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Lecture 12.  The diurnal cycle and daytime mixed layer growth 
In this lecture… 

•  Diurnal cycle of boundary layer temperature structure 

• Mixed-layer modeling of the morning growth of the convective boundary layer 
Introduction 

 Over flat land, under clear skies and with weak thermal advection, the atmospheric boundary 
layer undergoes a pronounced diurnal cycle.   A schematic and an example from the Wangara 
experiment are shown below. This `archetypical' diurnal cycle is muted by clouds and can be 
entirely obscured by rapid changes in the free atmospheric conditions due for instance to the 
passage of  a midlatitude cyclone or front.  It is also highly modified by terrain or nearby land-
sea contrasts. Nevertheless, it is illuminating to study the archetypical case in more depth. 
 During the night, the BL is stable due to surface longwave cooling, and a shallow 
temperature inversion of typically 100-500 m builds up. After dawn, surface heating builds up a 
shallow convective mixed layer, which deepens slowly and rapidly warms until it fully erodes 
the nocturnal stable layer. At this point, the top of the new mixed layer starts to penetrate into the 
residual layer, the remnants of the previous day's afternoon mixed layer. This layer is very 
weakly stratified, so the new mixed layer rapidly deepens into it, until it encounters the top of the 
previous day's mixed layer, which tends to be marked by a weak inversion. At this point, further 
BL warming occurs much more slowly, as a much deeper layer must be warmed than in the early 
morning. In the late afternoon, the solar heating is no longer sufficient to maintain an upward 
surface buoyancy flux. Within an hour (a few eddy turnover times), turbulence collapses through 
most of the boundary layer and becomes restricted to a shallow layer, typically 100 m deep, 
driven by surface drag.  During the night, clear-air radiative cooling is most intense near the cold 
surface, enhancing the static stability of the lowest couple of hundred meters of air. Turbulent 
heat exchange with the cooling surface can also be important; downward heat fluxes of up to 50 
W m-2 can occur near the surface at night under moderately strong geostrophic winds. 

 
Fig. 12.1:  The archetypical diurnal cycle of boundary-layer evolution over land. 
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Mixed layer model of morning growth of the surface-heated convective BL (Garratt 6.1) 

 The rate of growth of the convective mixed layer is dictated primarily by energy balance, 
though entrainment dynamics also play a significant role.  This is a classic application of a mixed 
layer model (MLM). 

 MLMs assume that the mean vertical profiles of conserved tracers such as θ  are uniform 
(‘well-mixed’) across the BL, and the BL is capped by a sharp inversion at which temperature 
and moisture have sudden jumps; similarly for the wind profile. Hence MLMs are most 
applicable to convective BLs and poorly represent most stable BLs.  The key turbulence closure 
in a MLM is the entrainment closure, an empirically-inspired relationship between the rate that 
mass is entrained from above the BL and MLM-derived variables such as surface fluxes and 
inversion jumps. 
 We consider the growth of a mixed layer driven by a surface buoyancy flux B0 into a 
motionless atmosphere of constant buoyancy frequency N2.  For simplicity, we will also assume 
no cloud and no internal diabatic heating. The air density can be described using the virtual 
potential temperature profile θv(z, t).  Define θv0 to be the initial virtual temperature at the ground, 
before convection has initiated.  Then we can scale θv into a buoyancy b(z, t) = g(θv - θv0)/ θv0.    
 Thus the initial horizontal-mean buoyancy profile is     

 b+(z) = N2z (12.1) 
and this stays constant in the free troposphere (above the BL top).  We define bM(t) as the 
(unknown) buoyancy in the mixed layer.  We let h(t) be the (unknown) mixed layer top, at which 
there is an unknown jump Δb(t) = b+(h) - bM in the buoyancy, due to convective updrafts 
overshooting into the overlying warmer air and eroding its base via entrainment. 
 The heat equation within the mixed layer can be written  

 dbM
dt

= − ∂
∂z

′w ′b  (12.2) 

Since the left hand side of (12.2) is height-independent within the mixed layer, the same holds 
for the right hand side, so the buoyancy flux is a linear function of height that can be specified in 
terms of its value at the surface and mixed layer top: 

 ′w ′b (z) = (1− z
h
) ′w ′b (0)+ z

h
′w ′b (h) ⇒ − ∂

∂z
′w ′b = B0 − ′w ′b (h)

h
 (12.3) 

Turbulence in the mixed layer entrains free-tropospheric air from just above the mixed layer, 
causing h to rise at the entrainment rate we.  

 dh
dt

= we . (12.4) 

The entrainment deepening of the BL, in which free-tropospheric air with buoyancy b+ of is 
replaced by BL air with buoyancy bM at the rate we, implies an upward turbulent entrainment 
flux into the mixed layer top.   This can be seen by considering the conservation of buoyancy 
inside a vertically thin control volume V that encompasses the moving entrainment interface and 
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moves upward with it at rate we.  Because V is thin, it cannot store buoyancy, so (per unit 
horizontal area of V): 
0 = turbulent flux into V + advective flux from above – advective flux down into mixed layer  

