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SUMMARY 

Wind tunnel measurements have been made of the streamwise mean and turbulent velocities over a 
rough, bell-shaped, two-dimensional hill, with height h and maximum slope 0.26, placed in a neutrally 
stable boundary layer of thickness 10 h and roughness length zo = 0.02 h. Close agreement is found between 
the mean velocity and predictions obtained from Taylor’s (1977) computational model and Jackson and 
Hunt’s (1975) analytical linearized model, for locations a t  or upwind of the hill top but not in the wake. 
Examination of the models shows that the shear stresses are only important in an inner region close to the 
hill surface, so that, as suggested by Jackson and Hunt (1975). the perturbation to the mean flow outside 
this region is essentially inviscid. The theory shows that over very rough surfaces, such as wooded or urban 
terrain, the height of this inner region can be of the same order as the height of the roughness elements 
(so that in our experiments no measurements could be made in this region). 

In a second experiment flow over a smooth hill on a rough surface was studied. The additional increase 
of wind speed over the hill top can be estimated by assuming a linear superposition of the velocity changes 
produced by the changes in elevation and in surface roughness (in this case rough to smooth). In the lee of 
a hill, however, the change in roughness significantly alters the flow with flow separation being suppressed 
and here a linear superposition is not appropriate. 

Finally we consider why observed changes in turbulence structure close to the surface differ from those 
well above the surface. Calculations of these changes based on the simple theoretical arguments ofequilibrium 
shear layers and rapidly distorted turbulent flows agree well with turbulence measurements in wind tunnels 
and in the field. 

1 .  INTRODUCTION 

Recent research on neutrally stable air flow over hills has increased our understanding 
of how the wind speed increases over hills of different shapes, of how roughness changes 
affect the wind over a hill, and of how the turbulence structure changes over hills. But in all 
these cases the research has also indicated some further problems that need solving, and it 
is these that we attempt to investigate here by theoretical and wind tunnel model studies. 

The recent theoretical models of unstratified turbulent boundary layer flow over hills 
with low or moderate slopes have been shown by Jensen and Peterson (1978), Hunt (1979) 
and others to predict similar increases in surface wind speed over the hill top, despite their 
quite different assumptions about the relative size of the hill half length, L, to the boundary- 
layer thickness, 6. For example, Jackson and Hunt (1975) (hereafter referred to as JH) 
allowed L - 6, while Taylor (1977) and Deaves (1976) assumed that L 4 6. So we thought 
it would be interesting to present some recent wind tunnel measurements and compare them 
with predictions of the JH and Taylor models, when the computations were performed for 
the same flow, i.e. with the same assumptions about the ratio LIS. Most previous comparisons 
have been concentrated on the flow upwind of and on the hill top, and have excluded the 
wake. Even where there is no separation, because of the highly turbulent flow in the adverse 
pressure gradient on the lee side, the shear stresses are unlikely to be adequately described 
by the simple equilibrium or mixing-length models of JH and Taylor. Our wind tunnel 
results demonstrate the extent of this inadequacy. 

* Present address: Institute of Oceanographic Sciences, Worrnley, Godalrning. Surrey. 

91 



92 R. E. BRITTER, J .  C. R. HUNT and K. J .  RICHARDS 

Over many hills or changes in surface elevation, the surface roughness changes. For 
example, Jensen and Peterson (1978) studied the air flow from the sea on to the land over a 
small coastal escarpment. They found that the changes in mean velocity produced by the 
roughness change were of the same order as those produced by the change in elevation. in 
their case they suggested, but did not quantitatively demonstrate, that the two effects could 
be linearly superposed. But over a rounded hill, where separation occurs, it is by no means 
obvious that such an assumption is justified. We examine this question by a wind tunnel 
study of flow over two hills one of which has a surface as rough as, and the other smoother 
than, the upwind surface. 

Previous wind tunnel studies (e.g. Bouwmeester 1978) and field studies (e.g. Bradley 
1980) have shown how different components of turbulence change over hills and how the 
changes vary with displacement from the surface. In section 3 we show that simple theoreti- 
cal arguments based on the theory of equilibrium shear layers and rapidly distorted turbu- 
lent flow adequately predict the turbulence changes close to the surface and well above the 
surface respectively. We also show how different changes in turbulent structure can be 
expected inside and outside the inner layer. 

In using a wind tunnel to test out some of the theoretical ideas we have had to consider 
carefully the limitations of wind tunnel modelling. 

