
TURBULENT TRANSPORT 

As a turbulent flow moves, it carries fluid from place to place. A tiny parcel 
of fluid (small, say, compared to the Kolmogorov microscale, but large com- 
pared to molecular scales) gradually wanders away from i t s  initial location. 
This is the mechanism that is responsible for the large transfer rates observed 
in turbulent flows. In the preceding chapters, the transport capability of 
turbulence was represented by such quantities as the momentum flux - p X  
and the heat flux -pcP&; estimates for these were obtained by similarity 
arguments and dimensional reasoning. Here, we study the details of the pro- 
cess of transport. We first analyze how turbulent motion transports fluid 
points; then, in the second half of this chapter, we deal with the transport 
(dispersion, mixing) of contaminants. 

7.1 
Transport in stationary, homogeneous turbulence 
We would like to be able to predict transport in real flows, which generally 
are inhomogeneous and nonstationary. This is the heart of the turbulence 
problem; unfortunately, it is impossible to describe the details of transport in 
other than very simple cases. Let us first discuss the motion of a single fluid 
"point" in stationary, homogeneous turbulence without mean velocity. This 
is an idealized situation, because turbulence without a mean velocity gradient 
has no source of energy, so that it decays and cannot be stationary. More 
important, this idealized case may not even be relevant to transport in real 
decaying flows, because (as we later see) the "memory time" of a fluid point 
i s  usually of the order of the decay time, so that a real decaying flow never 
appears even approximately stationary to a wandering point. Consequently, 
we have to be careful in generalizing the conclusions we obtain for this 
idealized turbulence; we should not be surprised if the conclusions have qual- 
itative significance only. 

Stationarity Before we start the analysis, le t  us ask when we may expect the 
velocity of a wandering point to be a stationary (statistically steady) function 
of time. This question, of course, bears on the applicability of the central 
limit theorem (Section 6.5). Clearly, it is necessary that the flow be station- 
ary itself. If the flow is also homogeneous, we are assured that the velocity of 
the wandering point is stationary. This case i s  discussed first. If the flow is 
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not homogeneous and unbounded in the direction of inhomogeneity, the 
moving point wanders into regions of progressively different characteristics. 
For example, in a boundary layer the flow is distinctly inhomogeneous in the 
cross-stream direction. As time proceeds, the boundary layer grows and a 
wandering point moves progressively farther away from the wall into regions 
where the turbulence properties are different. In such a case, the velocity of a 
wandering point is not stationary. In a pipe flow, on the other hand, the flow 
is homogeneous in the streamwise direction and inhomogeneous, but also 
bounded, in the cross-stream direction. A wandering point may then move 
toward one wall, but it eventually returns and moves toward the other. 
Hence, we expect i t s  velocity to be stationary. We conclude that the velocity 
of a wandering point is stationary if the flow is  stationary and bounded in all 
directions of inhomogeneity. 

Stationary, homogeneous turbulence without mean velocity Let us analyze 
the motion of a fluid point in stationary, homogeneous turbulence without 
mean velocity (Figure 7.1). The velocity a t  time t of a moving point which 
was at the point xi  = ai a t  t = 0 will be called vi(a, r ) .  The use of vector 
notation (denoted by boldface letters) in the argument of vi prevents confu- 
sion of indices. As we discussed above, vi(a, t )  is  a stationary (statistically 
steady) function; it i s  called a Lagrangian velocity. 

The position of the wandering point is the integral of i t s  velocity: 

I 

Figure 7.1. The motion of a wandering point 
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where Xi(a, 0) = ai. The Lagrangian position is Xi,  and the Eulerian position 
is xi .  The velocity of the moving point i s  equal to the velocity of the fluid a t  
the point where it happens to be. The velocity u;(x, t )  measured a t  the 
location xi  a t  time t i s  called the Eulerian velocity; it is  related to vi by 

vi(a, t )  = uj(X(a, t ) ,  t ) .  (7.1.2) 

The study of transport i s  very difficult because of (7.1.2). Eulerian velocities 
(ui) can be measured by putting a fixed probe in the fluid, but the measure- 
ment of Lagrangian velocities (vi)  requires that the motion of "tagged" fluid 
points be followed with photographic or radioactive tracer techniques. Often, 
only Eulerian measurements are made; however, the statistics of ui are not 
related to those of vi in a simple way. The problem is that one needs to know 
vi in order to find Xi in order to find ui. The problem is similar to that of the 
passage of light through air with turbulent fluctuations in the index of refrac- 
tion n. The path of a light ray depends on the fluctuations in the n it sees. 
The path tends to curve around regions with high n and tends to veer away 
from regions with low n, so that the statistics of n experienced by the light 
ray are different from those seen on a straight line through the turbulent air. 