   = ′w ′b (h)+web
+ −webM ⇒ ′w ′b (h) = −weΔb         (12.5) 

To close (12.2-12.4), we need to specify we.  This entrainment closure is the big assumption in 
any MLM.  Since entrainment is due to turbulence, it is implicitly an assumption about the 
vertical structure and intensity of turbulence, and is connected to the TKE budget.  In particular, 
overshooting convective updrafts are transporting TKE upward from its buoyant generation 
region near the surface into the inversion, where it is being lost to negative buoyancy fluxes 
associated with the overshooting.   
For a dry convective boundary layer, the empirical relation in  Lecture 7: 

 ′w ′b (h)  = -βB0,     β ≈ 0.2, (12.6) 

together with (12.5), provides a suitable entrainment closure.  It proves interesting to compare 
the solution with a realistic β to the case β = 0, as shown in Fig. 12.2. In the latter limit, called 
encroachment, convection is assumed not to be penetrative, and the mixed layer entrains air only 
when its buoyancy is no larger than that of the mixed layer air.  The mixed layer still deepens as 
it warms, but less rapidly that in the entraining case. 

With the entrainment closure (12.6), the ML buoyancy balance (12.2) and (12.3) simplifies to 

  dbM
dt

= (1+ β )B0
h

 (12.7) 

and the boundary-layer depth equation simplifies to 

 
Fig. 12.2:  Convective mixed layer evolution illustrating more rapid deepening if entrainment 

is assumed to be penetrative (β = 0.2), compared to encroachment (β = 0). 
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 dh
dt

= we =
βB0

b+ (h)− bM
 (12.8)  

which is a closed pair of equations for the mixed-layer growth. 
 Fig. 12.2 guides us to a solution based on considering the column-integrated buoyancy 
budget.  Integrating from the surface up to a fixed height H above the mixed layer top: 

 d
dt

b
0

H

∫ dz = ∂b
∂t0

H

∫ dz = − ∂
∂z0

H

∫ ′w ′b dz = ′w ′b (0) = B0   

Hence the surface heating through time t adds a net area to the vertically-integrated buoyancy: 

 A = B0t = (bM0

h

∫ − b+ (z))dz  (12.9) 

 If we start with the encroachment case, Δb = bM – b+(h) = 0,  so 

 B0t = (bM0

h

∫ − b+ (z))dz = N 2h2 2 ⇒ hencr (t) =
2B0t
N 2

⎛
⎝⎜

⎞
⎠⎟
1 2

, bencr = N
2hencr    (12.10) 

As expected, h deepens more slowly as it gets larger, since more heat must be imparted to a 
deeper boundary layer to raise its buoyancy by a given amount.   
 For the entraining ML in constant stratification, there is a ‘similarity’ solution in which the 
buoyancy profile retains the same shape as it grows, so that 

 Δb(t) = cN2h(t)   (c is an as yet unknown constant). (12.11) 
One constraint on c comes from the entrainment growth equation (12.8): 

 βB0  = weΔb  = (dh/dt) cN2h. 
Integrating this equation from time 0 to t, starting with h(0) = 0, we get 

 βB0t = cN2h2/2 (12.12)  
A second constraint comes from the column buoyancy budget (12.9).  Considering Fig. 12.2, we 
write A = AP – AN. The ‘positive area’ AP is where the mixed layer buoyancy bM(t) exceeds the 
original environmental buoyancy and the ‘negative area’ AN is where penetrative convection has 
reduced the buoyancy. From Fig. 2, we see that bM + Δb = b+(h) = N2h, so bM = (1-c)N2h. The 
heights of the triangles making up AP and AN are N-2 times as long as their bases, so AP = bM (bM / 
N2)/2 and similarly for AN. Hence (12.9) can be written: 

 B0t = AP – AN = bM
2/2N2 - Δb2/2 N2 = [(1-c)2 - c2] N2h2/2= (1 - 2c) N2h2/2. (12.13) 

Dividing (12.12) by (12.13), we see that β = c/(1 - 2c), or that c = β/(1 + 2β). It follows from 
(12.13) that 

 hentr =
2B0t(1+ 2β )

N 2
⎛
⎝⎜

⎞
⎠⎟
1 2

≈ (1+ β )hencr   (12.14) 

We conclude that entrainment adds about β = 20% to the boundary layer deepening. For a 1 km 
deep BL and N2 = 10-4 s-1, the inversion strength would be Δb = .14N2h ⇒  Δθv ≈ 0.4 K, 
regardless of the surface buoyancy flux. Entrainment hardly changes the BL temperature. 