The theoretical arguments of JH and Sykes (1980) and the recent field measurements by 
Bradley (1980) show that it is only within a narrow inner region, of thickness I (see Fig. I ) ,  

Figure 1 .  Definition sketch of flow regions. 

where significant changes in shear stress occur and over the lower part of which the mean 
flow is affected by these shear stress changes. Bradley’s measurements were over a hill 
whose height h was I70 m and half length L was 275 m and whose surface had a roughness 
length z, = 1 m on account of its covering by trees 25 m high. He found that I was about 
28m, in line with JH’s theoretical estimate, which shows that over tree-covered or urban 
hillsides one can expect I to be of the same order as the height of the roughness elements k .  
Using the JH ratio for I/z, and the empirical result that 10 < k/z, < 30, then I /k  can be 
estimated as Ilk < 2rc2(L/z,)/{ IOln(L/z,)}, where K is von Karman’s constant, taken to be 
c.4. 

In some wind tunnel diffusion studies over hills (e.g. Cermak 1975), where low wind 
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speeds are necessary for correct Froude-number scaling on buoyant plumes, if the same 
roughness scaling for zo/6 or k / 6  is applied on the model scale then the surface may not 
satisfy the condition for the surface to be aerodynamically rough, i.e. u,zo/v c 5, where u* 
is the friction velocity and v the kinematic viscosity. (E.g. over grassland zo/6 = 2 x lo+, and 
if in the wind tunnel the velocity outside the boundary layer U, = 3 m s-  ’, and 6 = 1 m, 
then undistorted scaling implies k = 6 x m, so u,zo/v < 0.3.) Conse- 
quently higher roughness elements are used, perhaps increased by a factor of 10, which 
results in Ilk being much less on the model scale. (In our example k might be increased 
to 6mm, so on a hill with length L = 300m, Ilk is decreased from 100 to 10.) This point 
is most important for modelling flow over smooth terrain (e.g. grassland). 

In our experiments we model a very rough surface where k is large enough that 
u,z0/v > 5, so that the correct scaling of k / 6  or zo/6 can be used in the wind tunnel. How- 
ever, this means that Ilk is of the order of l and consequently details of the inner layer 
cannot be measured. 

m, zo = 2 x 

2. WIND TUNNEL MEASUREMENTS OF MEAN VELOCITY 

2.1. Undisturbed boundary-layer f low 

The wind tunnel studies were performed in the Warren Spring 4.3 m by 1.5 m by 22 m 
long wind tunnel. An artificially thickened boundary layer is generated to simulate the 
neutrally stable atmospheric boundary layer using the same method as Counihan (1969), 
except that the roughness elements are larger than his 4mm Leg0 blocks being 20mm 
‘Allen screws’ at a spacing of 0.05 m. These large elements ensure fully rough conditions 
even at low wind speeds. 

The measurements of mean and fluctuating longitudinal velocity were taken with a 
linearized constant temperature anemometer and a pulsed wire anemometer (Bradbury and 
Castro, 1971). 

The mean velocity profiles were measured with the velocity at the outer edge of the 
boundary layer, U,, equal to 4.0m s-’. The boundary layer, whose mean velocity profile is 
shown in Fig. 2(a) is typical of a rough wall boundary layer, has a thickness, 6, of about 
1 m at 20m from the tunnel entrance. 

Fitting the profile near the surface to the form 

U P ,  = (U*/U,){2.5 W / z o ) I  

gives zo = 2 x m and u J U ,  = 0.0685 

where z, is the roughness length. Scaled up to the atmospheric boundary layer this value of 
zo corresponds to a value of about 1 m, i.e. typical of woodland or urban areas. Note that 
the roughness density was such that the zero plane displacement is of the order of or less 
than z,. 

The mean velocity data may be restated in the form 

U / U ,  = 1-5(z/6)” for z/6 < 0.15 

where n = 0.34. The small discrepancy in the measurements between the pulsed wire 
anemometer and the linearized constant temperature anemometer (LCTA) is still to be 
explained. 

Figure 2(b) is a plot of the r.m.s. longitudinal (a,) and vertical (a,) velocity fluctuations 
non-dimensionalized with the mean velocity at the edge of the boundary layer, U,. 

The pulsed wire measurements near the top of the boundary layer were influenced by 
temperature fluctuations in the tunnel and may be ignored. (Note that Q,/u* = 2.19 at  
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Figure 2(a). Measured mean velocity of the undisturbed boundary layer. 

t 

Figure 2(b). Ratio of the measured r.m.s. streamwise, a,, (0, 0) and vertical. a,, (0 )  turbulent velocities 
of the undisturbed boundary layer to the free stream velocity ud. 
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z/6 = 0-05, which is a little low by comparison with atmospheric data in rural terrain, but 
within the range found in most wind tunnel simulations (Hunt and Fernholz 1975).) 

Because we studied hills with and without surface roughness, a brief change of rough- 
ness experiment was also conducted in which the floor roughness was removed 17 m from 
the start of the boundary layer. The mean velocity profile was measured lm from the 
roughness change, see section 2.4. 

