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Forcing by surface stress

The wind blowing over the ocean surface exerts a stress on the ocean. This stress
represents a retarding force for the atmosphere and a major driving force for the ocean.
In order to study the effects of a surface stress on the dynamics of the ocean we need to
include the force exerted by a stress in the equations of motion.

Consider a horizontal stress (X, Y ). Then if the stress varies with depth within the
fluid there will be a net force acting to accelerate the fluid. This force per unit mass is
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The horizontal components of the momentum equations become
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Note: We have only included vertical derivatives of the horizontal stresses. This is
because of the difference in vertical and horizontal scales in the atmospheric and oceanic
boundary layers (δ ∼ 1000m for the atmosphere, 10−100m for the ocean). The boundary
layer is the region of flow close to a boundary which is directly influenced by the presence
of the boundary.

Consider the steady state solution. Away from boundaries stresses are negligible and the
equations reduce to the geostrophic relation
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As the boundary is approached the stresses will become important. Writing the
velocity components as

u = ug + ue; v = vg + ve

where (ue, ve) are the ageostrophic components of velocity then
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Integrating across the boundary layer gives
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ρf
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where the boundary is below, (XS, YS) is the surface stress and
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Ue, Ve =
∫ ∞

o
ue, ve dz.

The mass transport is at right angles to the direction of the surface stress. We de-
fine (Ue, Ve) as the Ekman volume transport and (ρUe, ρVe) as the Ekman mass
transport.

If the boundary is above
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The total Ekman mass transport in the atmosphere and ocean across the air/sea interface
is zero.
Note: The Ekman transport is in addition to the geostrophic transport caused by the
associated pressure gradient.

A brief discourse on turbulence

To investigate the vertical structure of the Ekman layer (the region in which the ageostrophic
flow caused by the surface stress is significant) we need to relate the stress vector (X, Y )
to the velocity field (u, v).

For a laminar Newtonian flow
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where µ is the viscosity of the fluid. This leads to a ν∇2u term in the momentum
equation (ν = µ/ρ). But geophysical boundary layers are turbulent. In most instances
we are interested in the ‘mean’ properties of the flow rather than the details of individual
turbulent eddies. However we do need to consider the effect of the ‘turbulent’ part of the
flow on the ‘mean’.

To proceed we split the velocity field into two parts: < u > to represent the large–scale
flow we wish to describe in detail and u′ representing smaller scale turbulence. Thus

u =< u > +u′

where <> represents some averaging process (time, space, ensemble).

Note that < u′ >= 0 and < < u > +u′ >=< u >.

Substituting into the u momentum equation and averaging we obtain
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The terms

τij = −ρ < uiuj > (i = x, y, z)

are referred to as the Reynolds stresses and represent the actions of the turbulent
motions on the mean flow. Averaging the equations introduces the closure problem in
that now we have more unknowns than equations.

We will use the simplest closure and relate the Reynolds stresses to the gradient of the
mean flow, e.g.
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Ah and Av are called the horizontal and vertical eddy viscosity coefficients, respectively,
and here assumed to be constant.

Then
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From now on we will drop the <>’s and assume we are dealing with mean quantities
only.

The values of the eddy viscosities, Ah and Av, will scale on u∗L, where u∗ and L are
typical velocity and length scales of the turbulence. We therefore exoect the value of the
eddy viscosity to be dependent on the type of flow we are considering.

Within the boundary layers of the atmosphere and ocean the turbulence is three dimen-
sional and Ah ' Av.

Typical values for the atmospheric b.l. ∼ 10 m2s−1

For the oceanic b.l. ∼ 10−2 m2s−1.

Outside the b.l. the flow is much more anisotropic.

For the ocean Av ∼ 10−3 m2s−1, whilst if we include mesoscale eddies in our definition
of the turbulence Ah ∼ 102 − 104 m2s−1.
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CAUTION: The above is a very simplistic view of the complex nature of turbulent
flow. There are many notable examples where the use of an eddy viscosity to describe
the affect of turbulent motions on the mean flow is totally inappropriate.

Reference: read Tennekes and Lumley (1972) A first course in turbulence, MIT Press,
for a more detailed description of turbulent/mean flow interaction.

Ekman layers

Applying the above to the Ekamn flow in the ocean close to the air/sea interface then
(3) becomes
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∂z2
(8)

Note we have ignored the contribution from molecular viscosity (ν ' 10−6 m2s−1) and the
gradient of horizontal stresses. Also we have assumed the vertical shear of the geostrophic
velocity (ug, vg) is small compared with that of (ue, ve).

Let the ocean upper surface be at z = 0, then the boundary conditions are

(ue, ve) → 0 as z → −∞

and
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Method of solution

Combine equations (8) to give
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Applying the boundary conditions

B = 0
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At the surface z = 0 (with YS = 0)

ue =
XS

ρ(2Avf)1/2
; ve = − XS

ρ(2Avf)1/2
(11)

i.e. the flow in the ocean at the surface is at 45o to the right of the surface stress. The
stress induced flow diminshes with depth on a scale

δ =

(
2Av

f

) 1
2

For the ocean, with Av = 10−2 m2s−1, then δ ' 15m. The direct influence of the
wind is confined to a shallow depth.

The direction of flow changes with height – the Ekman spiral

A similar solution can be obtained for the Ekamn spiral in the atmosphere. With a
geostrophic flow, (ug, vg), well away from the surface the boundary conditions are now
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(ue, ve) → 0 as z →∞

(ue, ve) = −(ug, vg) on z = 0.

It can be shown that
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i.e. the surface stress is at 45o to the left of the geostrophic flow aloft (N. hemisphere).

Observations show that this angle is between 0o – 40o depending on whether the flow is
stably or unstably stratified. It is ∼ 20o for neutral conditions. (A more sophisticated
turbulence model gives better agreement with observation.)

Ekman pumping

Variations in the stress on a surface leads to horizontal convergences and divergences of
the Ekman transport which is compensated for by a vertical velocity divergence. This
process is called Ekman pumping.

Integrating the continuity equation with respect to z we get

∂Ue

∂x
+

∂Ve

∂y
− we = 0

where we is the vertical velocity at the base of the Ekman layer and the boundary is
above.

In terms of the stress

we =
1

f

(
∂YS

∂x
− ∂XS

∂y

)
(14)

(assuming the wind varies more rapidly than f .) I.e. we is proportional to the curl of the
wind stress. Note that so long as we know the surface stress this result is independent
of the turbulence closure.

A similar expression is valid for the atmosphere (the Ekman pumping velocity is the
same in both the atmosphere and ocean)

For the atmospheric boundary layer (and the ocean bottom boundary layer) we can write
the Ekman pumping velocity in terms of the geostrophic velocity. Thus



Dynamical Oceanography: Forcing 7

we =

(
fAv

2

)1/2 (
∂vg

∂x
− ∂ue

∂y

)
(15)

Gill, 1982




