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Derivation of the Continuity and Navier
Stokes Equations

1 Continuity equation

Consider a small volume of fluid of volume V and sides ∆x, ∆y, ∆z.
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The mass flux (flow per unit time) out of box through side B is

ρBub∆y∆z

and through side A

−ρAuA∆y∆z

Summing over all sides will give the rate of decrease of mass per unit time, i.e.
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∫

V
ρdV = [∆(uρ)∆y∆z + ∆(vρ)∆z∆x + ∆(wρ)∆x∆y]

As V → 0
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More generally

∂ρ

∂t
= −∇ · (ρu)

(see crib sheet for definition of vector operators)

If ρ is constant then

∇ · u = 0

The above holds (approximately) even when the density of the fluid varies, so long as
pressure effects are negligible. The flow is then said to be incompressible.

The assumption of incompressibility usually holds provided the flow speed is much
smaller than the speed of sound, which is around 340 m s−1 in air and 1470 m s−1 in
water.

2 Momentum equation – Navier Stokes equation

Newton’s second law of motion applied to a fluid particle reads

The rate of change of momentum of a fluid particle is equal to the net force
acting upon it

All we need do is determine both sides of the equality.

2.1 Material Derivative

Consider the rate of change of a scalar quantity T. A small change

δT =
∂T

∂t
δt +
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δx +

∂T

∂y
δy +

∂T

∂z
δz

The rate of change following the fluid motion is given by dividing by δt, making δt → 0,
and setting ∂x/∂t = u, etc. Thus
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which can be written

DT

Dt
=

∂T

∂t
+ (u ·∇)T

The operator D/Dt is known as the material derivative or the rate of change fol-
lowing a fluid particle. The change in a property of the fluid at a point is brought
about by local changes with time and the advection of the property past the point.
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If

DT

Dt
= 0

then the property of the fluid particle is unchanged with time.

For the velocity of the fluid, by similar reasoning, we have

Du

Dt
=

∂u

∂t
+ (u ·∇)u

The change in momentum per unit volume following the fluid motion is then

ρ
Du

Dt
= ρ

∂u

∂t
+ ρ(u ·∇)u

2.2 Forces acting on a fluid particle

These can be divided into two kinds:

External – such as gravity

and

Internal – such as pressure and viscosity

2.2.1 Pressure

A Bpa pb

If pA = pB, where pn is the pressure exerted on a given side of the fluid element, then
there is no net force acting on the fluid element.

The net force acting in the x direction is

(pA − pB)δyδz

= −∂p

∂x
δxδyδz
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The net force in the x direction per unit volume is

−∂p

∂x

and the total force per unit volume is

−∇p

2.2.2 Viscosity

Viscous stresses oppose the relative movement between neighbouring fluid particles.

Consider a plain straining motion
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The faster fluid above AB will drag forward the slower moving fluid below, and visa
versa.

In a Newtonian fluid the stress is directly proportional to the velocity gradient (strain).
Thus

τ = µ
∂u

∂y

where µ is the coefficient of viscosity of the fluid and τ the force per unit area.

The force acting across AB is

µ

(
∂u

∂y

)

y

δxδz

across CD is

µ

(
∂u

∂y

)

y+∆y

δxδz

so that the net force per unit volume on our element is
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∂

∂y

(
∂u

∂y

)

δxδyδz

The general case is mathematically more difficult. However to a good approximation, for
most practical cases, the viscous force per unit volume is simply

µ∇2u

Collecting all the terms together we get

ρ
Du

Dt
= −∇p + µ∇2u + F

where F is referred to as a body force (example – gravity, g). This equation is known as
the Navier Stokes equation. Often the equation is divided through by ρ and ν = µ/ρ
is known as the kinematic viscosity.