2.2 Mean velocity over the hill 

The flows over two different hills were studied. The hill crests were located 17.5 m from 
the start of the simulated boundary layer and the hill shapes were 

z = Irf(x/L)  

with f ( x / L )  = { 1 + (X/Ly} - 

where x is the downwind distance from the crest of the hill, h = 0.1 m, L = 0.25 m, and the 
maximum slopes were 0.26 (about h/2L). The model extended 1.2m up and downwind of 
the centreline. Any smaller values of h or larger values of L were impracticable. Because the 
ceiling of the wind tunnel was not adjustable the height of the hill was restricted. A blockage 
ratio of 6.7 % obtained with h = 0.1 m is estimated to produce a change in velocity over the 
hill of less than 1 %. 

Measurements were made of the streamwise components of the mean (Us) and r.m.s. 
turbulent (a,) velocities at 5 streamwise locations ( x  = -0.64, -0.25, 0, 0.25, 0.70m). 
Vertical profiles were taken at  values of z from 3cm above the surface (which is only 1+ 
roughness heights) to the top of the boundary layer (z = 1 m) (see Tables 1, 2). 

TABLE 1 .  MEAN VELOCITY, U, PROFILES OVER ROUGH HILL 

All velocities are normalized with the velocity 1 m above the surface upstream of the hill 

m 

1.00 
0.98 
0.80 
0.78 
0.60 
0.58 
0.40 
0.38 
0.20 
0.1 8 
0.15 
0.13 
0.10 
0.08 
0.06 
0.05 
0.04 
0.03 
0.02 
0.01 
O O J 5  

1 .oo 
0.99 

0.96 

0.90 

0.79 

0.73 

0.67 
0.62 
0.55 
0.50 
0.45 
0.44 

-0.64 

1 .oo 
1 .oo 
1 *oo (I) 
1 
0.96 (I) 
0.95 
0.96 (I) 
0.89 
0.77 (I) 
0.76 
0.73 (I) 
0.71 
0.67 (I) 
0.65 
0.54 

0.47 (I) 
0.43 

0.51 (I) 

-0.25 0 

1.01 0.99 1 .oo 1.03 1.04 

1.03 

0.96 

0.95 

0.86 

0.79 

0.72 
0.67 

0.62 

0.45 

1.01 

0.99 

0.98 

0.91 

0.89 

0.86 
0.85 

0.80 
0.79 
0.78 
0.69 

1.01 1.03 1 .00 

0.99 1 .00 0.97 

0.96 0.94 0.89 

0.87 0.78 0.73 

0.83 0.62 

0.70 0.39 0.49 
0.55 032 

0.43 
0.23 0.23 

0.20 0.31 

0.37 
0.31 

(i) Az is measured from local hill surface. 
(ii) measurements for Az/6 < 0.03 are within roughness elements and unreliable. 

(iii) (I) Interpolation. 
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TABLE 2. THE STREAMWISE r.m.s. TURBULENT VELOCITY u: FOR FLOW OVER A ROUGH H I L L  

The [ti have been normalized with U, well upstream of the hill 

X 

Azlh 

I .00 
0.98 
0.80 
0.78 
0.60 
0.58 
0.40 
0.38 
0.20 
0.1 8 
0.15 
0.1 3 
0.10 
0.08 
0.06 
0.05 
0.04 
0.03 
0.02 
0.01 
0.005 

013 

~- 

0.065 

0.075 

0.087 

0.100 

0.123 

0.133 

0.143 
0.147 
0.151 
0.150 
0.149 
0.147 

-0.64 rn 
.~ - 

0.062(1) 
0.063 
0.072(1) 
0.073 
0.083 (I )  
0.084 
0.097 ( I )  
0.098 
0.1 2 ( I )  
0.12 
0.12(1) 
0.1 3 
0.1 3 ( I )  
0.14 
0.14 
0.14 ( I )  
0-14 ( I )  
0.14 

0.25 m 

0.060 

0.072 

0.082 

0.1 1 

0.1 I 

0.1 3 

0.14 
0.14 

0.13 

0.1 3 
0.1 3 

0 

0.060 

0.069 

0.079 

0.089 

0.1 I 

0.12 

0.13 
0.13 

0.13 
0.13 
0.1 3 
0.15 

~- 
$0.25 m 

0.060 

0.067 

0.079 

0.09 I 

0.12 

0.12 

0.16 
0.18 
0.12 

+0.70 rn 

0.061 

0.070 

0.078 

0.098 

0.14 

0.19 

0.1 8 
0.19 

( i )  ( I )  Interpolation. 
(i i )  Az measured from hill surface. 