However, because v; is a stationary function presumably having nonzero 
integral scales the central limit theorem (Section 6.5) can be applied to the 
integral (7.1.1). Consider one component of Xi-ai, and call this X,-a,. 
Here, (Y may be equal to 1,2, or 3, but we stipulate that the index summation 
convention does not apply to the index a. Because vi is stationary, X,-a, 
asymptotically has a Gaussian probability density; its variance is given by 
(Taylor, 1921 ) 

The Lagrangian autocorrelation coefficient p,,(r) i s  defined by 

v ; p m ( ~ )  = v,(a, t )  v,(a, t + T I .  
- 

(7.1.3) 

(7.1.4) 

The integral scale of p,, is  q,; it is called the Lagrangian integra/sca/e. The 
shape of pa, looks approximately like the curve in Figure 6.10. 

A great deal of effort has been spent in attempts to predict z, from 
Eulerian data, with very l i t t le  success. A relatively simple prediction - is made 
shortly. We also have to consider the problem of determining v i .  

The set of equations (7.1.1-7.1.4) i s  also applicable to molecular diffusion 
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Mi would be the position of a molecule and vi would be i t s  velocity). A 
Lagrangian time integral scale for molecular motion in gases is of the order of 
a few collision times t/a (t is  the mean free path,a is the speed of sound; see 
Section 2.2). At ordinary temperatures and pressures, the time scales of 
interest in diffusion problems are much larger than El" ,  so that the asymp- 
totic form of (7.1.3) applies. The dispersion (X,-a,)' i s  then proportional to 
t and the coefficient a' (,$/a) - at  is  the molecular diffusivity, which i s  of the 
Same order as the kinematic viscosity v (Section 2.2). In turbulence, however, 
the time span before (7.1.3) reaches i t s  asymptotic form is not too short to 
be of interest. In fact, by the time the integral reaches the "diffusion limit" 
the wandering point has usually left the (approximately homogeneous) part 
of the flow field where it started. Still, the asymptotic form of (7.1.3) is a 
useful, though rather crude, approximation in many cases of practical 
interest. Note that the asymptotic form of (7.1.3) is equivalent to assuming 
that the eddy diffusivity zc, is constant. 

The probability density of the Lagrangian velocity In order to make use of 
(7.1.31, we need to know v i .  The easiest way to predict this is to exploit the 
fact that an incompressible fluid moving in a box always f i l ls  the box. This 
simple-looking statement has surprising consequences. I f  we want to integrate 
a quantity over a l l  the moving fluid points in the box, we can integrate either 
over their present locations (an Eulerian integral) or over their initial loca- 
tions (a Lagrangian integral). Because the fluid continues to fill the box as it 
moves around, either way each point is counted only once, so that it is 
immaterial which integral we take. Suppose F(x ,  t )  is  the function we wish to 
integrate over the volume V of the box; the integral statement then reads 

- 

(7.1.5) 

If an incompressible flow i s  not confined to a box, a similar statement can 
be made. The only problem is that the integration volume on the left-hand 
side is not the same as that on the right-hand side. Points that were initially 
on the boundaries of the volume V move, so that the new boundaries grad- 
ually wander away from the original ones. However, if the velocities involved 
are of order U, the boundaries move a distance of order at in a time t ,  so that 
the volume difference between the new and the old boundaries is of order 
d L 2  (L = V'" is the length scale of the integration volume). The volume 
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fraction involved i s  of order ut/L, which, a t  any fixed time interval t, can be 
made as small as desired by making L large enough. Hence, for an unbounded 
flow the equivalent of (7.1.5) reads 

lim 1 F(X(a,  t ) ,  t )  dal da2 da3 = lim - ’ 111 F(x,  t )  dxl dx2 dx3. 
I/+.- V v+a v 

(7.1.6) 

Now, let F(x,  t )  = exp [ ik. u(x, t ) ] .  The average value of this gives the 
characteristic function of the Eulerian velocity field (note that we use vectors 
k and u here; a l l  three components of ui are treated simultaneously). On the 
other hand, after averaging, F(X(a, t ) ,  t )  gives the Characteristic function of 
the Lagrangian velocity field. Substituting the Eulerian and Lagrangian char- 
acteristic functions into (7.1.6) and taking averages, we obtain 

lim 2 I I I e x p [ i k  v(a,t)ldal da2 da3 
v >-v 

= lim 2 [[I exp [ ik*  v(a,t)ldal da2 da3 

= exp[ik v(a, t ) ]  

v+- v 

= lim IJ’I exp[ik* u(x,t) ldxl dx2 dx3 
y+- v 

= lim 1 v+- v exp[ik* u(x,t) ldxl dx2 dx3 

= exp [ik- u(x, t ) l  . (7.1.7) 

