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Properties of Turbulent Flows
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1 Smallest scales

It is often convenient to split the velocity field into two parts: < u > to represent the large–
scale flow we wish to describe in detail and u′ representing smaller scale fluctuating motions,
or turbulence. Thus

u =< u > +u′

where <> represents some averaging process (time, space, ensemble).

Note that < u′ >= 0 and << u > +u′ >=< u >.

We can split the tracer concentration, θ, in a similar manner:

θ =< θ > +θ′

A measure of the strength of the turbulence is the turbulent kinetic energy defined as

q2 =
1

2
(< u′2 > + < v′2 > + < w′2 >)

where u′, etc. are the fluctuating components of the flow velocity in the three space dimensions
(x, y, z). A measure of the fluctuations in concentration is the variance

< θ′2 >

Turbulent fluctuations can only exist down to a finite scale. Molecular diffusion will even-
tually wipe out variations in the flow properties.

The smallest scale of the flow is given by the Kolmogorov scale

Lk = 2π

(

ν3

ǫ

)1/4

which is determined on dimensional grounds assuming the kinematic viscosity, ν (∼ O(10−6

m2s−1) for sea water), and the rate of turbulent kinetic energy dissipation, ǫ, are the only
relevant quantities. ǫ is related to the turbulent K.E. by ǫ ≃ q3/L, where L is a typical
lengthscale of the turbulent flow (assuming the production of turbulent K.E. is balanced by
dissipation). In the interior of the ocean ǫ ∼ 10−9 W/kg (equivalent to the energy dissipated
by one hair dryer per cubic kilometer of ocean). Lk is then about 4 cm. Close to the surface of
the ocean which is being forced by the action of the wind ǫ ∼ 10−7 W/kg or more (Brainerd
and Gregg, 1995). Lk is then reduced to 1 cm or less.

The smallest scale for fluctuations of a tracer, such as temperature, is given by the Batchelor
scale

Lb = 2π

(

D2ν

ǫ

)1/4

where D is the molecular diffusivity of the tracer. For temperature DT ∼ O(10−7 m2s−1) and,
in the ocean interior, Lb is about 1cm. For salt DS ∼ O(10−9 m2s−1) and Lb is about 1mm.
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2 Turbulence

2.1 Shear Instability

Many environmental flows are unstable leading to the production of turbulence. As an example
we consider Kelvin-Helmholtz instability. An inviscid stratified shear layer with an inflection
point (i.e. d2U/dz2 = 0 some where in the flow) is unstable to Kelvin-Helmholtz instability
if the stratification is sufficiently weak. For a parallel shear flow Miles (1960) showed that
instability cannot occur if the Richardson number

Ri = N2/(dU/dz)2 > 1/4

whereN = −(g/ρo)∂ρ/∂z), the buoyancy frequency. For smaller values of Ri, instability usually
does occur.

2.2 Turbulent Kinetic Energy Equation

Assuming vertical scales are much smaller than horizontal scales then the equation of the
turbulent kinetic energy (TKE), q2, becomes
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van Dyke, p. 85

(

∂

∂t
+ u · ∇

)

q2 = −u′w′
∂u

∂z
−−v′w′

∂v

∂z
+ w′b′ −

∂

∂z

(

w′q2 +
1

ρ0
w′p′

)

− ν

[

(

∂u

∂z

)2

+

(

∂v

∂z

)2
]

Hence TKE is generated by (a) shear production

P = −u′w′
∂u

∂z
−−v′w′

∂v

∂z

and (b) buoyant production

B = w′b′

and lost through dissipation

ǫ = ν

[

(

∂u

∂z

)2

+

(

∂v

∂z

)2
]

The remaining term

T = −
∂

∂z

(

w′q2 +
1

ρ0
w′p′

)

(transport and pressure work) redistributes the TKE.
Shear production of TKE occurs if P is positive and represents a transfer of kinetic energy

from the mean to the turbulent flow. The buoyant production term may be positive (generation
of kinetic energy, loss of potential energy, as in convection) or negative (loss of KE, increase in
PE, as in a stably stratified flow).
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Both the production and dissipation of TKE are important elements of the turbulence.
Without production the turbulence will be dissipated. The flux Richardson number

Rf = −B/P

characterizes whether the flow is stable or unstable. For values of Rf below some critical value
Rfcrit we expect the flow to be unstable. Estimates of the critical value suggest Rfcrit = 0.15

If the turbulence is stationary (i.e. D/Dt(TKE) = 0), and we integrate over a volume
bounded by surfaces through which there are no energy fluxes, then there is a balance between
production and dissipation of TKE, namely

P +B = ǫ

Defining an eddy diffusivity for density, Kρ, as Kρ = −B/N2 (assuming the flow is stably
stratified) and using the above expression we can write Kρ in terms of the flux Richardson
number

Kρ =
Rf ǫ

(1−Rf )N2

suggesting (Osborn, 1980)

Kρ < 0.2
ǫ

N2

(note, the expression is often taken as an equality.)
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Brainerd and Gregg (1995)

from Brainerd and Gregg (1995)
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from Brainerd and Gregg (1995)
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3 Spectra

3.1 3D turbulence

At smaller scales (e.g. within turbulent boundary layers) turbulence tends to be three dimen-
sional. The effects of vortex stretching produces a cascade of kinetic energy from large to the
smaller scales, ending at the Kolmogorov scale where turbulent kinetic energy is dissipated by
viscosity. To see this we consider the domain averaged turbulent kinetic energy, E =< 1

2
q2 >

and enstropy, Z =< 1

2
|ω′|2 >, where <> is now taken as a domain average, and ω is the vortic-

ity. Vortex stretching has a tendency to increase the enstrophy, Z, of the flow, whilst at scales
somewhat larger than the Kolmogorov scale, Lk, the flow is essentially inviscid and the kinetic
energy, E, is conserved. E and Z are related by

E

Z
∼ L2

where L is the length scale of the most energetic eddies. If E is constant whilst Z increases,
then L must decrease.

