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Equations of motion

The waters of the oceans are continually in motion driven primarily by the atmosphere
through winds blowing across the ocean surface and differential heating and cooling. In
order to study the dynamics of these motions of the ocean and to understand how the
ocean will respond to a given forcing we require a system of equations that describe the
fluid motion. There are two problems facing us; one is to couch the equations in a form
suitable for an observer on the rotating earth, the other is to restrict the dynamics of
the system to those scales of motion that we are interested in. In this course we are
concerned with scales of motion in the ocean from a few tens of kilometres to the size of
an ocean basin (we will be more precise in the definition of these scales later).

1 Equations of motion for a fluid on a rotating sphere

First we consdier the momentum equation.

Momentum equation

The momentum equation is simply a statement of Newton’s second law of motion, which
in a fixed frame of reference is

dfuf

dt
=
∑

i

F i

where uf is the velocity of a particle (the subscript f referring to the fixed frame of
reference) and F i the forces per unit mass acting on that particle.

For a fluid this becomes the Navier Stokes equation

Du

Dt
= −1

ρ
∇p + ν∇2u +

F

ρ

where u is the fluid velocity, p the pressure, ρ the fluid density, ν the kinematic viscosity
and F any external forces acting on the fluid such as gravity, ρg.

We want to work in a frame of reference relative to the rotating Earth. Let the
angular velocity of the rotating frame be Ω.

Then a point, xr, with a fixed position in the rotating frame has a velocity Ω ∧ xr

(fig. 1). When the point xr is moving relative to the rotating frame (i.e. moving over
the surface of the Earth), the velocity relative to the fixed frame is

dxf

dt
=

dxr

dt
+ Ω ∧ xr .

Repeating the operation gives the acceleration of the particle. Thus
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Figure 1: Rotating system

d2xf

dt2
=

d

dt

(
dxr

dt
+ Ω ∧ xr

)

+ Ω ∧
(

dxr

dt
+ Ω ∧ xr

)

=
d2xr

dt2
+ 2Ω ∧ dxr

dt
+ Ω ∧ (Ω ∧ xr) .

Using the vector identity Ω ∧ (Ω ∧ xr) = ∇(Ω2x2
r/2) and writing dx/dt = u, we get

duf

dt
=

dur

dt
+ 2Ω ∧ u + ∇

(
1

2
Ω2x2

r

)
.

When the point xr is the position of a material volume element of the fluid then the
derivative d/dt is the same as the substantive derivative D/Dt = ∂/∂t + u · ∇, or the
rate of change flowing the fluid motion.

The momentum equation for a fluid in a rotating frame of reference is then

Du

Dt
+ 2Ω ∧ u = −1

ρ
∇p −∇Φv . (1)

The subscript r has been dropped and from now on will be implied in all that we do. Φv

is referred to as the total gravity, and is the sum of the geopotential due to gravity and
the rotational acceleration, i.e.

Φv = Φ − 1

2
Ω2x2

r
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where ∇Φ = g. Note that we have ignored any forcing and dissipative processes. These
will be considered later.

We require additional equations to fully describe the system. These are similar to
those in a non–rotating system and are:

Conservation of mass

or the continuity equation

Dρ

Dt
+ ρ∇ · u = 0 (2)

The equation of state

relating density to fluid properties such as pressure p, temperature T and salinity S

ρ = ρ(p, S, T ) (3)

and

Conservation of state variables

such as temperature and salinity

DT

Dt
= 0 (4)

DS

Dt
= 0 . (5)

Again we have ignored for the moment any dissipative processes.

As in many branches of fluid dynamics we will make two basic assumptions to simplify
the system a little.

Incompressibility

For many purposes the fact that sea water, and even air, is compressible is not relevant
for the dynamics of many of the motions that occur in the ocean and atmosphere. The
change in volume of a fluid particle undergoing modest vertical excursions is usually
negligible. In this case the continuity equation reduces to a simple statement of the
non-divergence of the velocity field,

∇ · u = 0 . (6)

The validity of the incompressibiltiy assumption formally requires that

1. particle velocities are small compared with the speed of sound, cs
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2. the phase speed of waves in the system << cs

3. the vertical scale of motion << the scale height Hs (≃ ρ/(dρ/dz)), the height over
which the density varies appreciably

(Hs ≃ 200 km for the ocean, 10 km for the atmosphere).

Boussinesq

In the ocean the density ρ never departs more than 2% from its mean value ρo. Under
the Boussinesq approximation the density is taken to be constant in computing rates
of change of momentum. In the momentum equation density variations are only taken
into account when they give rise to buoyancy forces through the gravitional term. This
approximation requires that the vertical scale of the vertical component of velocity, w, is
small compared with Hs.

