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Lecture 5.  The logarithmic sublayer and surface roughness 
In this lecture… 

• Similarity theory for the logarithmic sublayer. 

• Characterization of different land and water surfaces for surface flux parameterization 
Monin-Obukhov scaling in the surface layer 

 Near a solid boundary, in the `surface layer', vertical fluxes are transported primarily by 
eddies with a lengthscale much smaller than in the center of the BL.  A very successful similarity 
theory is based on dimensional reasoning (Monin and Obukhov, 1954).  It postulates that near 
any given flat surface, the vertical gradients of  the mean wind and thermodynamic profiles 
should be determined purely by the height z above the surface (which limits the vertical size of 
the eddies that carry the turbulent fluxes) and the surface fluxes which drive turbulence: 
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2. Surface buoyancy flux B0 = . 

In the ABL, a typical u* might be 0.3 m s-1.  A typical range of B0 would be -3×10-4 m2s3 

(nighttime)  to 1.5×10-2 m2s-3 (midday), corresponding to a virtual heat flux of -10 W m-2 at night 
and 500 W m-2 at midday.  One can construct from these fluxes the 
     Obukhov length L = -u*

3/kB0     (5.1) 
Here k = 0.4 is the von Karman constant, whose physical significance we'll discuss shortly.  L 
is positive for stable BLs and negative for unstable BLs.  The example values above give L = 200 
m (nighttime) and -5 m (midday). 

The logarithmic sublayer (Garratt, p. 41) 
 At height z, the characteristic eddy size, velocity, and buoyancy  scale with z, u* and B0/u*.  If 
the buoyant acceleration acts over the eddy height, it would contribute a vertical velocity (zδb)1/2 
= (z B0/u*)1/2.  If z < |L|, this buoyancy driven contribution to the vertical velocity is much smaller 
than the shear-driven inertial velocity scale u*, so buoyancy will not significantly affect the 
eddies. In this case, the mean wind shear will depend only on u* and z.  From now on, we will 
use an unprimed variable to refer an ensemble mean (dropping the overline) unless otherwise 
stated. We will also rotate our coordinates so +x is the near-surface mean wind direction and the 
near-surface momentum flux is - i.  By dimensional reasoning, 
    du/dz  = u*/kz       (z << |L|)     (5.2) 
This can also be viewed in terms of an eddy viscosity consistent with mixing length theory: 

    = -u*
2 = -u*kz du/dz = - Kmdu/dz 

     Km ∝ (u*)(kz) = (eddy velocity)(eddy length)  (5.3) 
The von Karman constant k is the empirically determined constant of proportionality in (5.2). 
Integrating (5.2), we get the logarithmic velocity profile law: 
    u(z)/u* = k-1 ln(z/z0)       (z << |L|)    (5.4) 
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The constant of integration z0 depends on the surface and is called the roughness length.  The 
figure below shows measured near-surface velocity profiles from the Wangara experiment that 
compare very well with the predicted log-layer structure and are consistent with z0 = 5 mm. 

 
Roughness length of various surfaces (Garratt, Ch. 4) 

The roughness length is loosely related to the typical height of closely spaced surface obstacles, 
often called roughness elements (e. g. water waves, trees, buildings, blades of grass). It depends 
on the distribution as well as the height hc of roughness elements (see figure below), but as a rule 
of thumb, 
    z0 ~ 0.1hc .       (5.5) 
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z0 varies greatly depending on the surface, but a typical overall value for land surfaces is z0 = 0.1 
m (see table on previous page).  In rare circumstances, the surface is so smooth that the viscous 
sublayer is deeper than roughness elements, whence  
    z0 ~ 0.1ν/u*  ~  0.015 mm for u* = 0.1 m s-1 .   (5.6) 
Near the surface, the log profile fits best if z is offset by a zero-plane displacement d0 which lies 
between 0 and hc, and is typically around 0.7 hc:   
    u(z)/u* = k-1 ln([z-d0]/ z0)     (z << |L|)    (5.7) 