We observe (Figs. 3(a)) a distinct sharpening of the velocity gradient near the hill 
upwind of the hill top and an elevated region of high shear downwind of the hill top. I n  
Fig. 3(b) the mean velocity has been plotted as a function of x, with the displacement above 
the hill, Az, as a parameter. 

Observations of the velocity signal suggested that the flow separated in the lee of the 
hill. Flow visualization with smoke confirmed that the flow separated but also indicated 
that separation and reattachment were essentially intermittent, there being periods in 
which the flow did not separate at all. However, it was estimated that, on average, the 
separated region was approximately 3 cm thick 25 cm downstream from the top of the hill 
and that reattachment occurred about 70cm (7 hill heights) downstream from the top of the 
hill. 

From Fig. 4(a) we see an important distinction between the shallow region of inter- 
mittently separating flow and a deeper region whose thickness is of the order of h where the 
turbulent velocities are increased by 50 % or more (see also Huber et at. ( 1976)). 

Flow over a second model hill was studied which did not have any surface roughness 
elements. The measurements are described in section 2.4. 

2.3 Comparison with theory 

The measurements of mean flow are compared with the results of two recent theories 
of flow over hills, the analytical theory of J H  and a modified version of the numerical model 
of Taylor (1977) for the hill shape (2.1). The calculations of the accelerations and the 
turbulence closures differ in the two models. By assuming that h/L 6 1, J H  linearized the 
inertial terms and used a mixing-length model. Taylor retains the non-linear inertial terms 
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Figure 3(a). 

0.8 - z z- 
0.6 - 

0.4 - 

0.2 - 

O N 0  HILL 
o-O.04m 
A. 0.25 m 
0 O m  
*+0.26 m 

M.10 m 
A+1.16m 

VELOCITY RATIO (U,/&) 

Measured velocity profiles for a number of positions over the rough hill as a 
height, 216. 

function of 

.. 
DOWNWIND DISTANCE ( x  1, mews 

Figure 3(b). Measured mean velocity as a function of vertical displacement and x. 
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o.20 t 

Figure 4(a) Ratio of the measured streamwise r.m.s. turbulence velocity, ui, to ud over the rough hill as 
a function of x, with Az/6 as a parameter. 

and used an eddy viscosity closure based on the turbulent kinetic energy. Effectively Taylor 
only assumed that h/L is small enough that no separation occurs. Thus in this experiment, 
where h/L = 0.4 and separation just occurs, Taylor's theory should be more applicable than 
JH's because of the inclusion of non-linear inertial terms in his model. 

There are different ways of presenting the data, depending on which theory they are to 
be compared with and how they are to be applied. JH consider two regions shown in Fig. 1 : 
(i) an inner region with thickness I in which significant changes in the Reynolds stresses 
occur and which affect the mean velocity (though, as pointed out by Sykes (1980), in a 
formal sense, as u*/c/, + 0, and zo// + 0 the latter effect only occurs in the lowest part of 
the inner layer at a distance of order zo from the surface) and (ii) an outer region where the 
pressure gradient set up by the hill is balanced by the inertial forces. The height of the inner 
region is given by 
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(//~)ln(//z,) = 2 ~ ’  (2.2a) 

Given the measured value of z, over the model hill, I/z, = 15, so that I is relatively rather 
small being only I f  times as high as the roughness elements. 

For the inner region JH express the horizontal velocity as 

LI = Uo(Az)+ Ari(x, Az) . (2.2b) 

where Ari is a perturbation velocity on the upwind velocity V, at a displacement A z  above 
the surface. For practical purposes it is convenient to define Ari as a fraction A S  of U,(Az), 
so that 

V(AZ) = ( 1  +AS)U,(AZ). . (2.2c) 

Ail is found from the theory to have the form 

h ln2(L/z,) x Az Afi = - u-9- . L Kln(/jzo) (L L I )  
(2.2d) 

where the function 6(x/L, Az/l) is O( I) .  

and a perturbation Au, so 
In the outer region JH write U(z) in terms of the upwind velocity at the same height z 

U = U~(Z)+AU(X,Z)  (2.3) 
Obviously there is a difficulty in matching (2.3) with (2.2b) near Az = 1. This problem is 
made easier by expressing U in the outer layer as 

Jackson’s (1977) analysis shows that for the hill shape given by (2.1), on x = 0, 

1 ln(Az/L 
ii(Az) = (1 +(Az/L)}~-&) [ { 1 +(Azj;}’+(Az/L){l +(Az/L)) 

up to first order in ln-’(L./z,). Note that (2.4) tends to (2.3) when z B land then Au is given 
by potential flow theory. 

