
SPECTRAL DYNAMICS 

In Chapter 6, the energy spectrum, defined as the Fourier transform of the 
autocorrelation, was introduced. There would be relatively l i t t le value in 
working with the spectrum, however, if it did not have i t s  own physical 
interpretation. We shall find that spectral analysis allows us to draw con- 
clusions that are almost unattainable in any other way. Spectra are decom- 
positions of the measured function into waves of different periods or wave- 
lengths. The value of the spectrum at  a given frequency or wavelength is the 
mean energy in that wave, as we found in Section 6.4. Spectra thus give us an 
opportunity to think about the way in which waves, or eddies, of different 
sizes exchange energy with each other. This is the central issue in this chapter, 
because turbulence commonly receives i t s  energy a t  large scales, while the 
viscous dissipation of energy occurs a t  very small scales. We shall find that 
there often exists a range of eddy sizes which are not directly affected by the 
energy maintenance and dissipation mechanisms; this range is called the 
inertial subrange. 

8.1 
One- and three-dimensional spectra 
A turbulent flow varies randomly in al l  three space directions and in time. 
Experimental measurements, say of velocity, may be made along a straight 
line a t  a fixed time, a t  a fixed point as a function of time, or following a 
moving fluid point as a function of time. A measurement of this kind gener- 
ates a random function of position or time. If the function is stationary or 
homogeneous, an autocorrelation can be formed and a spectrum can be com- 
puted. If the autocorrelation is a function of a time interval, the transform 
variable is  a frequency; if the autocorrelation is  a function of a spatial separa- 
tion, the transform variable i s  a wave number (with dimensions length-' 1. 
Spectra obtained in this way are called one-dimensional spectra because the 
measurements producing them were taken in one dimension. 

Aliasing in onedimensional spectra One-dimensional spectra do not seem 
very appropriate for the description of turbulence, because it is three dimen- 
sional. In a way, one-dimensional spectra give misleading information about 
three-dimensional fields. Suppose that we are making measurements along a 
straight line and that we are looking for components of wave number K .  
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Because we are measuring along a line, we cannot distinguish between distur- 
bances of wave number K whose wave-number vector is aligned with the 
direction of measurement and disturbances of wave numbers larger than K 

whose wave-number vector is oblique to the line of measurement (Figure 
8.1 I .  Thus, a one-dimensional spectrum obtained in a three-dimensional field 
contains a t  wave number K contributions from components of all wave num- 
bers larger than K. This i s  called aliasing. Measured one-dimensional spectra 
ordinarily have a finite value a t  the origin (proportional to the integral scale). 
This does not mean that there is  finite energy a t  zero wave number; the 
energy merely has been aliased from higher wave numbers to zero. 

The problem of aliasing i s  not serious a t  high wave numbers, however. This 
is because small eddies tend to have about the same size in all directions, so 
that there is l i t t le  chance that the situation depicted in Figure 8.1 occurs a t  
small scales. 

direction of 
measuremen1 

f 
direction of 
measurement 

Figure 8.1. Aliasing in a one-dimensional spectrum: (a) a wave of true wave number 
K ,  aligned with the line of measurement, (b) a wave of wave number K ' > K ,  with 
wave-number vector oblique to  the line of measurement. 
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The three-dimensional spectrum In order to avoid the aliasing problem, we 
can take measurements not just along a line but in al l  possible directions. This 
produces a correlation that i s  a function of the separation vector. The three- 
dimensional Fourier transform of such a correlation produces a spectrum that 
is a function of the wave-number vector K ~ .  Unfortunately, this gives much 
more information than we can handle. The addition of the directional infor- 
mation eliminates the aliasing problem in exchange for a complexity that 
makes physical reasoning difficult. In order to remove the directional infor- 
mation, the spectrum i s  usually integrated over spherical shells around the 
origin of wave-number space. In this way, we obtain a spectrum that is a 
function of the scalar wave-number magnitude K and whose value represents 
the total energy a t  that wave-number magnitude without aliasing. This is 
called a three-dimensional spectrum. 

One additional problem remains. Often, the velocity components u l ,  u2 ,  
and u3 are measured separately. However, for spectral analysis we need a 
spectrum that represents all of the kinetic energy a t  a given wave number. 
Therefore, the spectra of u l ,  u 2 ,  and u3 are commonly added together; it is 
the spectrum of the total energy which is  always referred to as the three- 
dimensional spectrum. 

The correlation tensor and its Fourier transform Let us now formalize what 
we have described in words. The correlation tensor Rii is defined by 

R..(r) E ui(x, t)uj(x + r, t ) .  rl 
(8.1.1) 

The correlation tensor is a function of the vector separatio- r only, providing 
the turbulence is  homogeneous. The spectrum tensor Gv, which is the Fourier 
transform of Rii, is  given by 

- -  
(8.1.2) 

" 

Rii(r) = //I exp ( i ~  * r) G ~ ( K )  dm 

Unlike the definition of the spectrum used in Section 6.4, the correlation 
here has not been normalized; the form (8.1.2) i s  customary in the literature. 
Of primary interest is the sum of the diagonal components of Gii. which is 

P 
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$,, = $1 1 t $22 + $ 3 3 ,  because it represents the kinetic energy a t  a given 
wave-number vector. This becomes clear by considering R,,(O), which is 

R , + O ) = U ~ U ~ = ~ U ~  =I[/ $ , , ( K ) ~ K .  (8.1.3) 

The directional information in $,,(K) is  removed by integration over a spheri- 
cal shell of radius K ( K  is  the modulus of the vector K; that is, K’ = K-K = 
K , K ~ ) .  I f  we call the surface element of the shell do, we can write 

E ( K )  = - ff $ i i ( ~ )  du. (8.1.4) 

The purpose of the factor f i s  to make the integral of the three-dimensional 
spectrum E ( K )  equal to the kinetic energy per unit mass: 

- - 
a 

1 
2 

(8.1.5) 

Two common onedimensional spectra The one-dimensional spectra that are 
most often measured are the one-dimensional Fourier transforms of 
R1 (r,O,O) and R Z Z  (r,O,O). The geometry involved in measuring R 1  and Rzz  
is  sketched in Figure 8.2; Rll(r,O,O) i s  called a longitudinal correlation, 
R2 (r,O,O) i s  called a transverse correlation. Correspondingly, f is  called a 
longitudinal spectrum and f 2 2 i s  called a transverse spectrum. 

The one-dimensional spectra f 1 ( K ~  ) and f2  ( K  are defined by 

(8.1.6) 

(8.1.7) 

The relations between F1 1, f Z 2 ,  and E are quite complicated. This can be 
seen by considering the relation between R1 and $ii, which is 
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r 

Figure 8.2. The longitudinal and transverse correlations. 

(8.1.9) 

This demonstrates the aliasing problem. The integration i s  over a slice of 
wave-number space a t  a given value of K ~ ,  so that energy from high wave 
numbers which are not located near the K~ axis i s  aliased to K ~ .  

and F z z  are somewhat different. Measured values of 

R1 do not ordinarily go negative (though there is no reason why they should 
not); this means that F l l  has a maximum a t  the origin. Because F11 i s  
majorized by i t s  value a t  the origin, it curves downward parabolically away 
from K~ = 0 (note that F 1  

The transverse correlation Rz z, however, does become negative for some 
values of r (Figure 8.2). It i s  of interest to see why this occurs. Consider a 
plane perpendicular to  the xz  direction. Across this plane there should be no 
net mass flux, because the mean value of uz i s  zero. Therefore, the integral of 
u2 over the entirexl , x 3  plane should be zero: 

The shapes of F 1  

is  symmetric because R1 1 i s  real). 

(8.1.10) 

I f  the integral is multiplied by uz a t  some given point, there results, after 
averaging, 

(8.1.11) 

This means that Rz must go negative somewhere in the xl, x 3  plane. This 
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merely states that backflow is necessary somewhere in the plane in order to 
keep the net mass flux zero. If the turbulence is isotropic (meaning, as we saw 
in Chapter 3, that i ts statistics are invariant under reflections or rotations of 
the coordinate system), R2 2 (rl, 0, r3 )  can be a function only of the distance 
r =  (r: + r $ ) 1 ' 2 .  In thiscase, (8.1.11) becomes - 
f-r Rz2 ( r ,  0,O) dr = 0. (8.1.12) 

The transverse correlation thus must be negative somewhere. In Chapter 6 we 
found that the corresponding spectrum, f z 2 ,  is likely to have a peak away 
from the origin. 

Experimental one-dimensional spectra are commonly obtained by moving 
a probe so rapidly through the turbulence that the velocity field does not 
change appreciably during the time of measurement. The probe sees a fluctu- 
ating velocity, which is  a function of time; if the traversing speed U of the 
probe is large enough, the velocity signal u( t )  may be identified with u(x/U).  
This approximation i s  known as Taylor's hypothesis; it is also referred to as 
the frozen-turbulence approximation. The substitution t = x/U i s  a good 
approximation only if u/U<< 1 (Hinze, 1959, Sec. 1.8; Lumley, 1965). This 
is an important constraint in the design of turbulence experiments. 

