Derivation of NS equation

1 Continuity equation

Consider a small volume of fluid of volume *V* and sides Δx , Δy , ∆*z*.

The mass flux (flow per unit time) out of box through side B is

$$
\rho_B u_b \Delta y \Delta z
$$

and through side A

$$
-\rho_A u_A \Delta y \Delta z
$$

Summing over all sides will give the rate of decrease of mass per unit time, i.e.

$$
-\frac{\partial}{\partial t} \int_V \rho dV = [\Delta(u\rho)\Delta y \Delta z + \Delta(v\rho)\Delta z \Delta x + \Delta(w\rho)\Delta x \Delta y]
$$

As $V \rightarrow 0$

$$
\frac{\partial \rho}{\partial t} = -\left[\frac{\partial (u\rho)}{\partial x} + \frac{\partial (v\rho)}{\partial y} + \frac{\partial (w\rho)}{\partial z}\right]
$$

More generally

$$
\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \underline{u})
$$

(see crib sheet for definition of vector operators)

If ρ is constant then

$$
\nabla \cdot \underline{u} = 0
$$

The above holds (approximately) even when the density of the fluid varies, so long as pressure effects are negligible. The flow is then said to be incompressible.

The assumption of **incompressibility** usually holds provided the flow speed is much smaller than the speed of sound, which is around 340 m s^{-1} in air and 1470 m s^{-1} in water.

2 Momentum equation – Navier Stokes equation

Newton's second law of motion applied to a fluid particle reads

The rate of change of momentum of a fluid particle is equal to the net force acting upon it

All we need do is determine both sides of the equality.

2.1 Material Derivative

Consider the rate of change of a scalar quantity T. A small change

$$
\delta T = \frac{\partial T}{\partial t} \delta t + \frac{\partial T}{\partial x} \delta x + \frac{\partial T}{\partial y} \delta y + \frac{\partial T}{\partial z} \delta z
$$

The rate of change following the fluid motion is given by dividing by δt , making $\delta t \to 0$, and setting $\partial x/\partial t = u$, etc. Thus

$$
\frac{DT}{Dt} = \frac{\partial T}{\partial t} + u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} + w\frac{\partial T}{\partial z}
$$

which can be written

$$
\frac{DT}{Dt} = \frac{\partial T}{\partial t} + (\underline{u} \cdot \nabla)T
$$

The operator D/Dt is known as the **material derivative** or the rate of change following a fluid particle. The change in a property of the fluid at a point is brought about by local changes with time and the advection of the property past the point.

If

$$
\frac{DT}{Dt} = 0
$$

then the property of the fluid particle is unchanged with time.

For the velocity of the fluid, by similar reasoning, we have

$$
\frac{D\underline{u}}{Dt} = \frac{\partial \underline{u}}{\partial t} + (\underline{u} \cdot \nabla)\underline{u}
$$

The change in momentum *per unit volume* following the fluid motion is then

$$
\rho \frac{D\underline{u}}{Dt} = \rho \frac{\partial \underline{u}}{\partial t} + \rho (\underline{u} \cdot \nabla) \underline{u}
$$

2.2 Forces acting on a fluid particle

These can be divided into two kinds:

External – such as gravity

and

Internal – such as pressure and viscosity

2.2.1 Pressure

If $p_A = p_B$, where p_n is the pressure exerted on a given side of the fluid element, then there is no net force acting on the fluid element.

The net force acting in the *x* direction is

$$
(p_A - p_B)\delta y \delta z
$$

$$
= -\frac{\partial p}{\partial x} \delta x \delta y \delta z
$$

The net force in the *x* direction per unit volume is

$$
-\frac{\partial p}{\partial x}
$$

and the total force *per unit volume* is

−∇*p*

2.2.2 Viscosity

Viscous stresses oppose the relative movement between neighbouring fluid particles.

Consider a plain straining motion

The faster fluid above **AB** will drag forward the slower moving fluid below, and visa versa.

In a Newtonian fluid the stress is directly proportional to the velocity gradient (strain). Thus

$$
\tau = \mu \frac{\partial u}{\partial y}
$$

where μ is the **coefficient of viscosity** of the fluid and τ the force per unit area.

The force acting across \mathbf{AB} is

$$
\mu\left(\frac{\partial u}{\partial y}\right)_y \delta x \delta z
$$

Dynamical Oceanography: Equations of motion 6

across CD is

$$
\mu\left(\frac{\partial u}{\partial y}\right)_{y+\Delta y}\delta x\delta z
$$

so that the net force *per unit volume* on our element is

$$
\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial y}\right)\delta x \delta y \delta z
$$

The general case is mathematically more difficult. However to a good approximation, for most practical cases, the viscous force per unit volume is simply

$$
\mu \nabla^2 \underline{u}
$$

Collecting all the terms together we get

$$
\rho \frac{D\underline{u}}{Dt} = -\nabla p + \mu \nabla^2 \underline{u} + \underline{F}
$$

where \underline{F} is referred to as a body force (example – gravity, g). This equation is known as the Navier Stokes equation. Often the equation is divided through by ρ and $\nu = \mu/\rho$ is known as the kinematic viscosity.