A statistically steady state can be achieved by forcing the turbulent flow at some large
scale and dissipating energy at the Kolmogorov scale. Assuming there is an intermediate scale,
known as the inertial subrange, where the flow is inviscid, we can determine the shape of the
kinetic energy spectrum, E(k), within this subrange, as a function of the wavenumber k, by a
purely dimensional argument (Kolmogorov, 1941). The kinetic energy spectrum is the energy
per unit mass per unit wavenumber and has dimensions

E(k) ∼ L3T−2

Within the inertial subrange the only thing which determines the flow of energy through
wavenumber space is the rate at which it is being dissipated in the viscous subrange, ǫ. Therefore
E(k) can only depend on ǫ and k with

E(k) ∼ ǫmkn

Since ǫ ∼ L2T−3, we must have

E(k) ∼ ǫ
2

3 k−
5

3

3.2 2D turbulence

At larger scales the effects of the Earth’s rotation and stratification causes the flow to be
predominantly two dimensional (the Taylor–Proudman theorem for a homogeneous fluid). For
a stratified fluid the flow will be predominantly along isentropic/isopycnic surfaces. The effect
of vortex stretching (a key ingredient of 3D turbulence) is much reduced and one can show that
(in the absence of forcing or dissipation) the domain averaged enstrophy, Z, is now conserved.
The consequence of this is that energy is cascaded to larger length scales (an inverse or red

cascade) whilst enstropy cascades to smaller scales. (This is easily shown by considering the
case of energy initially at a given wavenumber, k, being partitioned between wavenumbers k/2
and 2k, and recalling that Z(k) = k2E(k).)

Since the kinetic energy undergoes an inverse cascade there is little kinetic energy at small
scales and hence dissipation. Enstropy on the other hand does cascade to smaller scales where
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it is dissipated. We can go through the same argument we did before to determine the spectral
slope in an inertial subrange, but now considering enstrophy (rather than kinetic energy). Thus
we expect

Z(k) ∼
L

T 2
∼ ǫmz kn

where ǫz is the rate of enstrophy dissipation (∼ 1/T 3). Then

Z(k) ∼ ǫzk
−1

and

E(k) ∼ ǫzk
−3

At larger scales a second inertial range exists. The scaling for energy for 3D turbulence is
equally valid for 2D turbulence, hence at larger scales

E(k) ∼ k−5/3

(see Kraichnan, 1967 for a fuller discussion)
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FIG. 1. Variance power spectra of wind and potential temperature near the tropopause from GASP
aircraft data. The spectra for meridional wind and temperature are shifted one and two decades to
the right, respectively; lines with slopes 23 and 25/3 are entered at the same relative coordinates
for each variable for comparison. [Reproduced with permission from Nastrom and Gage (1985).]
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Figure 3. As in Figure 2 but for AFES run with different
numerical resolution. Results are shown for the 24 level
version truncated at T79, T159, T319 and T639, as well as
the T639L48 version. At each horizontal resolution a
diffusion coefficient has been determined by trial and error
to produce the fairly convergent behavior at the high
wavenumber end of the spectrum. The black symbols in the
inset show the diffusion coefficient as a function of
truncation obtained this way. The red dots show results
from a similar analysis of a version of the NCAR
atmospheric model obtained by Boville [1991]. The lines
in the inset are linear regressions.

from Takahashi et al (2006)

Lindborg (2005) and Brethouwer et al (2007) have put forward a scaling argument for ro-

tating stratified turbulence, backed up by numerical simulations, that give Ek(kh) ∼ ǫ2/3k
−5/3
h ,

and Ek(kv) ∼ N2k−3
v .
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3.3 Coherent structures

The spectral characteristics of the flow does not tell us everything. In particular, a feature of
two–dimensional turbulence is the occurrence of long–lived intense vortices. The presence of
these vortices has a profound effect on the dispersion of tracers in such a flow field by trapping
the tracer for extended periods and acting as a transport barrier. We will consider the impact
of the flow topology on tracer transport in a later lecture.
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3.4 Halt to the inverse cascade

The inverse cascade is halted by something known as the β effect. At sufficiently large scales the
flow is influenced by the variation in the Coriolis parameter, f , with latitude, namely β = df/dy,
which acts as a restoring force. The scale at which this occurs is

Lβ =

(

U

β

)
1

2

called the Rhines scale (Rhines 1975), where U is a typical velocity scale. Above this scale the
inverse energy cascade is inhibited. The following figures give examples of the flow that emerges

Pannetta (1993)
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15 FEBRUARY 1998 621H U A N G A N D R O B I N S O N

FIG. 9. (a) Time-mean meridional gradient of zonal-mean absolute vorticity (solid curve) and
planetary vorticity (dashed curve) for case VIII. (b) Time-mean zonal wind profile (in m s21).
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From Richards et al (2006), showing the multiple jet-like flow produced in a high resolution
Ocean General Circulation Model (OFES).
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