Isotropic relations In general, the relations between f 1, F z Z ,  and E are 
quite complicated. This is unfortunate; it seems natural to base physical 
reasoning on E ( K ) ,  but most measurements give one-dimensional spectra like 

f 1 1 and f z  2 .  If the turbulence is isotropic, however, the relations between 
f 1 ,  F2 2 ,  and E are fairly simple. The derivation of these isotropic relations 
is beyond the scope of this book. Two of the most useful relations are 
(Batchelor, 1953; Hinze, 1959) 

(8.1.13) 

(8.1.14) 

The first of these is often used to obtain E from measured values of f at 
high wave numbers. This procedure is legitimate because turbulence is very 
nearly isotropic a t  high wave numbers. 

a K :  and F2 a K: if E a K " .  The According to (8.1 .I31 and (8.1.141, f 
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exponent in the power law is the same, but the coefficients are different. We 
shall find shortly that in a major part of the spectrum E ~ K - ” ~ ;  it is 
encouraging to know that F 1  and F Z 2  exhibit the same power law. If al l  
spectra are proportional to K - ” ~  , (8.1 .I41 gives fz 2 = i F 1  1. This relation is 
often used to examine turbulence for evidence of isotropy. 

The isotropic relations also give some indication of the shapes of F1 
FZ 2 ,  and E near the origin. Because R1 is  real and positive (no experiments 
are known in which R1 C 0 anywhere), F 1  i s  symmetric and majorized by 
i ts  value a t  the origin: 

F l  1 ( K )  = A 1 - BK: -k CK? + . . . . 
Substituting this into (8.1 .I 3,8.1.14), we obtain 

E(K) = 8cK4 . . . , (8.1.1 6 )  

(8.1.17) 

Thus, E begins from zero, quartically upward, while F Z Z  curves upward para- 
bolically, so that it has a peak away from the origin. The quartic behavior of 
E ( K )  deserves special attention. Physically, the point is that there is no energy 
at  zero wave number, so that Gii(0) = 0. Because Gii i s  symmetric, it begins 
parabolically ( a ~ ’ ) .  Now, E ( K )  i s  an integral of 4ii over a spherical shell 
whose area i s  proportional to K ’ ,  so that E ( K )  must be proportional to K~ 

near the origin. A much more careful analysis is needed to show that this 
result is not restricted to isotropic turbulence. Also, the coefficient in the 
parabolic form of Gij near the origin is  not the same in all directions, but that 
has no effect on the behavior of E (Lumley, 1970). It should be kept in mind, 
however, that the large-scale structure of turbulence is  unlikely to be iso- 
tropic, so that (8.1.13) and (8.1.14) should not be used to obtain quanti- 
tative results a t  small wave numbers. 

(8.1.15) 

F ~ z ( K ~ ) = A z + ~ B K : + . . .  1 . 

Spectra of isotropic simple waves We may get an impression of the shapes of 
one- and three-dimensional spectra by examining a rather artificial case. Con- 
sider an isotropic field of waves that al l  have the same wavelength 277/~*, but 
whose wave-number vectors have random directions. For this isotropic field, 

is zero, except on a shell of radius K * ,  where it has a uniform distribution. 
Therefore, E ( K )  i s  zero everywhere, except for a spike a t  K = K, .  The shape of 
F1 can be computed from (8.1.9). If the plane of integration is beyond K,, 

F1 is  zero; if K,< K * ,  the integration yields 
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I 
I 
I 
I 
I 

(8.1.18) 

Here, A i s  an arbitrary constant, related to the area under the spike in E(K). 
Substitution of (8.1.18) into (8.1.14) gives an expression for F 2 2 ;  again, 
F22 =OforK1 >K.,whileforK1 < K *  

(8.1.19) 

Figure 8.3. Longitudinal and transverse spectra of fields of isotropic simple waves: (a) 
spectra for a field of simple waves of wave number K *, (b) composite spectra for a field 
of waves with different wave numbers (adapted from Corrsin, 1959). 
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F Z 2  can be constructed by adding many spectra of the type sketched in 
Figure 8.3a. It is evident that the longitudinal spectrum is likely to be a 
monotone decreasing function, while the transverse spectrum is  likely to  rise 
a t  first before it decreases (Figure 8.3b). Of course, both spectra should go to  
zero as K -+ =, because the total area under the curves is proportional to  the 
kinetic energy. 

8.2 
The energy cascade 
The existence of energy transfer from large eddies to small eddies, driven by 
vortex stretching and leading to viscous dissipation of energy near the Kolmo- 
gorov microscale, was demonstrated in Chapter 3. Here, we discuss how the 
energy exchange takes place. 

Let us briefly recall the vortex-stretching mechanism. When vorticity finds 
itself in a strain-rate field, it is subject to stretching. On the basis of conserva- 
tion of angular momentum, we expect that the vorticity in the direction of a 
positive strain rate is amplified, while the vorticity in the direction of a 
negative strain rate i s  attenuated. This effect is sketched in Figure 8.4. If the 
influence of viscosity is ignored, the vorticity equation reads (recall that sij is 
the strain-rate tensor) 

doildt = wI’sii. (8.2.1 ) 

Consider the two-dimensional strain-rate field in Figure 8.4. Here, s1 = 

-s2 =s, while s1 = 0. Let us assume that s is a constant for a l l  t > 0 and 
that a, = w2 = wo at  t = 0. In this case, (8.2.1) reduces to  

do1 fdt = S W ~ ,  dwzldt = - s w ~ .  (8.2.2) 

This yields 

w1 = woesr, w2 = woe-sf, (8.2.3) 

w: + w: = 20; cosh 2st. (8.2.4) 

Except for very small values of st,  the total amount of vorticity thus increases 
with increasing values of st. The vorticity component in the direction of 
stretching increases rapidly, while the vorticity component in the direction of 
compression (shrinking) decreases slowly a t  largest. This is similar to the rate 
of growth of a spot of contaminant (Section 7.3); of course, the same stretch- 
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Figure 8.4. Vorticity stretching in a strain-rate field: (a) before stretching, (b) after 
stretching. 

ing mechanism is involved. Note, however, that viscous effects are not 
accounted for in (8.2.1,8.2.2). 

Vortex stretching involves an exchange of energy, because the strain rate 
performs deformation work on the vortices that are being stretched. We 
learned in Chapter 3 that the amount of energy gained by a disturbance with 
velocity components ui,uj in a strain rate sij i s  equal to -ui uj sij per unit mass 
and time. In the plane strain-rate field of Figure 8.4, the energy exchange rate 
is 

T=s(ui  - U i ) .  (8.2.5) 

Now, the vorticity component w1 is increased, which corresponds to an 
increase in u2 and u3;  also, w2 isdecreased, which corresponds to a decrease 
in u1 and u 3 .  We thus expect that u; increases and u: decreases, while d: 
increases fairly slowly. Hence, the difference u; - u:, although starting from 
zero a t  t = 0, becomes positive. This means that T also becomes positive, so 
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that the strain rate indeed performs work on the eddies in Figure 8.4. The 
total amount of energy in the vortices is thus expected to increase. 

Spectral energy transfer A turbulent flow field can (conceptually, a t  any 
rate) be imagined as divided into a l l  eddies smaller than a given size and all 
eddies larger than that size. The smaller eddies are exposed to the strain-rate 
field of the larger eddies. Because of the straining, the vorticity of the smaller 
eddies increases, with a consequent increase in their energy a t  the expense of 
the energy of the larger eddies. In this way, there is a flux of energy from 
larger to smaller eddies. 

The situation i s  not yet quite clear, however. Although we expect that 
there will be a net flux of energy from smaller to larger wave numbers, we do 
not know which eddy sizes are involved in the spectral energy transfer across 
a given wave number. For example, does the energy come from eddies that 
are slightly larger than a given wavelength, or does it come from all larger 
eddies indiscriminately? In the same way, is the energy absorbed at wave 
numbers slightly larger than a given value, or is it absorbed by all larger wave 
numbers? We attempt to answer these questions by looking a t  the char- 
acteristic strain rates of different eddy sizes. Before we do this, however, we 
need a better mental picture of the concept of an eddy. 

A simple eddy Let us recall that an autocorrelation and the corresponding 
spectrum are a Fourier-transform pair. If the correlation is a function of 
spatial separation, the spectrum is a function of wave number. A certain eddy 
size, say I: is  thus associated with a certain wave number, say K .  An “eddy” of 
wave number K may be thought of as some disturbance containing energy in 
the vicinity of K .  It would be tempting to think of an eddy as a disturbance 
contributing a narrow spike to the spectrum at  K .  However, a narrow spike in 
the spectrum creates slowly damped oscillations (of wavelength 2 d ~ )  in the 
correlation, as we discovered in Section 6.2. Such a correlation is char- 
acteristic of wavelike disturbances, but not of eddies; we expect eddies to lose 
their identity because of interactions with others within one or two periods 
or wavelengths. Therefore, the contribution of an eddy to the spectrum 
should be a fairly broad spike, wide enough to avoid oscillatory behavior 
(“ringing”) in the correlation. 

