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Derivation of NS equation

1 Continuity equation

Consider a small volume of fluid of volume V and sides ∆x, ∆y,
∆z.
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The mass flux (flow per unit time) out of box through side B is

ρBub∆y∆z

and through side A

−ρAuA∆y∆z

Summing over all sides will give the rate of decrease of mass
per unit time, i.e.
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∫

V
ρdV = [∆(uρ)∆y∆z + ∆(vρ)∆z∆x + ∆(wρ)∆x∆y]
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As V → 0
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More generally

∂ρ

∂t
= −∇ · (ρu)

(see crib sheet for definition of vector operators)

If ρ is constant then

∇ · u = 0

The above holds (approximately) even when the density of the
fluid varies, so long as pressure effects are negligible. The flow is
then said to be incompressible.

The assumption of incompressibility usually holds provided
the flow speed is much smaller than the speed of sound, which is
around 340 m s−1 in air and 1470 m s−1 in water.

2 Momentum equation – Navier Stokes equation

Newton’s second law of motion applied to a fluid particle reads

The rate of change of momentum of a fluid particle is
equal to the net force acting upon it

All we need do is determine both sides of the equality.

2.1 Material Derivative

Consider the rate of change of a scalar quantity T. A small change



Dynamical Oceanography: Equations of motion 3
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The rate of change following the fluid motion is given by dividing
by δt, making δt → 0, and setting ∂x/∂t = u, etc. Thus
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which can be written

DT

Dt
=

∂T

∂t
+ (u ·∇)T

The operator D/Dt is known as the material derivative or
the rate of change following a fluid particle. The change
in a property of the fluid at a point is brought about by local
changes with time and the advection of the property past
the point.

If

DT

Dt
= 0

then the property of the fluid particle is unchanged with time.

For the velocity of the fluid, by similar reasoning, we have

Du

Dt
=

∂u

∂t
+ (u ·∇)u

The change in momentum per unit volume following the fluid
motion is then

ρ
Du

Dt
= ρ

∂u

∂t
+ ρ(u ·∇)u
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2.2 Forces acting on a fluid particle

These can be divided into two kinds:

External – such as gravity

and

Internal – such as pressure and viscosity

2.2.1 Pressure

A Bpa pb

If pA = pB, where pn is the pressure exerted on a given side of
the fluid element, then there is no net force acting on the fluid
element.

The net force acting in the x direction is

(pA − pB)δyδz

= −∂p

∂x
δxδyδz

The net force in the x direction per unit volume is

−∂p

∂x
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and the total force per unit volume is

−∇p

2.2.2 Viscosity

Viscous stresses oppose the relative movement between neighbour-
ing fluid particles.

Consider a plain straining motion

C D
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The faster fluid above AB will drag forward the slower moving
fluid below, and visa versa.

In a Newtonian fluid the stress is directly proportional to the
velocity gradient (strain). Thus

τ = µ
∂u

∂y

where µ is the coefficient of viscosity of the fluid and τ the
force per unit area.

The force acting across AB is
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across CD is

µ
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so that the net force per unit volume on our element is

∂
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The general case is mathematically more difficult. However to a
good approximation, for most practical cases, the viscous force per
unit volume is simply

µ∇2u

Collecting all the terms together we get

ρ
Du

Dt
= −∇p + µ∇2u + F

where F is referred to as a body force (example – gravity, g). This
equation is known as the Navier Stokes equation. Often the
equation is divided through by ρ and ν = µ/ρ is known as the
kinematic viscosity.