The changes in wind speed close to the surface of a hill are best indicated by plotting 
the ratio U(Az)/Uo(Az) of the mean velocity at a height Az above the hill to the mean 
velocity at the same displacement over level ground. This ratio is sometimes expressed as 
1 +AS(Az), where A S  is the ‘fractional speed-up ratio’. We have plotted the analytical 
prediction for the inner (2.2) and outer region (2.4), (2.5) and also the results of computa- 
tions based on Taylor’s model (Fig. 3(c)). These are compared with the measured velocities 
at the hill, top x = 0. (Direct comparison of the measured streamwise velocities and the the- 
oretical horizontal velocities is valid here as the angle between them is very small.) The theories 
are within 15 % of each other and of the measured values of U(Az)/U,(Az) outside the inner 
layer i.e. Az/l > 1. For Az/l < 1 the predictions of the two models diverge. The effect of the 
non-linear inertial terms is to reduce significantly the value of V/U, from that predicted 
by the linear theory, the maximum value of A S  being reduced from 1.6 to 0.95. Unfortu- 
nately the height of the roughness elements, 0.67 I ,  prohibited any measurements being made 
below A z  = I for comparison. The important practical point that emerges from Fig. 3(c) 
is that A S  does not change by more than 20% over the inner region, so that A S  is indeed a 
useful indicator of wind speed changes near the surface. 

It is also of practical interest to compare V(z) with the upwind velocity at the same 
height U,(z). This ratio is sometimes called S(z) and is often assumed to be close to unity 
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Figure 3(c). Ratio of the mean velocity at the hill top U(Az) to the undisturbed velocity Uo(Az) as a 
function of the displacement above the surface Az/1 where I is the thickness of the inner region. 

0 measured values 
JH theory inner layer 

outer layer 
Taylor mo el a - - - -  

- -  

1.0 1 *1 

#% 
1.2 

Figure 3(d). Ratio of the mean velocity at the hill top U(r)  to the undisturbed velocity Uo(z), as a function 
of the height z/L. L is the half length of the hill. 

0 measured values 
A potential flow theory 

Taylor model 
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above the inner region. The measured values of S = U(z) /Uo(z)  are plotted in Fig. 3(d) for 
the flow at the top of the hill and compared with the results of Taylor’s model. Disregarding 
the uppermost data point, which is in the upper half of the boundary layer, the theory is 
within 20% of the measured values. Also plotted in Fig. 3(d) are the results using potential 
flow theory for a uniform upstream velocity. These are within 2 %  of those of Taylor’s 
model down to a height 0.3L above the top of the hill. Note how S changes by less than 
10% above the inner layer. 

Taylor’s model assumes the length of the hill to be small compared with the depth of 
the constant stress region (i.e. L 4 Sj5). To demonstrate the effect on this model of a 
finite depth boundary layer (where L - S) a series of computations were made using a 
modified form of the mixing length, 

I, = I,,, constant z > s  

Note that (dl,,,/dz)(, = 0. 
The stress upstream was taken to  vary linearly with height up to z = 6 and the up- 

stream velocity and turbulent energy profiles were computed from the undisturbed equa- 
tions. Above z = 6 the stress and turbulent energy were taken as zero and the velocity 
constant. The undisturbed boundary layer will develop with x and the changes in the 
velocity and turbulent energy over the integration region (14.L) were approximately 5 x. 

f ( x - / ~ )  = exp( - ( X / L ) ~ )  

We have taken h = 2 0 0 0 ~ ~  and L = 5000z0, giving l/zo = 300. The speed-up ratios over 
different hill shapes are tabulated by Hunt  (1979) and Taylor (1977). In Fig. 3(e) the predic- 
tions of A S  at the hill top are plotted against A z / L  for a number of values of S/L and com- 
pared with those for a constant stress layer. With S/L = 2 the results are within 0.5% of 
those of the constant stress layer. Even with S/L = +, (6 /h  = 0.5) the maximum difference 
is less than 15%. This supports the suggestion of J H  that the perturbation shear stresses in 
the outer layer are small compared with the inertial and pressure stresses, and therefore the 
modelling of these stresses is unimportant. 

In  Fig. 3(f) the measured values of Au(Az) / (U, (Az)}  are compared with the results of 
Taylor’s model for two positions, x / L  = 0.85 and 2.8, in the lee of the hill. Here the measure- 
ments and theory differ markedly. Taylor’s model gives no mean flow separation, the 
surface shear stress being reduced by approximately $ of its upstream value. The wake is 
predicted to have effectively collapsed by x / L  = 2.8. The measurements show the wake to be 
still growing at this distance downwind of the top of the hill. Clearly the turbulence closure 
used in the model is inadequate in this region. 

A possible explanation for the discrepancy is that the turbulent length scale in the 
model is based on the distance from the surface, whereas in the elevated region of high 
shear downwind of the hill top this should be based on the thickness of the shear layer 
itself. Thus the model over-predicts the values of the Reynolds stress in this region and 
mixes the velocity excess to the ground too quickly. 