It i s  convenient to define an eddy of wave number K as a disturbance 
containing energy between, say 0 . 6 2  and 1.62. This choice centers the 
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energy around K on a logarithmic scale, because ln(1.62) = ln(1/0.62) Y- :; it 
also makes the width of the contribution to the spectrum equal to K (Figure 
8.5). We recall from Section 6.2 that the transform of a narrow band around 
K is  a wave of wavelength 2 n / ~ ,  with an envelope whose width i s  the inverse 
of the bandwidth. Now, because the bandwidth selected i s  K, the width of the 
envelope of the eddy is of order 1 / ~ .  This is sketched in Figure 8.5; we see 
that an eddy defined this way is indeed the relatively compact disturbance we 
want it to be. The eddy size { i s  roughly equal to 2n/~.  

The schematic eddy presented in Figure 8.5 suffices for the development 
of energy-cascade concepts. This model, however, cannot deal with a l l  of the 
problems associated with the distinction between waves and eddies. The 
Fourier transform of a velocity field i s  a decomposition into waves of diff- 
erent wavelengths; each wave i s  associated with a single Fourier coefficient. 
An eddy, however, is associated with many Fourier coefficients and the phase 
relations among them. Fourier transforms are used because they are con- 
venient (spectra can be measured easily); more sophisticated transforms are 
needed if one wants to decompose a velocity field into eddies instead of 
waves (Lumley, 1970). 

Figure 8.5. An eddy of wave number K and wavelength 2 n / ~ .  
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The energy cascade Let us return to the role of the strain rates of different 
eddy sizes in the spectral energy exchange mechanism. The energy of all 
eddies of size 2 n / ~  is  roughly proportional to E ( K )  times the width of the 
eddy spectrum, which is K. Hence, a characteristic velocity i s  given by 
[ K € ( K ) ]  I ” .  The size of the eddy is about 2a/K, so that the characteristic 
strain rate (and the characteristic vorticity) of an eddy of wave number K is 
given by 

(8.2.6) 

We recall from Section 3.2 that the strain rate of large eddies, which contain 
most of the energy, is of order tc/t‘(lis an integral scale), while the small-scale 
strain-rate fluctuations are of order uh (h  i s  a Taylor microscale). Therefore, 
we should expect that the strain rate S ( K )  increases with wave number. We 
find in the next section that E ( K )  0: K - ’ / ~  in the central part of the spectrum; 
this gives S ( K )  Q: K ‘ / ~ ,  so that S ( K )  indeed increases with K .  We shall use this 
result for convenience. 

The energy spectrum is continuous; for the purposes of this discussion, 
however, we may think of the spectrum as being made up from eddies of 
discrete sizes. The strain rate imposed on eddies of wave number K due to the 
eddies of the next larger size (which extends from 0 . 2 4 ~  to 0 . 6 2 ~ ,  centered 
around 0 . 3 8 ~ )  is ~ ( 0 . 3 8 ~ 1 ,  which is  about ~ s ( K )  i f  S ( K )  0: K ” ~ .  The strain rate 
due to eddies two sizes larger than 2771~ (whose energy extends from 0 . 0 9 ~  to 
0 . 2 4 ~ ,  centered around 0 . 1 5 ~ )  is again about half as large. Adding al l  of the 
strain rates of eddies larger than 2 n / ~ ,  we conclude that of the total strain 
rate felt by an eddy of wave number K ,  one-half comes from eddies of the 
next larger size, and another quarter from the next larger size. Therefore, we 
expect that most of the energy crossing a given wave number comes from 
eddies with slightly smaller wave numbers. 

The question now is which eddies benefit most from the energy transfer 
across wave number K .  According to (8.2.51, energy transfer depends upon 
the ability of the strain rate to align the smaller eddies so that u$ and u: (of 
the eddies in Figure 8.4) become different. The strain rate thus has to over- 
come the tendency of eddies to equalize u:,  u ; ,  and uz. This tendency is 
called return to isotropy; the lack of isotropy (or anisotropy) that can be 
generated by the strain rate depends on the time scale for return to isotropy 
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relative to the time scale of the straining motion. Because the strain rate has 
dimensions of time-’, the time scale of return to isotropy is roughly l/s(K) 
for eddies of wave number K. This means that those eddies would return to 
isotropy in a time of order l/s(K) i f  the strain rate were removed. Because 
smaller eddies have larger strain rates, small eddies return to isotropy rapidly. 

I f  Y i s  the combined strain rate of al l  eddies with wave numbers below K, 

the time scale of the applied strain rate is of order l/Y. I f  Yiis large com- 
pared to s ( K ) ,  the anisotropy is large; if Y i s  small compared to s ( K ) ,  the 
relatively rapid return to isotropy prevents the creation of a large anisotropy. 
It appears reasonable to assume that the degree of anisotropy is  proportional 
to  ~ ’ / s ( K ) .  The energy transferred from al l  larger eddies to an eddy of wave 
number K is then approximately Y 2 ~ € ( ~ ) / ~ ( ~ ) ,  by virtue of (8.2.5). The 
energy absorbed by eddies of the next smaller size (with energy between 1 .6~  
and 4.2~, centered around 2 .6~)  is about ;Y*K€(K)/S(K 1, because 
~ ( 2 . 6 ~ )  E ?s(K) and 2.6~€(2.6~) K € ( K )  i f  E ( K )  0: K - 5 ’ 3 .  Eddies of wave 
number K thus receive about two-thirds of the total energy transfer, those of 
the next smaller size receive about one-sixth, and al l  smaller eddies combined 
also receive about one-sixth. 

A crude picture i s  beginning to emerge. Most of the energy that i s  ex- 
changed across a given wave number apparently comes from the next larger 
eddies and goes to the next smaller eddies. It seems fair to describe the energy 
transfer as a cascade, much like a series of waterfalls, each one filling a pool 
that overflows into the next one below. This concept proves to be exception- 
ally useful, because the largest eddies and the smallest eddies clearly have no 
direct effect on the energy transfer a t  intermediate wave numbers. However, 
we should not expect too much from the cascade model. After all, it is a very 
leaky cascade if half the water crossing a given level comes directly from all 
other pools uphill. 

In the development of the cascade model, a number of crude assumptions 
have been made, some of which are not likely to be valid throughout the 
spectrum. One major assumption i s  clearly not valid a t  very small scales. The 
time scale of an eddy has been estimated as ~ / s ( K ) ;  however, there is a viscous 
lower limit on time scales, as we saw in Chapters 1 and 3. The smallest time 
scale i s  ( v /E) ’ /*  and the strain rate of very small eddies is of order ( E / V ) ” ~ ,  so 
that the model developed here is  not valid if S ( K )  and (E/v)‘/~ become of the 
same order of magnitude. The cascade model is  inviscid; it should be applied 
only to eddy sizes whose Reynolds numbers(K)/K’v is large. 
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8.3 
The spectrum of turbulence 
We have found that the anisotropy of eddies depends on the time-scale ratio 
~ / s ( K ) .  The strain rate of the large, or "energy-containing" eddies is compar- 
able to the strain rate of the mean flow (recall that aU& - aJ4. Therefore, 
large eddies have a steady anisotropy due to the strain rate of the mean flow, 
which maintains a steady orientation. On the other hand, the strain rate of- 
small eddies is large compared to that of the mean flow and of the large 
eddies (recall that sii- ah), so that no permanent anisotropy can be 
induced at  small scales. This does not mean that small eddies are isotropic, 
because energy transfer i s  possible only if eddies are aligned with a strain rate. 
However, the anisotropy discussed in the preceding section is temporary; 
eddies of a given size are stretched mainly by somewhat larger eddies, whose 
strain-rate field is constantly shifting in magnitude and direction. As the eddy 
size becomes smaller, the permanent isotropy decreases, so that a t  small scales 
the strain-rate field i tse l f  may be expected to be isotropic in the mean. In 
other words, turbulence is increasingly "scrambled" a t  small scales, and any 
permanent sense of direction is lost. This concept is called local isotropy; it 
was proposed by A. N. Kolmogorov in 1941 (see Friedlander and Topper, 
1962). The adjective "local" refers to small scales (large wave numbers). 

Local isotropy does not exist if the Reynolds number is not large enough. 
The strain rate of the mean flow is of order #/4 the strain rate of the smallest 
eddies i s  of order ah- (E/Y)'/~. We probably need ah> l O a l  in order to 
have local isotropy a t  the smallest scales. ConsequentIy,lA- Ri" (3.2.17) 
needs to be a t  least 10, giving a Reynolds number of a t  least 100. 

In the part of the spectrum in which local isotropy prevails, time scales are 
short compared to those of the mean flow. This means that small eddies 
respond quickly to changing conditions in the mean flow. Therefore, small 
eddies always are in approximate equilibrium with local conditions in the 
mean flow, even though the latter may be evolving. F a  this reason, the range 
of wave numbers exhibiting local isotropy is called the equilibrium range. It 
begins a t  a wave number where S ( K )  first becomes large compared to the mean 
strain rate, and it includes al l  higher wave numbers. 

The spectrum in the equilibrium range In the equilibrium range, time scales 
are so short that the details of the energy transfer between the mean flow and 
the turbulence (which occurs mainly a t  large scales) cannot be important. 
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However, the amount of energy cascading down the spectrum should be a 
major parameter. Because all energy is finally dissipated by viscosity, the total 
amount of energy transfer must be equal to the dissipation rate E ,  and the 
second major parameter should be the viscosity itself. If no other parameters 
are involved, we have E = E(K,C,Y), which can have only one nondimensional 
form: - 

(8.3.1 1 

This scaling law was derived by Kolmogorov; as before, ?) = ( v ~ / E ) ' / ~  is  the 
Kolmogorov microscale and u = ( ~ e ) ' ' ~  i s  the Kolmogorov velocity. The 
Kolmogorov spectrum (8.3.1) is supported by a large amount of experimental 
data. Because the turbulence in the equilibrium range is isotropic, the iso- 
tropic relations (8.1.13, 8.1.14) may be used to compute E and Fz2 from 
measured F1 1 .  

