interaction of the inner scales with the outer scales,
or the absence thereof, has been a topic of long debate
in the study of wall turbulence. No interaction would
imply that the inner layer is free standing and dynamically
autonomous, and this would be convenient theoretically.
However, recent work from the University of Melbourne
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(Marusic et al., 2010) clearly shows a dynamic correlation
between times series measurements in the two layers in
which large-scale motions from the outer layer do two
things: (i) they leave an additive imprint, or footprint, on
the streamwise velocity field in the near wall region; and
(ii) they stimulate small-scale activity in the inner layer
during periods of large-scale acceleration. This second
effect is manifested as a multiplicative factor.

Physically, the observations of Marusic et al. (2010) are
quite reasonable if one views wall turbulence from the
viewpoint of boundary layer theory. The large-scale outer
flow scales in outer variables, and its velocity at the wall,
would provide an upper boundary condition for the inner
layer, which scales in viscous wall variables (i.e. + units)
and contains the molecular viscosity needed to satisfy no
slip at the wall. The upper boundary condition on the
inner layer couples the inner and outer motions. Increas-
ing outer flow velocity implies larger inner flow velocities
and increased stretching of the small-scale eddies, thereby
stimulating them, and it forms a multiplicative scale. That
is, doubling the outer flow doubles the inner flow veloc-
ities. Physically, we can only observe the composite solu-
tion from such a model, which is the sum of the inner
and outer solutions minus the common part. The sum-
mation is consistent with the results found by Marusic
et al. (2010).

The concept of inner/outer interaction stimulates
thinking about dynamic processes. For example, a large-
scale high-speed region displacing a large-scale, low-speed
region would stimulate the small-scale hairpins to greater
activity. Their function is to pump low-speed fluid upward
into the high-speed region, thereby decelerating it. Lower
speed in one locale implies, by continuity, higher speed in
another, so a new high-speed region must be formed at a
different location, and the process is repeated there. This
could lead to a cyclic pattern of high speed and low speed
regions in the outer layer.

2.4 Extracting coherent structure from
geophysical flows

Geophysical flows offer unique opportunities to study tur-
bulence at very high Reynolds number. They also pose
extraordinary challenges owing to inability to control
them and the instrumental scale. Thus, while laboratory
flows are accessible to high-resolution PIV measurements,
geophysical flows are more likely to be studied with lower
resolution scanning 3-D radar or LiDAR instruments,

making observations of eddies difficult. Higher resolu-
tion can be achieved by acoustic Doppler or thermal
anemometer probes, but only on a coarse grid of points.
The challenge is to find aspects of the turbulent motion
that can be measured in both the laboratory and the field.
In this regard, the low-momentum zones inside the hair-
pin vortex packets seem much more likely to be observed
than the vortices that surround them, owing to the lower
resolution required to see them.

One approach to this problem has been described by
Hommema and Adrian (2002), who used a template-
matching scheme in which samples of line series data
through turbulent ramps from laboratory experiments
(Figure 2.2) were matched to segments of time series data
from a hot wire probe in the atmosphere. Matching was
performed by stretching the laboratory data and trans-
lating it along the atmospheric time series, looking for
positions of least mean square error. It was found that
using only eight of the laboratory templates allowed more
than 50% of the atmospheric signal to be reconstructed
with 65% correlation coefficient. Moreover, the eight dif-
ferent templates were each passages through vortex packet
ramps.

The process was fundamentally the same as the well-
known wavelet analysis (Seena and Sung, 2011), except for
two extremely important differences. First, it applied only
one stretching to the laboratory data, while wavelet trans-
forms systematically vary the dilation parameter. Second,
instead of using an ad hoc wavelet kernel such as a Mexican
hat, which has no physical relation to the turbulence, the
template-matching approach used a set of wavelet ker-
nels taken from the structure of the flow. In actuality,
the process started with about 20 templates selected ran-
domly, and determined which parts of the atmospheric
signal could be represented by the various templates. The
wavelet transform should be exploited for this problem
because systematic dilatation permits extracting different
scales of eddies.

2.5 Conclusions

Much is known about the coherent eddies of wall turbu-
lence, but an even greater amount remains to be learned.
Geophysical flows have great potential to contribute to
our knowledge in this area, largely owing to the very large
Reynolds numbers that can be accessed in these flows.
While the buffer layer plays a big role in low Reynolds
number experiments and simulations, it is likely to be
irrelevant in geophysical flows, and the most profitable
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Figure 2.2 Schematic representation of the template-matching procedure. (a) Ensemble of M PIV realizations; (b) A template T(i) is
extracted from each of M PIV realizations at a specified vertical coordinate (y/δ); (c) Ensemble of hot-wire realizations; (d) Template
is correlated with the moving window, u(j), in each hot-wire record to generate the coefficient gi,j. This procedure is performed for
each hotwire realization, generating N correlation coefficients for each template. Reprinted from Hommema and Adrian, 2002. With
kind permission of Springer Science and Business Media.

and appropriate focus of the research is likely to be
the low momentum zones in packets and the very large-
scale motions.
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