Equations (1-5) cover a vast range of motions of a fluid on the Earth from the plan-
etary scale down to small turbulent eddies. Even with the above approximations the
solution of the equations is generally intractable. In any case the richness of solutions
will mask the particular process we may be interested in. We will simplify the equations
by considering the expected magnitude of individual terms. But first we must choose a
coordinate system. The natural choice for the Earth are spherical coordinates.

2 Equations of motion in spherical coordinates

The coordinates are taken as (r, θ, φ) representing the distance from centre of the Earth,
latitude and longitude, respectively (fig. 2). The velocity components (u, v, w) in each
coordinate direction then represent eastward, northward and vertical motions.

The equations of motion can then be written in the component form thus

Continuity equation

1

r cos θ

∂u

∂φ
+

1

r cos θ

∂(v cos θ)

∂θ
+

2w

r
+

∂w

∂r
= 0 (7)

Momentum equations

Du

Dt
+

uw

r
− uv

r
tan θ − 2Ωv sin θ + 2Ωw cos θ = − 1

ρor cos θ

∂p

∂φ
(8)

Dv

Dt
+

vw

r
+

u2

r
tan θ + 2Ωu sin θ = − 1

ρor

∂p

∂θ
(9)

Dw

Dt
− u2 + v2

r
− 2Ωu cos θ = − 1

ρo

∂p

∂r
− g (10)
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Figure 2: Spherical coordinate system

where the substantive derivative

D

Dt
=

∂

∂t
+

u

r cos θ

∂

∂φ
+

v

r

∂

∂θ
+ w

∂

∂r
.

Because we will be referring to distances with respect to some reference latitude, θo,
and the distance from the surface of the Earth rather than its centre we will introduce
the new coordinates

x = φa cos θo

y = (θ − θo)a

z = r − a

where a is the mean radius of the Earth.
Derivatives in the φ, θ and r directions can then be written as

∂

∂φ
= a cos θo

∂

∂x
∂

∂θ
= a

∂

∂y
∂

∂r
=

∂

∂z
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and the substantive derivative

D

Dt
=

∂

∂t
+ u

cos θo

cos θ

a

r

∂

∂x
+ v

a

r

∂

∂y
+ w

∂

∂z
.

The coordinates (x, y, z) are approximately a Cartesian system if θ − θo << 1 (i.e.
small departures from the reference latitude) and z/a << 1 (the depth of the ocean D
≃ 5 km whilst the radius of the Earth a ≃ 6370 km).

With these restrictions

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

Continuity

∂u

∂x
+

∂v

∂y
+

∂w

∂z
+

2w

r
− v

tan θ

a
= 0 (11)

and the horizontal components of the momentum equation

Du

Dt
+

uw

a
− uv

a
tan θ − 2Ωv sin θ + 2Ωw cos θ = − 1

ρo

∂p

∂x
(12)

Dv

Dt
+

vw

a
+

u2

a
tan θ + 2Ωu sin θ = − 1

ρo

∂p

∂y
. (13)

Scale analysis

To proceed we consider the magnitude of each term in the equations by specifying typical
scales of length, time and velocity for the ocean at mid–latitude (θ ≃ 45o):

Horizontal velocity, U ∼ 0.1 ms−1

Vertical velocity, W ∼ 10−4 ms−1, (10 m/day)
Horizontal length, L ∼ 105 m
Vertical length, D ∼ 5 x 103 m
Time scale (advection), L/U ∼ 106 s.

The radius of the Earth we take as a = 6 x 106 m and the rotation rate Ω = 2π/period
= 7 x 10−5 s−1.

Then for the continuity equation

term ∂u
∂x

∂v
∂y

∂w
∂z

2w
a

v tan θ
a

scale U
L

U
L

W
D

2W
a

U
a

magnitude 10−6 10−6 2 x 10−8 3 x 10−11 10−8
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Retaining the highest terms the continuity equation becomes

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (14)

For the u component of the momentum equation

term Du
Dt

uw
a

uv
a tan θ 2Ωv sin θ 2Ωw cos θ 1

ρ
∂p
∂x

scale U2

L
UW

a
U2

a fU fW ?

magnitude 10−7 10−9 10−9 10−5 10−8

A similar scaling applies to the v component o fthe momentum equation. The only term
that can balance the highest rotation term, the Coriolis term, is the pressure gradient,
i.e.