The similarity between (8.3.1) and the law of the wall in turbulent boun- 
dary layers (Chapter 5)  is striking. Close to a rigid wall, the momentum flux 
i s  puz; if uf and v are the only parameters, U = U ( ~ , U ~ , V ) .  so that U/u, = 
f(yu,,/v). In boundary layers, the spatial momentum flux is  involved; in the 
spectrum, it is the spectral energy flux.. 

Most of the viscous dissipation of energy occurs near the Kolmogorov 
microscale v, as we discussed in Chapter 3. The equilibrium range thus 
includes the dissipation range of wave numbers, much like the wall layer of a 
boundary layer includes the viscous sublayer (Section 5.2). It can be shown 
that the spectrum of the dissipation, D ( K ) ,  is  given by (Batchelor, 1953; 
Hinze, 1959) 

D(K) = 2VK2E(K). (8.3.2) 

The dissipation i s  proportional to the square of velocity gradients; the factor 
K' in (8.3.2) arises because differentiation corresponds to multiplication by 
wave number. The dissipation rate E is  given by 

E=2VS%= 1; D(K)dK=2V lo K'EdK. (8.3.3) 

If most of the dissipation occurs within the equilibrium range, we obtain, 
with (8.3.1 1, 

0. 

r l r l  

(8.3.4) 



264 Spectral dynamics 

The value of E often is determined by integrating (8.3.3) with a measured 
energy spectrum. 

The large-scale spectrum For small wave numbers, the spectrum scales in a 
different way. If the spectral Reynolds number S ( K ) / K ~ V  is  large, we do not 
expect viscosity to be relevant. The principal parameters are those that des- 
cribe the energy transfer from the mean flow to the turbulence and the 
energy transfer from large to small scales. The turbulence receives i t s  energy 
from the mean strain rate S and transfers energy to small scales a t  a rate E ,  so 
that the scaling of the large-scale part of the spectrum should be based on S 
and f .  If these are the only relevant parameters, we must have E = E(K,E,S). 
For convenience, we defines and ‘by the relationsSE &and f = u 3 / L  The 
spectrum then becomes 

(8.3.5) 

This relation, of course, is not universal, but differs in flows with different 
geometries. In a family of flows with the same geometry, however, we expect 
the large-scale part of the spectrum to scale like (8.3.5). 

The inertial subrange The Kolmogorov spectrum (8.3.1) i s  related to a limit 
process in which s(K)/S+=.  Evaluatings(f0 with (8.2.6) and (8.3.11, we find 
that this limit corresponds to 

(8.3.6) 

Here we used S = &!and Re =ah.  It is clear that the Kolmogorov spectrum 
is valid for KQ = O(1) in the limit as Re+=. On the other hand, the large- 
scale spectrum (8.3.5) applies to wave numbers for which S ( K ) / K ’ V  += =. With 
(8.2.6) and (8.351, this limit becomes ~ 

(8.3.7) 

This implies that (8.3.5) i s  valid for ~ e =  O(1) and Rc+=. We thus have 
viscous scaling a t  high wave numbers and inertial scaling a t  low wave 
numbers, both valid in the limit as Rc +=. This is similar to the scaling l a m  
for channel flow (Section 5.21, where we used an inviscid description for 
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y/h = 8 (1 and a viscous description for yu,/v = 8 (1 1, both in the limit as 
R ,  +m. We found that those scaling laws had a common region of validity; 
perhaps we can do the same here. 

The existence of a region of ”overlap” depends on the possibility of taking 
the limits ~ q + 0  and ~ e + m  simultaneously. In other words, we should be 
able to go to the small-scale end of the large-scale spectrum and to the 
large-scale end of the Kolmogorov spectrum simultaneously, without violating 
the condition Rd + m  required by (8.3.6, 8.3.7). Take K { =  Rf (n >O) and 
recall that t/q - 
K q  = ke(qi0 - K tt?i3I4 = @-3i4, (8.3.8) 

so that we need 0 < n < 314 in order to obtain Kq -+ 0. Because we do not 
know how f ( K q )  and F ( K ~ )  vary, we cannot tell if (8.3.6) and (8.3.7) will 
indeed be satisfied. We assume that they are, though, and verify the condi- 
tions after the matching has been performed. 

With 0 < n  < 3/4, it is possible to have ~ t + m a n d  K q  + O  simultaneously, 
so that we expect that (8.3.1 ) and (8.3.5) can be matched. Equating the two 
and using ~ t =  R,“, K Q  - R l - 3 i 4 ,  we obtain 

(1.5.14). We obtain 

u ’ ~ ? F ( R ~ )  = U’ Q f 

which becomes 

1, (8.3.9) 

Rji4 F(Rf) = f(R/-3/4). (8.3.10) 

This has to be satisfied for any n in the interval between 0 and 3/4. The 
solution of (8.3.10) is  

F(Ke) =CX(Ke) -5 /3 ,  f (KQ)  =CX(K7))-5/3. (8.3.1 1) 

In the literature, this spectrum is often presented in nonnormalized form. 
Substitution of (8.3.1 1) into (8.3.1 or (8.3.5) gives 

(8.3.12) € ( K )  =a€ 

This expression is valid for KG+ m, KQ + 0, Rl+ 00. Experimental data indi- 
cate that Q = 1.5 approximately. The range of wave numbers for which 
(8.3.1 2) is valid is called the inertial subrange; it is the spectral equivalent of 
the inertial sublayer in boundary layers. In the inertial subrange, the one- 
dimensional spectra F 1  and F2 are also proportional to E ~ ’ ~ K  1-5/3. 

With (8.3.1 I), the conditions (8.3.6, 8.3.7) become 

2/3 K-513 
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Figure 8.6. The inertial subrange. 

(8.3.13) 

(8.3.14) 

so that these are indeed satisfied if Rl-+ * and 0 < n < 3/4. 
Recall that the mean velocity profile in the inertial sublayer can be ob- 

tained simply by postulating that W / a y  is a function of u ,  and y only. As we 
found in Section 5.2, this gives aU/ay = U,/KY.  In a similar way, (8.3.12) can 
be obtained simply by postulating that E = E(E,K)  for I/{<< K << l/q. The 
point of obtaining (8.3.12) with such care is to delineate the conditions of i t s  
validity. A graphical representation of these conditions is given in Figure 8.6. 
The horizontal line corresponds to s(K)/S = 10, which makes the eddies of 
that size marginally independent of the mean strain rate S and therefore of 
the turbulence-production process (g= -m Sjj) .  The line with a slope of 
corresponds to S ( K ) / K ' V  = 10, which should make eddies of that size approxi- 
mately independent of viscosity. It is clear that no inertial subrange exists 
unless the Reynolds number is quite large. With the conditions used pre- 
viously, the Reynolds number needs to be a t  least 10'; if the conditions are 
relaxed to s(K) /S>  3, S ( K ) / K ' V  > 3, the Reynolds number needs to be larger 
than 4 x lo3. This is s t i l l  a rather stringent condition. We conclude that it is 
unlikely that we would encounter an inertial subrange in laboratory flows; 
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normalization, (b) large-scale normalization. 

The spectrum of turbulence at different Reynolds numbers: (a) small-scale 

however, it is frequently observed in geophysical flows. The emergence of an 
inertial subrange in the spectrum of turbulence with increasing Reynolds 
numbers is  sketched in Figure 8.7. 

8.4 
The effects of production and dissipation 
In the inertial subrange, no energy i s  added by the mean flow and no energy 
is taken out by viscous dissipation, so that the energy flux T across each wave 
number is constant. In other words, the central part of the energy cascade is 
conservative, much like a cascade of waterfalls without any springs or drains. 
Because the total amount of energy dissipated per unit mass and time is E, the 
spectral energy flux T in  the inertial subrange is  equal to E. 

In this section, we want to get a qualitative impression of how E ( K )  be- 
haves near the ends of the inertial subrange. Recall that eddies of wave 
number K get their energy, K € ( K ) ,  mainly from eddies of wave number 0.38~, 
whose strain rate is 4 0 . 3 8 ~ )  ~ ; S ( K ) .  The anisotropy produced by the larger 
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eddies is proportional to s ( ~ . ~ ~ K ) / s ( K ) ,  so that the energy flux T may be 
represented by 

~ ’ ( 0 . 3 8 ~ )  2n -- 8n 
T ( K )  = - K E ( K )  - K € ( K ) s ( K ) .  

(Y3n S ( K )  (Y3n 
(8.4.1) 

The numerical factor has been chosen in such a way that T = E in the inertial 
subrange, with S ( K )  = ( K ~ E ) ~ / ~ / ~ ~  (8.2.6) and E ( K )  = a ~ ~ 1 ~ ~ - ~ ’ ~  (8.3.12). 