Roughness of Water Surfaces (Garratt p. 97-100) 

The roughness of a water surface depends on wind speed and the spectrum of waves.  A strong 
wind blowing from S to N across the SR 520 bridge shows the importance of fetch on wave 
spectrum.  On the south side, large waves will be crashing onto the bridge deck. On the N side, 
the water surface will be nearly smooth except for short wavelength ripples (`cats paws') 
associated with wind gusts.  As one looks further N from the bridge, one sees chop, then further 
downwind, longer  waves begin to build.  It can take a fetch of 100 km for the wave spectrum to 
reach the steady state or fully developed sea  assumed by most formulas for surface roughness.  
It is thought that much of the wind stress is associated with boundary layer separation at sharp 
wave crests of breaking waves or whitecaps, which start forming at wind speeds of 5 m s-1 and 
cover most of the ocean surface at wind speeds of 15 m s-1 or more.   
 For wind speeds below 2.5 m s-1, the water surface is approximately aerodynamically 
smooth, and the viscous formula for z0 applies.  For intermediate wind speeds, the flow is 
aerodynamically smooth over some parts of the water surface but rough around and in the lee of 
the breaking whitecaps, and for wind speeds above 10 m s-1 it is fully rough.  For rough flow, 
Charnock (1955) suggested that z0 should depend only on the surface stress on the ocean and the 
gravitational restoring force, i. e., u* and g, leading to Charnock's formula: 

    z0 = ac u*
2/g,   (ac = 0.016 ±20% from empirical measurements). (5.8) 

This formula appears reasonably accurate for 10 m wind speeds of 4-50 m s-1.  For 10 m wind 
speeds of 5-10 m s-1, this gives roughness lengths of 0.1 - 1 mm, much less than almost any land 
surface.  Even the heavy seas under in a tropical storm have a roughness length less than mown 
grass!  This is because (a) the large waves move along with the wind, and (b) drag seems to 
mainly be due to the vertical displacements involved directly in breaking, rather than by the 
much larger amplitude long swell.  The result is that near-surface wind speeds tend to be much 
higher over the ocean, while surface drag tends to be smaller over the ocean than over land 
surfaces. 

Snow and Sand Surfaces (Garratt, p. 87-88) 
 The roughness of sand or snow surfaces also increases of wind speed, apparently due to 
suspension of increasing numbers of particles. Charnock's dimensional argument again applies, 
and remarkably, the same ac appears to work well, though now the minimum z0 is larger 
(typically at least 0.05 mm), associated with the roughness of the underlying solid surface. 
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Bulk Aerodynamic Drag Formula (Garratt, p. 100-101) 
 Suppose that a wind measurement is taken at a standard reference level zR within the log 
layer (A typical shipboard height of zR = 10 m is often used for ocean measurements).  Then 
(ignoring zero-plane displacement for simplicity), u(zR) = u* k-1 ln(zR/z0). The bulk aerodynamic 
formula relates the surface stress ρ0  to the reference wind speed in terms of a neutral drag 
coefficient CDN which depends on surface roughness: 

    - ρ0 = ρ0u*
2  = ρ0CDNu2(zR),    (5.9) 

    where  CDN = k2/{ln(zR/z0)}2     (5.10) 
The N, for ‘neutral’, in the suffix is to remind us that this formula only applies if when zR <<  |L|.  
At typical reference heights (2 m or 10 m), this requires fairly neutrally stratified conditions, as 
usually observed over the oceans but less reliably over land.  For zR = 10 m and z0 = 0.1 m, CDN =  
8×10-3. 
 Over the water, CDN is a function of surface roughness u*  and hence implicitly of wind speed. 
While Charnock's formula gives an awkward transcendental equation to solve for CDN in terms of 
u(zR), a good approximation using mean 10 m wind speed u10 is:  