−fv = −1

ρ

∂p

∂x
(15)

fu = −1

ρ

∂p

∂y
(16)

where f = 2Ω sin θ, the Coriolis parameter. This balance of terms is known as the
geostrophic relationship. Velocities that satisfy this relationship are known as
geostrophic velocities.

Although the geostrophic relationship is a strong balance it cannot tell us how the
flow will evolve with time as it contains no time derivative. We therefore need to retain
the next highest term to get

Du

Dt
− fv = −1

ρ

∂p

∂x
(17)

Dv

Dt
+ fu = −1

ρ

∂p

∂y
. (18)

The ratio of the advection to the Coriolis term is

advection

Coriolis
=

U2/L

fU
=

U

fL

is known as the Rossby number, R. For the choice of scales we made above R ≃ 0.1.

Lastly for the vertical component of the momentum equation

term Dw
Dt

u2+v2

a 2Ωu cos θ 1
ρ

∂p
∂z g

scale UW
L

U2

a fU ? g

magnitude 10−10 10−9 10−5 10
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The only term that can balance gravity is the vertical pressure gradient, i.e.

1

ρ

∂p

∂z
= −g . (19)

Integrating from level zo we find

p = po −
∫ z

zo

ρgdz

i.e. the pressure at any point is equal to the weight of water above it. This approximation
is known as the hydrostatic approximation. We are ignoring any changes to pressure
cuased by the movement of the fluid. The approximation is formally correct when the
ratio of vertical to horizontal scales of motion tends to zero.
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The set of equations we shall be using is given below. The approximations applied
are equivalent to including only the locally vertical component of rotation and using a
local Cartesian coordinate frame (i.e. ignoring the metric terms).

Horizontal momentum equations

Du

Dt
− fv = − 1

ρo

∂p

∂x
(20)

Dv

Dt
+ fu = − 1

ρo

∂p

∂y
(21)

where

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

and the Coriolis parameter f = 2Ω sin θ.

Hydrostatic equation

∂p

∂z
= −ρg (22)

Continuity

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (23)

Conservation of density

Dρ

Dt
= 0 (24)
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Figure 3: Shallow water system

3 Shallow water equations

If the fluid is of constant density then the above set of equations can be simplified still
further to produce the shallow water equations. Shallow water refers to the fact
that we are considering motions that have a horizontal scale far in excess of the depth
of the fluid (a requirement of the hydrostatic approximation). Even the ocean may be
considered ‘shallow’ for certain purposes.

So let us assume we have a homogeneous fluid, i.e. ρ = constant. (We shall consider the
effects of the internal variations of density later.) When the ocean is at rest (no motion)
the free surface (air/sea interface) will be horizontal. In this state we will take the free
surface to be at z = 0 and the fluid to be of constant depth H with the lower boundary
at z = −H (fig. 3). The pressure (from (19)) is then only a function depth

p = −ρgz .

Here we have assumed the pressure at the free surface is zero (a perfectly valid thing
to do so long as the atmopheric pressure is at the sea surface is constant). Vertical
displacement of the free surface, given by η(x, y, t), will change the pressure at a given
point in the fluid since the column of water above the point will increase or decrease in
depth dependant on the sign of η. The pressure then becomes

p = −ρgz + ρgη
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Substituting into the horizontal momentum equations (20) and (21)

Du

Dt
− fv = −g

∂η

∂x
(25)

Dv

Dt
+ fu = −g

∂η

∂y
(26)

There are two things to note from these equations. Firstly variations in the height
of the free surface will drive motions in the fluid. Secondly, since the pressure force
produced by these height variations are constant with depth then the changes in the flow
will also be constant with depth. The implication is that if u, v are independent of z at
any time then they will always be.

We require an expression for η. This is got by considering the horizontal divergence
of the fluid flow which is

∂(u(H + η))

∂x
+

∂(v(H + η))

∂y
.

If the horizontal divergence is positive (negative) then this must lead to a lowering (rais-
ing) of the free surface. Thus

∂η

∂t
+

∂

∂x
(u(H + η)) +

∂

∂y
(v(H + η)) = 0 . (27)

Equations (25-27) form a closed set for the variables u, v and η.

The above equations are non–linear. It is often helpful to consider only small per-
turbations to the system and hence linearize the equations. The linear form for (25-27)
is

∂u

∂t
− fv = −g

∂η

∂x
(28)

∂v

∂t
+ fu = −g

∂η

∂y
(29)

∂η

∂t
+ H

∂u

∂x
+ H

∂v

∂y
= 0 . (30)