Substituting (8.2.6) into (8.4.1 1, we may write T as 

T ( K )  = y2 K 5 / ’ .  (8.4.2) 

This gives some indication of the variation of T across the spectrum. If 
E 0: K ” -  ’ I 3 ,  then T a K ~ ” ’ ~ ,  so that T increases when the spectrum decreases 
less rapidly than K - ” ~  and decreases when E decreases more rapidly than 

- 5 1 3 .  

In the inertial subrange, S ( K )  i s  given by 

(8.4.3) 

It turns out to be convenient to use the right-hand side of (8.4.3) not only 
inside the inertial subrange but also beyond i t s  edges. Substituting the right- 
hand side of (8.4.3) into (8.4.1), we obtain 

T ( K )  = (u-1E1”K5’3E(K). (8.4.4) 

This estimate of T ( K ) ,  however crude it may be, is  attractive because it 
represents the spectral flux at  some wave number as a local flux, determined 
only by the value of E and the inertial time scale E - ~ ’ ~ K - ’ / ~  a t  that wave 
number, and because it makes the relation between T and E a linear one. Of 
course, (8.4.2) is .also a local estimate for T(K);  however, it is  not linear in E, 
so that it produces poorly behaved spectra. 

Before we use (8.4.4) to calculate spectra outside the inertial subrange, let 
us take a close look a t  the assumptions underlying (8.4.2) and (8.4.4). In the 
inertial subrange, T =  E =av’€  3 / 2 ~ 5 / 2 ;  comparing this with (8.4.21, we see 
that we are relaxing the condition T =  E .  Clearly, (8.4.2) assumes that T is 
proportional to  E 3 ’ 2 ~ 5 1 2  even if T # E .  In other words, we use inertial 
scaling for T even though we are outside the inertial subrange. This approxi- 
mation can be justified only if the effects of viscosity and those of the mean 
strain rate are small, so that the difference between T and E is  small. Equation 
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(8.4.4) is even cruder, because it relaxes the condition T = e but retains the 
inertial-subrange expression for the strain rate. 

Both (8.4.2) and (8.4.4) may be thought of as spectral interpretations of 
mixing-length theory. I f  -uV-d‘ W A Y ,  the production of turbulent energy 
is proportional to a&IUby) ’ .  Making the substitutions u + ( K € ) ~ / ’ ,  .4+ I / K ,  
and (aU/ay)’ + K’ ( K E ) ,  we obtain (8.4.2); of course, turbulence production 
is now interpreted as transfer of energy from larger eddies to smaller eddies 
rather than transfer from the mean flow to  al l  eddies. In a similar way, if we 

With e+ I /K and (aUAy)’ + K’ ( K E ) ,  this produces (8.4.4). Realizing how 
crude mixing-length theory is, we should not be too concerned about the 
relative merits of (8.4.2) and (8.4.4). It should be kept in mind that these 
spectral mixing-length models, like their spatial counterparts, can be used 
only in situations with a single length scale and a single time scale. 

use E -  a’//eto substitute for u in d(aU/ay) ’ ,  we obtain ~ ~ ~ d ~ ‘ ~  (auAy) ’ .  

The effect of dissipation The viscous dissipation in a wave-number interval 
dK i S  equal to ~ v K ’ E ( K ) ~ K ,  as we found in (8.3.2). This loss of energy is 
taken out of the energy flux T ( K ) ,  so that we must have 

dT/dK = -2VK’E. (8.4.5) 

If we substitute for T ( K )  with (8.4.4) and integrate the resulting equation, we 
obtain 

(8.4.6) E ( K )  = ( Y E 2 / 3 K - 5 ’ 3  eXp[- 5 (Y(KQ)4’3]. 

This result, first given by Corrsin (1964) and later by Pao (1965), agrees very 
well with experimental data up to the largest values of KV that have 
been measured. Because virtually no data are available beyond K Q  = 1, this is 
not a very severe test. In fact, the use of S ( K ) - E ~ / ~ K ’ ’ ~  is unwarranted 
beyond KQ = 1 because viscosity limits the maximum strain rate to ( d v ) ” ’ .  
Also, of course, the use of (8.4.2) in a region in which viscous time scales are 
important i s  incorrect. The exponential decay of (8.4.61, which allows it to 
be integrated or differentiated without creating problems a t  large KT, i s  thus 
merely a happy coincidence. 

3 

The dissipation spectrum corresponding to (8.4.6) is 

D ( K )  = 2 V K ’ € ( K )  = 2 (Y Ye2 / 3K1  (8.4.7) 

In the inertial subrange ( ~ q  << 11, the dissipation spectrum is proportional to 

eXp[- ’ (Y (KQ)4 /31 .  
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Figure 8.8. Normalized energy and dissipation spectra for Rd= 2 x lo5. The dashed 
lines indicate cutoffs for the approximate spectra to be described later. 
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K ~ ' ~ .  Figure 8.8 gives an impression of the shapes of E ( K )  and D ( K ) .  The 
curves also show how E ( K )  and D ( K )  trail off a t  low wave numbers; the 
analysis leading to this follows. 

If a = 1.5, the peak of the dissipation spectrum occurs a t  K Q  = 0.2 and the 
value of D ( K )  at  the peak i s  D = 1 AEQ. These numbers agree well with most of 
the experimental data. 

The effect of production Eddies near the lower edge of the inertial subrange, 
where ~4 is  not necessarily very large, receive most of their energy from 
slightly larger eddies, but they also absorb some energy directly from 
the strain rate S of the mean flow. The anisotropy induced by the mean strain 
rate in eddies of wave number K is proportional to S/S(K), so that the work 
done by the mean strain rate per unit wave number and per unit time is 
proportional to  €S'/S(K). Using (8.4.3) to substitute for s ( K ) ,  we obtain for 
the production spectrum P ( K ) ,  

(8.4.8) 

The constant p is  undetermined. In the inertial subrange, the production 
spectrum is proportional to K - " ~ ;  this agrees fairly well with experimental 
evidence. 

The spectral energy transfer T ( K )  increases wherever energy i s  being added. 
I f  the total amount of energy does not change and if viscous dissipation can 
be neglected, we have 

dT/dK = P ( K ) .  (8.4.9) 

When (8.4.4) and (8.4.8) are substituted into (8.4.91, there results, after the 
equation i s  integrated, 

Here we have defined eby 4= u3/e  and we have taken S = &'for convenience, 
as in (8.3.5). Although (8.4.10) is  well behaved at  al l  wave numbers, the 
assumptions S ( K )  ly €1'3K2'3 and (8.4.8) on which it is  based are not valid for 
small values of K &  The value of can be determined by requiring that the 
integral of (8.4.10) be equal to the total energy :ux= 2u2; this yields 
0 = 0.3. The maximum of (8.4.10) occurs a t  ~t '=  1.3 approximately; i t s  value 

3 
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i s  about 0.2a2Cf, Figure 8.8 gives a sketch of E(K) and D ( K )  = ~vK’€(K) as 
predicted by (8.4.10). These curves are in qualitative agreement with most 
experimental data. The Reynolds number in Figure 8.8 is  Rd = 2 x lo5,  which 
corresponds to UQ = lo4.  The graph suggests that there are only about two 
decades of inertial subrange at  this Reynolds number. 

Approximate spectra for large Reynolds numbers From the appearance of 
Figure 8.8 we are tempted to approximate E ( K )  by I .~U~/(K~)-~’~ between a 
wave number somewhere near KL‘= 1 and a wave number near KQ = 1, and to 
put it equal to zero outside that range. In fact, for many purposes such an 
approximation is quite satisfactory, provided that the Reynolds number is 
large enough. 

Of course, the spectrum should have a correct integral. If the limits of 
integration of the truncated spectrum are K~ and Kd,  we have 

We may set the upper limit of integration equal to 00 if I!/Q is large. This 
requires large Reynolds numbers. The integral condition (8.4.1 1 ) serves to 
determine K ~ E ;  the result i s  K~I!= ( $ ) 3 ’ 2  1.8. The other end of the range 
can be determined by requiring that the integral of the dissipation spectrum 
be correct. We can write 

. .  
J O  J O  

The lower limit has been put a t  zero because the Reynolds number is pre 
sumed to be large. From (8.4.12), we obtain K ~ Q  = 0.55 approximately. The 
cutoffs k 0 t =  1.8 and KdQ = 0.55 are indicated with dashed vertical lines in 
Figure 8.8. 

and F 2 2 )  corresponding to this trun- 
cated three-dimensional spectrum can be computed fairly easily if we assume 
that the turbulence is  isotropic. Because E(K) is equal to zero in the range 
0 G K[< 1.8, F ,  curves parabolically downward in that range (8.1 .I81 and 
Fzz curves parabolically upward (8.1.19). In the range where E(K) a ~ - ” ~ ,  

F1 and F Z 2  have the same slope (see Section 8.1 1; the coefficients involved 
can be computed with the isotropic relations (8.1.13, 8.1.14). For 
0 < K ld< K~c!, there results 

The one-dimensional spectra (F1 
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(8.4.14) 

For K ~ ~ > K o ~ ,  the results are 

(8.4.1 6) 