CDN = (0.75  + 0.067u10) ×10-3     (water, neutrally stratified BL) (5.11) 
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Heat and Moisture Transfer in Neutral Conditions 

 Let a be a scalar (θ, q, etc.) transported by the turbulence.  In the log-layer, we again might 
hope for a flux-gradient relation of the form 

     ′w ′a  = -Kada/dz,    Ka = kazu*     (5.12) 
The nondimensional constant ka need not equal the von Karman constant k, since momentum 
perturbations of fluid parcels are affected by eddy-induced pressure gradients, while scalars are 
not.  However, empirical measurements do suggest that ka = k in a neutral BL. A scale for 
turbulent perturbations a¥ in the log layer is: 

    a*  =   ′w ′a 0 /u*       (5.13) 
Since the flux is approximately equal to its surface value throughout the surface layer,  

    da/dz = -  ′w ′a 0 /(kzu*) = -a*/kz     (5.14) 
    a(z) -  a0 = - a*/k ln(z/za)     (5.15) 
This has the same logarithmic form as the velocity profile, but the scalar roughness length za 
need not be (and usually isn't) the same as z0.  In fact, it is often much smaller, because pressure 
(form) drag on roughness elements helps transfer momentum between the interfacial (viscous) 
sublayer around roughness elements to the inertial sublayer.  No corresponding nonadvective 
transfer mechanism exists for scalars, so they will be transferred less efficiently out of the 
interfacial layer (za < z0) unless their molecular diffusivity is much larger than that of heat.  
 Note that temperature T is not an adiabatically conserved scalar; to use (5.15) you must 
adiabatically correct the temperature measured at height z to the surface (z = 0) by adding gz/cp 
(this is equivalent to using dry static energy s = cpT + gz as your conserved scalar). 
 The surface humidity over a water surface depends on whether it is fresh or salty, since salt 
(which make up 2% of the molecules in sea water) does not evaporate, corresponding reducing 
the vapor pressure over salt water. Also, one must use the skin temperature, which may differ 
slightly from the bulk temperature measured below the water surface: 

   Over water: q0 = qsat (p,Tskin ) ⋅
1, freshwater lakes

0.981, ocean
⎧
⎨
⎪

⎩⎪
  (5.15a) 

 (5.15) can be converted into a bulk aerodynamic formula like (5.10), but the transfer 
coefficient is different: 

    ρ0  ′w ′a 0  = ρ0CaNu(zR){a0 -  a(zR)},    (5.16) 
    CaN = k2/{ln(zR/z0)ln(zR/za)}     (5.17) 
For most land surfaces, the heat and moisture scaling lengths zH and zq are 10-30% as large as z0,  
resulting in a typical CHN of 0.7-0.95CDN . For water surfaces, the heat and moisture coefficients 
are comparable to CDN for 10 m winds of 7 m s-1 or less, but remain around 1.1-1.3×10-3 (see 
figures below) rather than increasing as wind speed increases.  This corresponds to heat and 
moisture scaling lengths appropriate for laminar flow even at high wind speeds. For instance, 
ECMWF uses zH, zq = (0.4, 0.62)ν/u* following Brutsaert (1982). 
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 Bulk aerodynamic formulas are quite accurate as long as (i) an appropriate transfer 
coefficient is used for the advected quantity, the reference height, and the BL stability, and (ii) 
Temporal variability of the mean wind speed or air-sea differences are adequately sampled. The 
figure below shows comparisons between direct (eddy-correlation) measurements of moisture 
flux in nearly neutrally stratified BLs over ocean surfaces compared with a bulk formula with 
constant CqN = 1.32×10-3.  In individual cases, discrepancies of up to 50% are seen (which are as 
likely due to sampling scatter in the measured fluxes as to actual problems with the bulk 
formula), but the overall trend is well captured.  Due to this type of scatter, no two sources 
exactly agree on the appropriate formulas to use, though all usually agree within about 10-20%. 
 

 

 


