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PREFACE 

In the customary description of turbulence, there are always more unknowns 
than equations. This is called the closure problem; a t  present, the gap can be 
closed only with models and estimates based on intuition and experience. For 
a newcomer to turbulence, there is yet another closure problem: several 
dozen introductory texts in general fluid dynamics exist, but the gap between 
these and the monographs and advanced texts in turbulence is wide. This 
book is designed to bridge the second closure problem by introducing the 
reader to the tools that must be used to bridge the first. 

A basic tool of turbulence theory is dimensional analysis; it is always used 
in conjunction with an appeal to  the idea that turbulent flows should be 
independent of the Reynolds number if they are scaled properly. These tools 
are sufficient for a first study of most problems in turbulence; those requiring 
sophisticated mathematics have been avoided wherever possible. Of course, 
dimensional reasoning is incapable of actually solving the equations governing 
turbulent flows. A direct attack on this problem, however, is beyond the scope 
of this book because it requires advanced statistics and Fourier analysis. Also, 
even the most sophisticated studies, so far, have met with relatively l i t t le  
success. The purpose of th is  book is to introduce i t s  readers to turbulence; it 
is neither a research monograph nor an advanced text. 

Some understanding of viscous-flow and boundary-layer theory is a pre- 
requisite for a successful study of much of the material presented here. On 
the other hand, we assume that the reader is not familiar with stochastic 
processes and Fourier transforms. Because the Reynolds stress is a second- 
rank tensor, the use of tensor notation could not be avoided; however, very 
l i t t le  tensor analysis is needed to understand elementary operations on the 
equations of motion in Cartesian coordinate systems. 

We use most of the material in this book in an introductory turbulence 
course for college seniors and first-year graduate students. We feel that this 
book can also serve as a supplementary text for courses in general fluid 
dynamics. We have attempted to avoid a bias toward any specific discipline, 
in the hope that the material will be useful for meteorologists, oceanographers, 
and astrophysicists, as well as for aerospace, mechanical, chemical, and pollu- 
tion control engineers. 

The scope of this book did not permit us to describe the experimental 
methods used in turbulence research. Also, because this is an introduction to 
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turbulence, we have not attempted to give an exhaustive l i s t  of references. 
The bibliography l ists the books devoted to turbulence as well as some major 
papers. The most comprehensive of the recent books is Monin and Yaglom's 
Statistical Fluid Mechanics (Monin and Yaglom, 1971); it contains a complete 
bibliography of the current journal literature. 

The manuscript was read by Dr. S. Corrsin and Dr. J. A. B. Wills; they 
offered many valuable comments. Miss Constance Hazuda typed several drafts 
and the final manuscript. A preliminary set of lecture notes was compiled in 
1967 by Mr. A. S. Chaplin. Several generations of students contributed to the 
development of the presentation of the material. While writing this book, the 
authors received research support from the Atmospheric Sciences Section, 
National Science Foundation, under grants GA-1019 and GA-18109. 

HT 
JLL 

June 1970 



BRIEF GUIDE ON THE USE OF SYMBOLS 

The theory of turbulence contains many, often crude, approximations. Many 
relations (except the equations of motion and their formal consequences) 
therefore do not really permit the use of the equality sign. We adopt the 
following usage. If the error involved in writing an equation is smaller than 
about 30%, we use the approximate equality sign Z. For crude approxima- 
tions the symbol - is employed. This generally means that the nondimen- 
sional coefficient that would make the  relation an equation is not greater 
than 5 and not smaller than 1/5. I f  the value of the coefficient is of interest 
(for example, if the theory is to be compared with experimental data or if a 
statement about the coefficient is in order), the equality sign is used and the 
coefficient is entered explicitly. If the problem discussed is the selection of 
the dominant terms in an equation of motion, the order symbol 0, which 
does not make any commitment on the value of the coefficient, is employed. 
After the dominant terms have been selected, the equality sign is used in the 
resulting simplified equation, with the understanding that the error involved 
can be made arbitrarily small by increasing the parameter in the problem 
(often a Reynolds number) without limit. We do not claim that we have been 
completely consistent, but in most cases the meaning of the symbols is made 
clear in the text. 

Though it may sometimes seem confusing, this usage serves as a continuing 
reminder that relatively few accurate statements can be made about a turbu- 
lent flow without recourse to experimental evidence on that flow. I f  one has 
to study a flow for which no data are available, all one can do is to find the 
characteristic parameters (velocity, length, time, and other scales) and to 
make crude (say within a factor of two) estimates of the properties of the 
flow. This i s  no mean accomplishment; it allows one to design an experiment 
in a sensible way and to select the appropriate nondimensional form in which 
the experimental data should be presented. 
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