Of course, F1  and F2 are truncated a t  the same point as E; that is, K 1q = 

0.55. The integrals of Fll and F z 2  over all K~ are equal to a’ by virtue of 
(8.1.6, 8.1.71, so that the integrals of F1 and Fz  over al l  positive K~ are 
equal to ;a2. In the literature, F1 and F Z z  are sometimes normalized in 
such a way that their integrals over a l l  positive K~ are equal to t12; in that 
case, the coefficient in (8.4.1 5, 8.4.16) becomes g, with corresponding 
changes in (8.4.13) and (8.4.14). Note that (8.4.13-8.4.16) describe F1 and 
F2 for K~ > O .  The spectra given by (8.4.13-8.4.16) are sketched in Figure 
8.9. The parabolic part of F1 matches the K-”’” part a t  K~ without a 
discontinuity of slope, but the slope of F Z 2  changes sign a t  K ~ .  

and F2 a t  the origin ( K ~  = 0) are of interest because 
they determine the longitudinal and transverse integral scales L1 and L z 2 :  

9 

The values of F1  

2 1 -  11 
F 1  , (O)  = - R 1  l(r,  O,O)dr= - L 1  1 ,  2n L n 

2 1 -  tl 
F Z Z  (0) = - Rzz ( r ,  0,O) dr = - L2z. 2n L n 

(8.4.1 7 1 

(8.4.18) 

Note that integral scales are defined as the integral of the correlation between 
zero and positive infinity, so that the factor 11277 in front of the integrals 
becomes I/n a t  the right-hand side of (8.4.17,8.4.18). Evaluating F1 (0) and 
F2 2 (0) from (8.4.13, 8.4.14) and using (Y = 1.5 and K ~ { =  ( :)’””, we obtain 

L11 =//2, L22 =e/4. (8.4.19) 

We recall that {was defined by E = u 3 / L  The relations between these length 
scales and the Lagrangian integral time scale are derived in the next section. 
Although (8.4.19) was derived for isotropic turbulence, it may be used also to 
obtain crude estimates in shear flows. 
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Figure 8.9. Crude approximations for the onedimensional spectra at Rg= 2 x lo5 wrl = 104). 

8.5 
Time spectra 
So far we have discussed only space spectra, which are Fourier transforms of 
autocorrelations taken with a spatial separation and zero time delay. We now 
want to consider time spectra, which are obtained from correlations taken at 
the same point with varying time delay. If the point of measurement i s  a 
fixed point in a coordinate system chosen such that the mean velocity is zero, 
we obtain an Eulerian time spectrum; if the point of measurement is a 
wandering material point, we obtain a Lagrangian time spectrum. The 
measurements needed to obtain these spectra are quite difficult and time- 
consuming; very few experimental data are available. 

Because time is a one-dimensional variable, time spectra are one-dimen- 
sional. We can have time spectra of u l ,  u2, or u3; however, we are mainly 
interested in spectra which integrate to the total energy $uTi  = $u’. Let us 
define the Eulerian time spectrum $ii(o) by 
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The Lagrangian time spectrum Xii(w) can be defined by 

- -  
In homogeneous turbulence,ujui = vjvi (see Section 7.21, so that 

j -$ i i (w)  dw=[-xi , (w)  d o = ~ p ~ = 3 u ~ .  
- .. .. 

(8.5.1) 

(8.5.2) 

(8.5.3) 

I f  the turbulence is also isotropic, $1 1 = $ 2 2  = $ 3 3  and X I  1 = x z z  =: x 3 3 .  

These spectra do not vanish a t  the origin; instead, their values a t  w = 0 define 
integral time scales: 

(8.5.4) 

(8.5.5) 

Here, T is the Eulerian integral time scale and J i s  the Lagrangian integral 
time scale. It would be necessary to define more than one T and more than 
one J i f  the turbulence were not homogeneous and isotropic. 

In order to understand what these time spectra mean, we have to use the 
energy cascade concept. We found in Section 8.2 that each eddy size or wave 
number i s  associated with a particular time scale and that the time scale 
decreases with increasing wave number over most of the spectrum. If each 
eddy can be assigned a size and a time scale, either one can be used to 
identify i t s  position in the time spectrum and in the space spectrum. There- 
fore, the time spectrum should be a simple rearrangement of the space spec- 
trum in terms of time scales. 

One problem arises. In the dissipative end of the space spectrum, the time 
scale I / s ( K )  - ( K ~ € ) - " ~  (8.2.6) increases with increasing wave number. This 
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means that the relation between size and time scale i s  not monotone near 
KV = 1 : the time scale decreases first, but increases beyond the peak of the 
dissipation spectrum. Therefore, if the energy in the space spectrum i s  re- 
arranged by time scale or frequency, there are two contributions a t  a given 
frequency. One contribution comes from a relatively low wave number, 
where eddies are inviscid, the other comes from a wave number in the dis- 
sipative range, where eddies are dominated by viscosity. However, the energy 
in the dissipation range is very small compared to that a t  smaller wave num- 
bers; it can safely be ignored. Even a t  very large time scales, which receive 
contributions from d<< 1 and KV>> 1, the energy of the large eddies is  
large compared to that of the very small eddies because the spectrum in the 
dissipation range decreases much more rapidly than that below d= 1, 

We conclude that we may treat the time spectrum as a rearrangement of 
the space spectrum wherever viscous effects can be ignored. Because time 
scales are monotone decreasing with wave number (except in the dissipation 
range), we expect that the mean flow does not affect the spectrum a t  f re  
quencies much larger than the mean strain rate S. Hence, the two time spectra 
have an equilibrium range at  high frequencies if the Reynolds number is large 
enough. Of course, the turbulence should be isotropic in that range. The 
spectra in the equilibrium range have to be normalized with E and v; there 
results 

(8.5.6) 

Here, u = ( ~ 4 ~ ’ ~  and r )  = ( v ~ / E ) ” ~  are the familiar Kolmogorov velocity and 
length. The nondimensional frequency w r ) h  is equal to  VIE)' - ohla 
( h  is the Taylor microscale); it seems only proper to nondimensionalize 
frequencies with the smallest time scale of turbulence. 

The idea that equilibrium-range scaling can be applied to time spectra was 
first suggested by lnoue (1951). Because no time spectra of this kind have 
ever been measured, it i s  not known how well justified the reasoning is. The 
dissipative mechanism is quite different in Eulerian and Lagrangian variables, 
so that we do not expect the forms of f and p to be the same in the 
dissipation range. 

In the energy-containing range, the time spectra should scale with cd and tf 
if the contributions of eddies from the dissipation range in the space spec- 
trum can be neglected. Therefore, we should be permitted to write, for 
W ( Y I E ) l ’ *  << 1, 
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~ l ~ ~ ( w )  = tceF(we/tcc, xi i(o) = ae.mwe/cl). (8.5.7) 

Again the shapes of F and F a r e  probably different because the lowest 
frequencies seen by a fixed point and by a wandering point are determined by 
different mechanisms. 

The inertial subrange If the Reynolds number is so large that the high- 
frequency end of (8.5.7) overlaps with the low-frequency end of (8.5.61, 
there should be an inertial subrange in Jlii and in xiP In the inertial subrange, 
Jlii and xii should be independent of the viscous frequency (strain rate) 
u/q = (dv)”’ and of the large-eddy frequency tc/L I f  this is the case, $ii = 
I)~~(E,W) and xii = xi(e,w), so that the inertial subrange in the time spectra 
must be given by 

Jlii = BEO-’, xii = flew-2. (8.5.8) 

The constants B and fl  are unknown; they can be estimated only if we accept 
the premise that the time spectra are simple rearrangements of E ( K ) .  With this 
premise, we should put B = 0. Also, if the energy at wave number K is K € ( K )  
and i f  the angular frequency corresponding to K i s  2 7 K ( K )  = ( Y 1 ’ 2 € 1 ’ 3 ~ 2 ’ 3  

(8.4.31, we should have 

KE = a$.. = ax.. (8.5.9) I1 11 ‘ 

277s(K) = (Y1’2E1’3K213 = a. (8.5.1 0) 

Eliminating K between (8.5.9) and (8.5.10) and using E ( K )  = a e 2 1 3 ~ - 5 / 3 ,  we 
obtain 

4.. = x,. = OI3’2EW -2, 

With (Y = 1.5, we find B = 0 = 1.8. 

(8.5.1 1 ) 
I1 I1 

The Lagrangian integral time scale The form of the time spectra a t  low 
frequencies (below the inertial subrange) is more difficult to predict. We are 
mainly interested in the Lagrangian spectrum, because we could use it to 
predict the Lagrangian integral scale. However, if we understood Lagrangian 
dynamics well enough to derive a spectrum, we would probably not need to 
estimate the Lagrangian integral scale in this way. Lacking any information 
other than that xii(0) should be finite, the best we can do is to guess that xii 
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i s  constant for al l  frequencies below some wo and that it follows (8.5.11) 
above wo. Thus, le t  us assume that 

xii = pew;* for o < a< wo,  (8.5.12) 

xii = flew-’ for w > wo. (8.5.13) 

The value of wo can be determined by requiring that the integral of xii(w) 
over al l  w be equal to u T i =  3u2 (8.5.3). I f  the Reynolds number i s  so large 
that the viscous cutoff can be ignored, there results 

~ o t / a =  40/3 2.4. (8.5.14) 

The resulting value of 9 is  approximately //3u. Using the Eulerian length 
scales L1 and L z z  obtained in (8.4.191, we find 

(8.5.1 5) 

This method of estimating the Lagrangian integral scale was first suggested by 
S. Corrsin (1 963a); his result was somewhat different because he used xii = 0 
for 0 < w < wu. Considering the crudeness of the assumptions involved in 
obtaining (8.5.151, we should not take the values of the coefficients too 
seriously. In effect, (8.5.15) gives barely more than the dimensional state- 
ment 9- L 1  l / a - L ~ z / a .  It may be taken as a warning that this analysis 
cannot distinguish between Jand T. Intuition suggests that J > T :  a wander- 
ing point should tend to maintain i t s  original velocity somewhat longer than 
the velocity a t  a fixed point in space. In any case, in the absence of better 
estimates, (8.5.15) is  useful for the purpose of obtaining Lagrangian integral 
scales from Eulerian correlation data; recall that a value for 9 i s  needed in the 
prediction of turbulent transport (Section 7.1 1. 