The hill shape was Gaussian, i.e. 

2.4. Roughness change eflects 

In the experiment where the roughness ended I m upstream of the hill crest there was a 
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significant acceleration of the lower part of the boundary layer as a direct result of the 
change in roughness. Some comparisons with changes of roughness and change of elevation 
theories are interesting. 

Assuming a self-similar development of the flow Townsend (1965) finds the fractional 
speed-up ratio (defined by (2.2~)) for a change of roughness from (z0), to ( z ~ ) ~  at x = xo to  
be given approximately, when In //z, s 1, by 

AS(x,Az) = - [ I~{(z,)~~(z,) ,}]  [ ~ I ~ { ~ , / ( Z ~ ) ~ } ~ ~ ~ [ ~ I ~ ~ A Z / ( ~ ~ ) , } ] ~ ~  1 e-'f-'df (2.6a) 
X 

11 

where q = Az/6, ,  and 6, is given by 

6,  tn(d,/zo) = 2 ~ 7 x - x ~ )  . (2.6b) 

The equivalent downstream roughness height for the smooth surface is taken as v/9u, 
where v is the kinematic viscosity. This gives a value of ( z , ) ~  = 6 x m. The predicted 
values of A S  are shown in Fig. 3(g) to agree within experimental error with measurements of 

4 

9 c 
\\ 
& 
\\ 
\ \  

1 I I 

AS 0 0.5 

Figure 3(g). Measured fractional speed-up A S  (= Au/Uo) at top of the smooth and rough hills. 
A roughness change, no hill 

-0- rough hill 
-0- smooth hill 
- . _  (smooth) - (rough) hill 

Townsend roughness change theory 

A S  taken with the roughness change but without the hill at a position equivalent to the top 
of the hill, a distance 1 m from the roughness change. 

Following the suggestion of Jensen and Peterson (1978), if we assume a linear super- 
position of roughness and elevation effects on U, then over the smooth hill we can write 

~ ( A z )  = uo +AChill +ALghncss (2.7) 
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where A&,,  and A~, ,ughnesr  are the changes in velocity due to the hill and roughness changes 
alone, respectively. At the top of the hill, from Fig. 3(g), it is seen that the difference between 
the measured values of AS for the smooth and rough hills agree with the predicted value of 
A S  for the roughness change alone to within 20%. At the height Az = I ,  the expression 
(2.6) gives A S  = 0.18 compared with a measured difference of A S  for the two cases of 0.22. 

In the lee of the smooth hill the flow is distinctly different from that over the rough 
hill (Fig. 3(h)). Velocity measurements and smoke releases indicated that the effects of the 
reduction of surface roughness were so great that the mean velocity on the lee side was 
actually greater than over rough level ground and that the flow did not separate, even 
intermittently, though the flow remained turbulent. 

0 

- 0.5 AS 0.5 

Figure 3(h). Measured fractional speed-up AS(= Au/Uo) in the lee of the smooth and rough hills 
(at x /L  = 043) 

0 
0 smooth hill - unseparated 

rough hill - separated flow 

Townsend roughness change theory 
_ -  Taylor model 

- . -  Taylor +Townsend 

Paradoxically we can explain this result by adapting Prandtl’s explanation (see Batche- 
lor 1967, p. 362) for the delay of separation over a bluff obstacle when a laminar boundary 
layer becomes turbulent by the introduction of roughness on the surface. Although our case 
is different in that we are considering an initially turbulent boundary layer, these two types 
of separation delay are similar because in both the surface velocity near the separation 
point is increased so that the boundary-layer flow can penetrate further into the adverse 
pressure gradient on the lee side. (In the classical case the boundary layer is energized by 
transition, in our case by reducing the surface roughness and in other cases by vortex 
generators, blowing, etc.) 

At a point 0.8L downwind of the top of the hill the region affected by the roughness 
change extends up to  a height 41 which corresponds well with the value 3.5 for 6, ( x  = 4L) 
from (2.6b). A linear superposition of Townsend’s theory (Eq. (2.6a)) and the prediction of 
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Taylor’s model severely underestimates the measured increase in velocity in this region. 

3. TURBULENCE OVER THE HILL; THEORETICAL CONSIDERATIONS AND COMPARISON WITH 
EXPERIMENT 

The changes in the turbulence structure over a hill (or any obstacle) depend on whether 
the travel time, T, of an eddy starting upwind at height z1 as it is advected along a stream- 
line is large or small compared with the Lagrangian time scale or eddy ‘turn-over’ time 
scale at z = z , ,  YL(z), Along those streamlines where T G FL then the turbulent kinetic 
energy is dissipated relatively slowly while the turbulent eddies are being distorted by the 
mean flow over the hill. Consequently the history of the straining of the eddies over the 
whole period that they traverse the hill has to  be considered in estimating the changes in 
turbulence. Conversely along the streamlines where T 9 FL, the dissipation takes place 
rapidly and so the turbulence broadly depends on a balance between energy production by 
the local shear and the local dissipation, although the diffusion of turbulent energy and 
distortion of turbulence by curvature effects are also important. 