The characteristic functions can be removed from under the integrals because 
the turbulence is homogeneous, so that the characteristic functions are 
independent of position. We conclude that the characteristic functions, and 
therefore also the probability densities, of the Lagrangian and Eulerian velo- 
city fields are identical in homogeneous turbulence in an incompressible fluid. 
This implies that in homogeneous, incompressible flow 

(7.1.8) 

Therefore, we do not need to - determine 2 in (7.1.3) by direct methods; a 
relatively easy measurement of ui suffices. 
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The result (7.1.8) might have been expected, but the method used can also 
be applied to more complex problems. For example, consider fully developed 
turbulent pipe flow (Section 5.2). Let us take F ( x ,  t )  = Gl (x, t ) ,  which is the 
instantaneous total axial velocity in the pipe (xl i s  the streamwise direction). 
Since pipe flow is homogeneous in thexl direction and bounded in the x 2 ,  x3  
plane, application of (7.1.6) gives ' rrr2 11 m ) d a Z  da3 = rrr SI- Cl (x, t )  dxz dx3. (7.1.9) 

We may expect that Vl (a, t )  will be homogeneous in a cross section of the 
pipe if t i s  large enough, because no matter where a moving point starts from, 
i t  eventually wanders a l l  around the cross section. With the usual notation 
convention,Tl = V 1  and zl = U1, so that (7.1.9) becomes, for large t, 

(7.1.1 0) 

The mean axial velocity of a moving fluid point in a pipe is  thus equal to the 
bulk Velocity u b  of the fluid. 

The mean-square fluctuation in the axial Lagrangian velocity is obtained in 
the same way: 

// a d a z  da3 - // (P1 (a, t )  - V1)zdaz da3 = - 
nr2 r r  
1 

= SS [u"1 (X,  t )  - u b ]  dxz dx3. (7.1.1 1 ) rrr 
Again, the left-hand-side integrand may be expected to be homogeneous. The 
right-hand-side integrand i s  not homogeneous; however, with u"1 = U1 + u1, 
we obtain 

(x, t )  - u b l  = 2 + [Ul (x) - u b ]  '. (7.1.12) 

Hence, (7.1 . I  1)  becomes 

(7.1.13) 

The Lagrangian axial velocity variance thus receives contributions both from 
the Eulerian velocity variance and from the square of the difference between 
the Eulerian mean velocity and the bulk velocity. Clearly, as a moving point 
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wanders around in the pipe, i t s  axial velocity fluctuates not only because the 
Eulerian velocity fluctuates but also because it wanders from time to time 
into regions where the mean velocity is different from the bulk velocity. The 
results (7.1-10, 7.1.13) are used in Section 7.2. 

It would be tempting to extend this approach to the determination of the 
Lagrangian correlation. However, no useful results would evolve, because the 
analysis would yield Lagrangian space-time correlations, which not only are 
beyond the scope of this book, but also are relatively poorly understood. 

The Lagrangian integral scale The second problem associated with applica- 
tions of the dispersion formula (7.1.3) is the determination of 9&. From 
simple dimensional reasoning, we know that the Lagrangian (time) integral 
scale must be proportional to //a in turbulence with a single length scale 8 
and a single velocity scale u. In Section 2.3, extremely crude mixing-length 
arguments were used to show that 

I d -  - 
vT=-- ( X i  1 = U i Y 2  2 .  

2 dt 
(7.1.1 4) 

In wakes, the eddy viscosity is given by (Table 4.1 ) 

VT 2.8 ~ * e * .  (7.1.15) 

Here, u, is defined on basis of the Reynolds stress and L, is  based on the 
maximum slope of the mean velocity profile. If we takeu’, (the rms value of 
u 2 )  to be equal to u, and if we identify L, with the length e defined by 
L= (u12 I3/e (f is  the dissipation rate), we obtain from (7.1.14) and (7.1.15) 

(7.1.16) 

Now, wakes are the most nearly homogeneous flows we have examined, so 
that (7.1.15) may be approximately valid for homogeneous turbulence. How 
ever, (7.1.14) i s  known to be incorrect because by the time the “diffusion 
limit” i s  valid, wandering points have moved to regions of different prop 
erties, even in the nearly homogeneous turbulence of a wake. Therefore, an 
independent estimate of YZ2, which does not rely on (7.1.141, would be 
welcome. 