An approximate Lagrangian spectrum Equations (8.5.12-8.5.14) define a 
crude approximation to the Lagrangian time spectrum, in the spirit of the 
one-dimensional spectra presented in Figure 8.9. One detail yet needs to be 
resolved: the spectrum has to be truncated a t  some frequency in the dissipa- 
tion range. Because the Lagrangian dynamics of dissipation cannot be formu- 
lated in simple terms, we can do no more than compute the maximum value 
of w = 2nd~) = ( K ~ E ) ’ ”  from Corrsin’s form (8.4.6) of the Eulerian space 
spectrum. If 01 = 1.5, this maximum occurs a t  KQ = 1 ; i t s  value i s  
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10-1 1 10 102 lo3 10' - W&U 

Figure 8.10. An approximate Lagrangian spectrum for R l =  105. 

u d  = 0.74(€/v) In = 0.74~/q. (8.5.16) 

This i s  in agreement with the ideas developed in Chapter 3; that is, the 
maximum frequency (vorticity, strain rate) i s  of order ( ~ l v ) " ~ .  The ratio 
between Wd and 00 is, from (8.5.14) and (8.5.161, 

ud/wO = 0.31 (dV)'" t?/U = 0.31 R)". (8.5.17) 

The approximate Lagrangian spectrum for Rd= lo5,  O,/OO rv 10' is  
sketched in Figure 8.10. The separation of scales in the time spectrum is 
much less than that in the space spectrum; indeed, od/c30 is a much better 
measure of the extent of the inertial subrange because vorticities and strain 
rates, which are frequencies, dominate the dynamics of turbulence. 

8.6 
Spectra of passive scalar contaminants 
When a dynamically passive contaminant is mixed by a turbulent flow, a 
spectrum of contaminant fluctuations is  produced. The scales of contaminant 
fluctuations range from the scale of the energycontaining eddies to a smallest 

c 
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scale that depends on the ratio of diffusivities (Prandtl number, Schmidt 
number), as we found in Sections 3.4 and 7.3. Many of the concepts that 
were used to elucidate the form of the kinetic energy spectrum can also be 
applied to the spectra of scalar contaminants; we shall find that these spectra 
have simple forms in various wave-number ranges if the Reynolds number is 
large. To simplify the discussion, we assume that the passive contaminant is 
heat. I f  the temperature fluctuations are small enough, the associated buoy- 
ancy is  dynamically unimportant. 

One- and three-dimensional spectra Passive scalar contaminants have one- 
and three-dimensional spectra. These spectra are defined in a similar way as 
velocity spectra, but they are simpler because there is only one variable, 
rather than three components, to be accounted for. If O(x, t )  is a temperature 
fluctuation, the spatial autocorrelation Re (r) i s  defined by 

Re (r) = 8 (x, t ) 8 ( x  + r, t ) .  

The Fourier transform of Re(') is  the spatial spectrum ~ ( I c ) :  

(8.6.1) 

(8.6.2) 

Just as for the velocity field, 60 (K) i s  the "energy" of waves of wave-number 
vector K. A one-dimensional spectrum Fg (K ) may be defined by 

s 

(8.6.4) 

(8.6.5) 
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Clearly, F0 (K ) suffers from the same aliasing problem as the onedimensional 
spectra for the velocity (see (8.1.9)). 

The three-dimensions/ spectrum €0 ( K )  is  defined as the spectral density of 
waves which have the same wave-number magnitude K (K*  = K-K = K ~ K ~ ) ,  

regardless of direction. This is obtained by integrating $ J e ( K )  over a sphere 
with radius K (see 8.1.4): 

(8.6.6) 

(8.6.7) 

Because the integral of €0 is $ p ,  we call €0 the spectrum of temperature 
variance. 

In an isotropic field, there is only one one-dimensional spectrum because 
the direction of the spatial separation r in Re (r) is  immaterial. For the same 
reason, &(K) depends only on the wave-number modulus K under isotropic 
conditions. The isotropic relations between Fe ( K I  1, $0 ( K ) ,  and €0 ( K )  are 
(Hinze, 1959) 

(8.6.8) 

(8.6.9) 

If the temperature field has a finite integral scale, Fe (0) is finite and €0 ( K )  

begins parabolically upward from K = 0 (recall that the kinetic energy spec- 
trum starts quartically from K = 0). This statement is valid even if the field is 
not isotropic. 

The cascade in the temperature spectrum In the development of a model for 
the spectral transfer of temperature fluctuations, we use € and €0 ,  because 
they represent the "energy" a t  a given wave number without effects due to 
aliasing. If the Reynolds number i s  large enough for an equilibrium range to 
exist in the kinetic energy spectrum, there is also an equilibrium range, 
exhibiting local isotropy, in the spectrum of temperature variance, because it 
is the turbulent motion that is  mixing the temperature field. 

The cascade in the temperature spectrum is similar to that in the velocity 
spectrum. The temperature gradient associated with an eddy of wave number 
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~1 is  of order [ K : € ~ ( K ~ ) ]  ' I 2 .  The velocity fluctuations of the eddies of the 
next smaller scale ( ~ 2  > K ', say), distort this gradient, thus producing tem- 
perature fluctuations of smaller scale. This is like the production of tem- 
perature variance from a mean temperature gradient, which we discussed in 
Section 3.4. There, temperature variance was produced at a rate 
47 a@/axj; perhaps we can reason by analogy here. The spatial heat flux 
6ui was estimated as ufl@/axi in Chapter 2; the spectral flux of temperature 
variance thus should be the spectral equivalent of at(X31axj)2.  Now, uandf 
have to be substituted by the velocity [ K ~ E ( K ~  11 '" and the size I / K ~  of the 
smaller eddies that distort the temperature gradients of the larger eddies. The 
spectral flux of temperature variance may then be estimated as 

= CK;' [ K 2 E ( K 2 ) 1  'nK:Ee(K1 1. (8.6.10) 

If we ignore the difference between K' and K~ because they are fairly close 
together, we obtain 

Te(K) = CK2€e(KE)1'2. (8.6.1 1) 

This local estimate of TO is, of course, as crude as the cascade model 
developed for the kinetic energy spectrum. In particular, the significance a t  
large and small wave numbers of scales associated with such quantities as 
kinematic viscosity v, the thermal diffusivity 7, and the mean strain rate S is 
ignored. 

Spectra in the equilibrium range Within the equilibrium range, € , ( K )  should 
scale with the parameters governing the velocity field, which are E and v, and 
the corresponding parameters for the temperature field. The dissipation of 
temperature variance will be called N; it is defined by 

(8.6.12) 

Thus, we expect €0 = E, ( K , E , v , ~ , / V )  in the equilibrium range. A convenient 
combination of variables is 

€e(K) =Ne-'"K-5nf(KQ, 0).  (8.6.13) 

Here, u = v/7 is  the Prandtl number. Because of the presence of u, the non- 
dimensional spectrum f is  different in different fluids. 
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I f  the Reynolds number is so large that the energy spectrum has an inertial 
subrange and if y is small enough, so that there is an appreciable part of the 
spectrum where the thermal diffusivity is unimportant, we obtain an inertial- 
convective subrange, that is, an inertial range in which temperature fluctua- 
tions are simply convected. In this range, the spectrum should be independent 
of v and y, so that we have €0 = €0 (K,N,E). which can have only one form: 

(8.6.14) 

This was first suggested independently by Corrsin (1951) and by Oboukhov 
(1949). Recent measurements give 0 = 0.5 approximately. If we substitute 
(8.6.14) and € ( K )  = ( Y ~ ~ ' ~ K - ~ ' ~  into the estimate for T, given in (8.6.1 I), we 
find that the spectral transfer of temperature variance in the inertial-convec- 
tive subrange is  constant, as it should be. Conversely, i f  we assume that 
T,(K) = N, we obtain (8.6.14) from (8.6.11). In other words, the "mixing 
length" model for To given by (8.6.1 1) i s  consistent with (8.6.14). 

If we want to take the effects of y and v into account, we have to 
distinguish between fluids with small Prandtl numbers and those with large 
Prandtl numbers. If o< 1, so that y < v ,  the thermal diffusivity becomes 
important within the inertial subrange, where the viscosity does not yet in- 
fluence the spectrum. As in Section 3.4, we denote the Kolmogorov micro- 
scale for the temperature field by qe; recall that Qe >?? if y > v  and that 
770 < q i f  y < v. I f  y >> v, there is a range of wave numbers where K Q ~  > 1, 
but KV<< 1. This is called an inertial-diffusive subrange; it occurs in mer- 
cury, for example. 