These two regions where different changes of turbulence structure occur are roughly 
separated by a streamline at height I, where YL(z = I,) is approximately equal to the 
travel time over the hill, T 3: L/U ( z  = I T ) .  Since Y L ( z  = I T )  N 0.3 lr/u* (Hunt and Weber 
1979), . 

0 . 3 1 , / ~ ,  E L/U(z = IT) ,  

SO that lTIn(lT/z,J N L. 
Thus we conclude that IT must be of the same order as the thickness of the inner shear 

stress layer. A more precise relation between IT and I can only be provided by experiment, 
as we shall show. 

Therefore in the inner region and close to the surface where the turbulence is in equilib- 
rium, at or upwind of the hill top the variances of all three turbulent intensity components 
a:, at, a$ are increased in proportion to ATlpu:, where AT is the change in surface shear 
stress due to  the hill. Based on estimates for A7 by JH over a hill with small slope, when 
Az 6 I 

where a’ = (cT~+u$+cT;),  and ACT”, etc. are the changes in the components of turbulence 
intensity from their upwind values. 

In the outer region the turbulence changes can be estimated from rapid distortion 
theory (Hunt 1973; Townsend 1972). Assuming the distortion to be sufficiently rapid so 
that an eddy has insufficient time to  adjust to the local strain rate and to interact with other 
eddies then the only effect on the turbulence of the distortion to the mean flow is to com- 
press or lengthen and rotate individual vortex elements of the turbulence. By considering a 
distortion to the mean flow in the x,z plane (y being taken transverse to the mean flow) then 
the fluctuating vorticity at any point in the flow a, can be related to  the upstream value, 
fi,, by 

where 
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z, is the upstream height of the streamline passing through the position (x,y, z) and

T = Jim [J" dx' (x+X)
]

x .. 00 • -x U(x',z') U0(z.) 

the difference in travel time along the streamline, with coordinates (x',z'), from that of the
undisturbed flow. 

To first order in perturbed quantities,

Uo oT/ox = I -Au(x, Az)/U0(z,) and U0 oT/oz = -2Aw(x, Az)/U0(z.)

For a symmetric hill, at the hill creast Aw = 0 and the strain tensor y ii reduces to

Yii(O, Az) = I+ Au(O, Az)
U0(z.) 
0 

0

0 0

0

0 I- Au(O,Az)
U 

0(z,) 

Thus at the top of a symmetric hill there is a simple compression of streamlines with no
rotation of vortex elements. We can estimate the changes in turbulence quantities at a
given height above the hill top by applying the results of Batchelor and Proudman ( 1954)
who have calculated the changes in au , a0 and er.., for a simple contraction of the mean flow
and isotropic upstream turbulence. These show a decrease in au and increases in a. and
er.., . Townsend ( 1976, p. 72) has shown that to first order in (c- I), where c is the contraction
ratio (in our case c = I - Au/ U0) Batchelor and Proudman 's result is

and

cr;(x,z)
2 = 

CTu(Z,) 

I- 4 Au(x, z )
5 U0(z.) '

a!�x, z) 
= 1 + 4 Au(x, z).

a,.(z,) 5 U0(z.) 

(3.3)

Goldstein and Durbin (1979) show that the effect of a non-zero oT/oz on u; and u! for a
simple contraction is second order in (c-1 ). We can therefore apply these results over the
entire hill. 

The measured r.m.s. turbulent velocity parallel to the local mean velocity, u;, non­
dimensionalized with Ud is plotted in Fig. 4(a) as a function of x, with Az/� as a parameter.
At a given height Az above the hill the longitudinal turbulence velocity decreases as the top
of the hill is approached. Beyond the top of the hill very large turbulence levels are observed
both near the separated shear layer and out to Az/� < 0·40. The shear layer had reattached
at x = 1·15m.

Again due to the relative height of the roughness elements no measurements of turbu­
lence intensity could be made in the inner layer. However, Bradley (1980) in a well-docu­
mented set of field measurements has obtained profiles of all three turbulence components
at the top of Black Mountain, Australia, the cross-section of which can be approximated by
equation (2.1) with h = 170 m, L = 275 m. The height of the inner layer, is then 28 m.
Close to the surface of the hill au , a. and er.., were all approximately doubled over the values
measured upwind. This gives Acr2/cr� � 3.0 compared with an estimate of Acr2/cr� � 2·5
given by Eq. (3.1 ). 