Corrsin (1963a) derived an estimate of YZ2 from spectral similarity con- 
siderations. His analysis i s  discussed in Section 8.5; the result is 

(7.1.17) 
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\ 

The good agreement between (7.1 .I 6) and (7.1.1 7) should not be taken too 
seriously. If we are honest, al l  we really can state is that uz'Yz z/t- 1, which 
we should interpret as "somewhere between 3 and 3". Nevertheless, the esti- 
mates (7.1.16) and (7.1.17) are quite successful in practice; the coefficient 3 
in (7.1.17) may be regarded as an experimentally determined constant (much 
like the von Kirmin constant). 

The diffusion equation In homogeneous turbulence, the Lagrangian velocity 
variance i s  given by (7.1.8) and the Lagrangian integral scale may be esti- 
mated with (7.Ip17). The asymptotic form of the diffusion equation (7.1.3) 
then becomes 

(7.1.18) 

The length t' i s  defined by .4 = ( u ' , ) ~ / E ,  as was stated before. It is often more 
convenient to use Eulerian integral scales instead of X The analysis in Section 
8.5 shows that the relations between eand the Eulerian integral scales L1 
and L2 2 (downstream and cross-stream integral scales, respectively), may be 
estimated as 

(7.1.1 9) 

7.2 
Transport in shear flows 
The case of homogeneous, stationary turbulence discussed in Section 7.1 is 
rather unrealistic, because turbulence cannot be maintained without mean 
shear. In this section, we discuss transport in a uniform shear flow and trans- 
port in pipes and channels. 

Uniform shear flow Consider turbulent flow with uniform mean shear 
(aUl/ax2 = constant). The turbulence will be homogeneous in planes normal 
to the mean velocity U1 ; however, Lagrangian velocities are not stationary, 
because the mean flow has no length scale, so that all length scales slowly 
grow in the streamwise direction, much as in grid turbulence (see Lumley, in 
Batchelor and Moffatt, 1970). Nevertheless, the rate of growth of the length 
scales is fairly slow; we may get a qualitative impression of the effects of 
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mean shear by assuming that the Eulerian velocity field i s  homogeneous in all 
directions, so that the Lagrangian velocity field i s  stationary. 

If the mean flow is defined by 

u1 =sx2. u2 =u3 =o, (7.2.1) 

the position of a moving point is given by 

x l  (a, r) = a l  + J': [SX2(a, r') + v1 (a, t')l dr', (7.2.2) 

X2 (a, t) = az + J': v2 (a, r') dr', (7.2.3) 

X3(a, t) = a 3  + vg(a, t') dt'. (7.2.4) 

Because the turbulence is stationary and homogeneous, the fluctuating Lag- 
rangian velocities v l ,  v 2 ,  and v3 are stationary. From the central limit 
theorem we conclude directly that X 2  and X 3  asymptotically have Gaussian 
distributions, whose variance is given by (7.1.18). However, the downstream 
transpott has to be determined separately because of the presence of the 
mean shear S. As a wandering point moves in the x2 direction, it moves into a 
region with a different mean velocity, so that it tends to move faster (or 
slower, as the case may be) than in a flow without shear. 

If the mean value of (7.2.3) i s  combined with the mean value of (7.2.2), 
there results 

X 1  = al  + Sazt (7.2.5) 

This states that the mean position moves with rhe mean velocity of the initial 
location o(2 (0) = a2 1. Subtracting (7.2.5) from (7.2.21, we obtain after diff- 
erentiation 

J: 

- 

(7.2.6) 

The variance of X2-a2 grows linearly a t  large times, but the variance of v1 i s  
constant. Hence, for large times the first term of (7.2.6) dominates and the 
second term may be neglected. Differentiating (7.2.6) once more, we obtain 

d2 - dX2 
- (xi - X 1 ) = S - = S v z ,  
dt2 dr 

(7.2.7) 
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This shows that Xl-xl is  a double integral of a stationary function. Accord- 
ing to (6.5.16), it asymptotically has a Gaussian distribution, whose variance 
is given by (Corrsin, 1953) 

(X, -X1)2= 2 5 s 2 7 3  u2 t 9 - 2 2 .  (7.2.8) 

The dispersion in the x l  direction thus increases much faster than the disper- 
sion in the x 2  and x3  directions. The latter are given by 

(7.2.9) 
- - 

In (7.2.8) and (7.2.9) the Lagrangian variance V: has been replaced by u: 
because the turbulence is homogeneous (7.1.8). 