On the other hand, in water and most other liquids the Prandtl number is 
large, so that viscosity becomes important a t  wave numbers where the ther- 
mal diffusivity does not yet affect the temperature spectrum. The range of 
wave numbers where K Q  2 1, but KQe << 1, is called a viscousconvective 
subrange. Of course, there is also a range where KQ >>Kr), 21; this is called 
the viscous-diffusive subrange. 

The inertialdiffusive subrange In fluids with low Prandtl numbers, an iner- 
tial-diffusive subrange exists for KQe > I ,  K Q  << 1. In this range, the spectral 
flux of kinetic energy is constant and equal to e. However, the spectral flux 
of temperature variance, which is equal to N in the inertial-convective s u b  
range, decreases in the inertial diffusive subrange because of local dissipation 
of temperature variance: 
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dTeldK=-27K2Ee. (8.6.15) 

This equation can be solved only if we adopt the cascade model (8.6.1 1) of 
the spectral transfer To. In the inertial-diffusive subrange, € ( K )  = a f 2 / 3  K - ' / ~ ,  

so that (8.6.11) becomes 

(8.6.16) 

Comparing this with (8.6.141, we find that (8.6.16) amounts to  replacing N 
by To in (8.6.14). Hence, we are using inertial scaling, as in (8.6.141, but 
based on the local value of To. This can be a fair approximation only if Te 
changes slowly with wave number. The comparison of (8.6.14) and (8.6.16) 
also shows that we should take CCI"~ = p- ' .  

Te = Ca 112 1/3 5/3 E 
e -  

The solution of (8.6.15, 8.6.161, with CO~''~ = P - l ,  i s  (Corrsin, 1964) 

Here, the temperature microscale qe i s  defined by 

qe (r3/~)'". 

(8.6.17) 

(8.6.18) 

This scale was discovered by Corrsin (1951 1. At present, no measurements 
exist with which (8.6.17) can be compared. The spectrum is well behaved at 
large wave numbers, but it cannot be valid far into the inertial-diffusive 
subrange because the assumptions on which it is based are not valid there. 

Because (8.6.18) is  identical in shape with (8.4.61, the peak in the spec- 
trum of dissipation of temperature variance occurs a t  Kqe = 0.2. Also, if we 
dant to truncate the spectrum at  the high wave-number end, we have to  put 
~e cutoff point a t  KQe = 0.55. 

4' 
The viscous-convective subrange A viscous-convective subrange occurs a t  
wave numbers such that K T / >  1, ~q~ << 1, in fluids with a large Prandtl 
number. In this range, the scales of temperature fluctuations are progressively 
reduced by the strain-rate field (see Sections 3.4 and 7.3), but the thermal 
diffusivity is  not yet effective. Temperature fluctuations a t  wave numbers 
beyond KT/  = 1 experience strain-rate fields of magnitude (clv)1/2 and size q. 
Because the energy spectrum drops off so sharply near ~q = 1, the extent of 
the strain-rate fields appears to be infinite to small temperature eddies a t  
K V  >> 1. Therefore, only (elv)' should be important, but not q. In the 
viscous-convective subrange, we thus expect that €0 = Ee(K, N, ( E / v )  1'2). 
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This must have the form 

€6 ( K  ) = CN( V/€) ‘ I2 K . (8.6.191 

This spectrum was first predicted by Batchelor (1 959); measurements by 
Gibson and Schwartz (1963) have confirmed i ts  existence. It should be noted 
that (8.6.19) can also be obtained (but less rigorously) from the ”mixing- 
length” estimate (8.6.11) of the spectral transfer To. This is done by re- 
placing the strain rate ( K ~ € ) ” ’  in (8.6.11) by ( E / v ) ’ / ’  and putting To = N ,  
because the effects of y are presumed to be small. 

The viscous-diffusive subrange At very large wave numbers, molecular dif- 
fusion of temperature fluctuations becomes effective. The viscous-convective 
subrange ends when the scale of the temperature fluctuations has become so 
small that diffusion becomes significant for time scales of the order of the 
period (v /E)’ /*  of the strain-rate fluctuations. Diffusion spreads hot spots of 
size C a t  a rate determined bye2 - y t ;  the smallest scale (q,) i s  obtained if t i s  
replaced by ( v / E ) ” ~ .  This yields 

/q = (y/v) ’/’ . (8.6.20) 

This estimate, which is valid only for y /v  << 1, was obtained earlier in Sec- 
tions 3.4 and 7.3. 

The shape of the spectrum near Kqe = 1 can be estimated in the now 
familiar way by adopting almost-inertial scaling for T,. As the viscous-dif- 
fusive subrange is approached, To begins to decrease slowly. As long as T, is 
not too different from N, we may generalize (8.6.19) as 

€ , ( K )  = C T e  ( v / E ) ~ ” K - ’ .  (8.6.21) 

This states that To i s  proportional to the amount of temperature variance in 
eddies of scale K, which is K € , ,  and to the strain rate (f/~)’/~. Substituting 
(8.6.21) into (8.6.1 51, we obtain 

E, ( K )  = C N ( V / E ) ~ / ~ K - ’  e x p [ - c ( ~ q ~ ) ~ ]  , (8.6.22) 

in which 77, i s  given by (8.6.20). The location of the exponential cutoff 
obtained this way agrees with the estimate (8.6.20). Again, although (8.6.22) 
is well behaved, it i s  certainly not valid for ~ q ,  >> 1, because it is based on 
(8.6.21 1, which certainly is not valid there. 
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Figure 8.1 1. Spectra of temperature variance in liquids with large and small Prandtl 
numbers. 

Summary The various subranges in the spectrum of temperature variance, 
for liquids with large and small Prandtl number, are sketched in Figure 8.1 1. 
The Reynolds number, of course, i s  assumed to be large. 

Problems 

8.1 What i s  the shape of the correlation function o k ) u k  +r) in a range of 
values of r which corresponds to  the inertial subrange? 

8.2 In  the spectral energy transfer model of Corrsin, the energy transfer 
across given wave number i s  approximated by a mixing-length expression that 
i s  not corrected for viscous effects as ~q = 1 i s  approached. Make a similar 
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model for the momentum transfer in the inner layer of a turbulent boundary 
layer in zero pressure gradient. Integrate the resulting equation of motion and 
show that, unlike i ts  spectral counterpart, this model does not give an accu- 
rate representation of the mean flow in the inner layer. 

8.3 Derive expressions for the evolution of the kinetic energy and of the 
integral scale of isotropic turbulence in the initial period of decay (see Sec- 
tion 3.2). Do this by calculating the evolution of an approximate energy 
spectrum that consists of an inertial subrange a t  high wave numbers and a 
spectrum of the type E ( K )  - K~ (8.1.16) at  low wave numbers. Assume that 
the constant C in (8.1.16) is  independent of time (this is called the “ p e m  
nence of the largest eddies“ (Batchelor, 1953)). Show that the Reynolds 
number of isotropic turbulence decreases in time during the initial period of 
decay, in contradiction with the result given in Section 3.2. 

8.4 In the final period of decay of isotropic turbulence, the Reynolds 
number is so small that no energy exchange between wave numbers takes 
place. Calculate the rate of decay of the kinetic energy, assuming that the 
spectrum a t  the beginning of the final period of decay is given by (8.1.16). 
with C independent of time (see also Problem 8.3). 

8.5 A small, heavy particle rapidly falls through a field of isotropic turbu- 
lence. Because the terminal velocity of the particle is large, i t s  path is nearly 
straight, so that the particle, in first approximation, experiences a frequency 
spectrum corresponding to the one-dimensional Eulerian space spectrum. If 
the terminal velocity is VT, the relation between frequency and wave number 
is o = K V ~ .  Under certain conditions, the equation for the horizontal particle 
velocity v may be approximated by Tdv/dt + v = u, where T = VT/g is  the 
particle time constant and u is the horizontal fluid velocity experienced by 
the particle. Calculate the horizontal dispersion of the particle and compare it 
with the Lagrangian dispersion experienced by a particle with vanishingly 
small VT. 


	contents
	8. SPECTRAL DYNAMICS
	8.1 One- and three-dimensional spectra
	Aliasing in onedimensional spectra
	The three-dimensional spectrum
	The correlation tensor and its Fourier transform
	Two common onedimensional spectra
	Isotropic relations
	Spectra of isotropic simple waves

	8.2 The energy cascade
	Spectral energy transfer
	A simple eddy
	The energy cascade

	8.3 The spectrum of turbulence
	The spectrum in the equilibrium range
	The large-scale spectrum
	The inertial subrange

	8.4 The effects of production and dissipation
	The effect of dissipation
	The effect of production
	Approximate spectra for large Reynolds numbers

	8.5 Time spectra
	The inertial subrange
	The Lagrangian integral time scale
	An approximate Lagrangian spectrum

	8.6 Spectra of passive scalar contaminants
	One- and three-dimensional spectra
	The cascade in the temperature spectrum
	Spectra in the equilibrium range
	The inertial-diffusive subrange
	The viscous-convective subrange
	The viscous-diffusive subrange
	Summary

	Problems