The measured change in streamwise turbulence intensity Acr!/(cr!)
00 

along streamlines

(estimated from potential theory) at the hill top from the wind tunnel experiment, is plotted
against Az/l in Fig. 4(b). The measurements (Az > /) show a decrease in turbulence intensity
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- 0.2 

Figure 4(b). Changes in streamwise turbulence intensity, Au,’, at hill top, normalized by the upwind values. 
0 measured 

rapid distortion theory using potential theory mean velocity perturbation Au 
- - - - rapid distortion theory using measured Au 
--- Taylor eddy viscosity model 

from that upstream. Also shown are the prediction of rapid distortion theory (3.3), with 
both the measured Au and that estimated from potential flow theory, and the eddy viscosity 
approach of Taylor (1977), who assumes that o’, is related to the local velocity gradients by 

IS’, = +a2 - K 
The predictions of the two theories are very different. The eddy viscosity approach 

predicts an increase in ot for Az < L with a slight decrease above this level, whereas rapid 
distortion theory predicts a decrease in 0’. whose magnitude increases towards the hill 
surface. Rapid distortion theory appears to provide a useful approximation for the turbu- 

-E where K is an eddy viscosity. (ax a i )  
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lence changes in the region Az > I where the turbulence is primarily controlled by its 
upstream history. Towards the surface the prediction using the measured Au is better than 
using Au estimated from potentiai theory. At Az = 31 the theory (using the measured 
Au) predicts Aat/(at) ,  = -0.19 compared with a measured value of approximately 
-0.18. 

Rapid distortion theory predicts an increase in the vertical component of the turbulence 
intensity a,. For the hill used in the present wind tunnel studies it predicts Aai/(ai), = 0.16 
at Az/L = 0.4. Bradley's (1980) field measurements show that in the outer layer at a height 
Az/L = 0.3, although a" was increased by Aat/(at) ,  = 0.2 the relative increase in a,, 
Aai/(o:), = 1.25, was significantly greater, thus supporting the qualitative features of the 
theory. 

Taking our own and other wind tunnel experiments (e.g. Bouwmeester 1978; Huber 
el al. 1976) and field experiments by Bradley (1980) and Bowen (1979) it now appears that 
the rapid distortion changes in turbulence occur above a distance IT from the surface where 

. (3.4) 

and is given by Eq. (2.2a). 

4. CONCLUSIONS 

From the comparison between theory and wind tunnel experiments presented in this 
paper the following remarks can be made. 

(a) Mathematical modelling 

The effects of modelling the shear stress in the outer layer are negligible in determining 
the perturbed mean flow even though this layer is still well within the boundary layer. This 
is because (as suggested by JH) the perturbation to the mean flow is essentially inviscid. The 
modelling of the shear stress only becomes important in an inner layer close to the surface. 

Linearizing the momentum equations exaggerates the speed-up near the surface for 
moderately sloped hills. For a hill with h/L = 0.4, AS is over-predicted by 25 %. 

The wake flow is poorly modelled even when there is no mean flow separation and 
suggests that a higher order closure scheme is necessary. 

In the case of combined roughness and elevation changes a linear superposition of the 
two effects can be approximately justified at or upwind of the hill top. In the lee of the hill 
with an associated change in roughness from rough to smooth the accelerating shear layer 
due to the roughness change stabilizes the flow and significantly alters the flow. Here a 
linear superposition is not appropriate. 

To model the changes in turbulent properties of the flow an eddy viscosity approach 
is only appropriate in an inner layer whose thickness is similar to that of the inner shear 
stress layer. Outside this layer, where the history of the turbulence becomes important, 
rapid distortion theory provides a simple and approximate method of estimating the changes 
to the turbulence. 

(b) Wind tunnel modelling 

Because of the need in some wind tunnels to use relatively large roughness elements in 
comparison with the size of model hills in order to obtain a fully turbulent flow over the 
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surface, the height of these roughness elements may have to be out of scale with the depth 
of the inner shear layer. Or, in other cases where large roughness elements occur at full 
scale, l /k  may be correctly modelled, but then 1 may be of the same order as k .  In our 
experiment l /k is only 1.25. In either case it means that reliable wind tunnel measurements 
of the inner layer are difficult to obtain. We are not aware of any yet. 

(c )  Practical and meteorological consequences 

The marked changes in the anisotropy and in the vertical structure of turbulence over 
hills shown here may need to be considered in practical problems such as air pollution, 
dispersion over hills (as indicated by Hunt et al. (1979)) or the wind loading of structures on 
hills. The effects of roughness changes may, by influencing the wake structure, have a 
significant effect on the drag of hills which in turn may have effects on air flows at higher 
levels. This effect on the aerodynamic drag of water waves has been recognised by Gent and 
Taylor (1976). 
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