Joint statistics If we want to predict the average shape of a patch of pollu- 
tant (smoke particles, say) released in a shear flow, the joint statistics of 
X1-xl and X2-az have to be analyzed. With a considerable amount of 
algebra, it can be shown that Xl-xl and X2-a2 are jointly Gaussian a t  large 
times and that their covariance is given by 

wl -X1)(x2 - a 2 )  =uiS t2  I -- p ( T ) d ~ = u i S t 2 9 - 2 2 .  (7.2.10) 

At large times, the correlation coefficient between Xl-Rl and X2-a2 is ;a; contours of constant probability density are given by 

- - K( 3 

X2 X Y  Y 2  
- - f i - - -++=cons t .  
0: OlDZ u2 

(7.2.1 1) 

Here, x = XI-~I, y = X2-a2; the variance u: of x i s  given by (7.2.8) and the 
variance u; of y is given by (7.2.9). The contours defined by (7.2.1 1) are 
ellipses; normalized with the standard deviation, as in (7.2.1 I), the ellipses 
have a constant aspect ratio, with a major axis of length ( I+  5 1.37 
and a minor axis of length (1 - 4) 'I2 E 0.36. The angle cy between the 
major axis and thexl direction is given by 

tan a = (u2/u1 )'/' =&$/St. (7.2.12) 

As the patch moves downstream, the major axis rotates towards the horizon- 
tal (Figure 7.2). At large times, the patch becomes quite elongated. 
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‘i 

Figure 7.2. Dispersion in uniform shear flow. Equal increments of time are shown; all 
times are large compared to Fz2 (adapted from Corrsin, 1953). 

Longitudinal dispersion in channel flow Let us now consider dispersion in a 
channel flow. The mean flow is in the xl, x z  plane, Uz = U3 = 0, the height 
of the channel is 2h. The position of a moving point is given by 

+ u1  (X(a, t’),t’)I dt‘, (7.2.1 3) 

(7.2.14) 

(7.2.1 5) 

Here, u ,  (X(a, t ’ ) )  i s  the Eulerian velocity fluctuation a t  the position of the 
moving point. For the reasons discussed in Section 7.1, vz and v3 are station- 
ary. Because X3-a3 i s  the integral of a stationary function which itself is not 
a derivative of a stationary function, X3-a3 asymptotically has a Gaussian 
distribution. Although Xz-az is also the integral of a stationary function, it 
does not have a Gaussian distribution because of the constraints imposed on 
v z .  Clearly, XZ-  a2 itself is a stationary function because a moving point has 
to stay inside the channel. Therefore, vz i s  the derivative of a stationary 
function; i t s  integral scale must be zero, and i t s  spectrum behaves as oz near 
the origin, so that the central limit theorem does not apply (see Section 6.5). 

The mean axial velocity of a moving point is given by (7.1.10); integrating 
this, we obtain , 

X, = a l  + U,t. (7.2.16) 



234 Turbulent transport 

Here, as in (7.1.101, ub is  the bulk velocity. Substitution of (7.2.16) into 
(7.2.13) yields 

X1 -XI = 5: [U1(X2) -Ub  +ul1 dt’. (7.2.17) 

Because X2 -a2 is stationary, the moving point encounters Ul ( X 2 )  and 
u1 (X(a,t’), 2) in a stationary way: as far as the moving point i s  concerned, the 
integrand in (7.2.17) is  stationary. The integrand is  not a derivative, so that 
X1 -XI is Gaussian a t  large times. The variance of XI -XI is  then given by 

The Lagrangian velocity variance 
transposing this to channel flow, we have 

was computed for pipe flow in (7.1.13); 

(7.2.19) 

In the core region of channel flow a t  large Reynolds numbers, we may 
write (Section 5.2) 

(u1 - u b ) / U ,  = F ( q ) ,  Z f U ;  =g(q) .  (7.2.20) 

Here, q =x21h. Substituting (7.2.20) into (7.2.191, we obtain 

- 
“ 2  l - u ,  - 2 (5: F 2 d q +  5‘ g d q ) = a u : .  

0 
(7.2.21) 

The constant A is approximately equal to 5. In the wall layer, (7.2.20) is not 
valid; however, the wall layer is so thin that it makes a negligible contribution 
to the integrals. The integral scale .!T in (7.2.18) should be of order hlu,, 
because u, and h are the velocity and length scales of the core region of 
channel flow (Section 5.2). With this estimate and (7.2.21 1, (7.2.18) becomes 

(xl -XI l 2  = Cu,ht, (7.3 22) 

where C should be approximately equal to 10. 
Channel flow i s  difficult to set up in a laboratory; however, experimental 

values for C in pipe flow indeed range around 10 if the pipe radius instead of 
the channel half-width h is used in the formula for the variance (Monin and 
Yaglom, 1971). Of course, (7.2.22) i s  valid only for t >>h/u, 
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Bulk velocity measurements in pipes Equations (7.2.1 6) and (7.2.22) may 
be applied to the problem of determining u b  in pipes with tracer methods. If 
the pipe radius D/2 is used instead of the channel half-width h in (7.2.221, the 
relative error in the measurement of bulk velocity i s  

(7.2.23) 

The measurement is  performed by releasing a patch of tracer material a t  
X1 = al  at  time t = 0; the time interval t between release and the passage of 
the patch a t  some downstream location i s  measured. The factor Ubt/D is  the 
streamwise distance in diameters; clearly, the accuracy of the measurement 
improves as this distance increases. The ratio o*/ub is  the square root of the 
friction coefficient; a t  typical Reynolds numbers, i t s  value i s  about 0.04, so 
that (u*/ub)1'2 z 0.2. If C =  10, a streamwise separation of 100 diameters 
gives about a 4% standard deviation in the measurement of u b .  The accuracy 
can be improved considerably if the streamwise concentration distribution of 
the patch of tracer material is measured a t  the downstream location. 

7.3 
Dispersion of contaminants 
So far, we have discussed only the dispersion of moving points and assumed 
that it would be possible to mark or tag a Lagrangian "point" in such a way 
that it would keep i t s  identity. In the two examples given in Section 7.2 we 
assumed without discussion that the motion of a minute tracer particle is 
identical to the motion of the Lagrangian point of fluid that would occupy 
the position of the particle if it were not there. Now, we have to consider 
more realistic dispersion problems. Two questions arise. First, contaminants 
are commonly released with some initial concentration distribution, so that 
the concentration distribution a t  later times has to be predicted. Second, 
contaminants are also dispersed by molecular transport, which may interact 
with the turbulent transport. We will discuss these problems separately. 

The concentration distribution Let us consider contaminants which are not 
dispersed by molecular motion. This is an idealization; however, in liquids the 
molecular transport of contaminants (salinity, heat) is poor and in air the 
molecular transport of minute tracer particles (smoke, say) is poor, so that 
the assumption of zero diffusivity should be fairly realistic in those cases. 



236 Turbulent transport 

The transport of a contaminant with zero diffusivity is governed by 

aE aE -+q--= 0. 
at axi 

(7.3.1) 

Here, c' is the instantaneous concentration a t  a point xi,  t, and iii i s  the 
instantaneous fluid velocity a t  that point. The solution of (7.3.1) is 

c'(X(a, t ) ,  t )  =?(a, 0). (7.3.2) 

This states that the concentration a t  each moving point remains equal to i t s  
value a t  the time of release. Because there is no molecular diffusion, this 
result is obvious. If we want to predict the mean concentration C(x, t ) ,  (7.3.2) 
has to be inverted. This is a backward dispersion problem: instead of asking 
where a point that started from ai a t  time t = O  will go to, we are asking 
where a point that arrives a t  xi a t  time t came from. In other words, we need 
a Lagrangian displacement integral like (7.1 .I 1, but with time running back- 
wards. 

If the Lagrangian velocity field is stationary, the backward and forward 
dispersion problems are the same. If B ( X ,  a, t )  is the probability density of 
Xi(a, t )  for points that started a t  ai a t  time t = 0, then B(a, x, t )  is the proba- 
bility density of the original positions ai(x,  t )  of points that arrive a t  xi at  
time t. I f  C(x, t )  is the mean concentration, we can write 

(7.3.3) 

This states that the mean concentration a t  a point is  the concentration carried 
by a particle times the probability of the particle being there, integrated over 
all particles that could be there. 

I f  the initial concentration is  al l  a t  one point (a:, say), we have 

E(a, 0) = o for al l  ai # a,?, - (7.3.4) 

The integral (7.3.5) has been normalized for convenience. Equations (7.3.4) 
and (7.3.5) define a Dirac delta function &(a - a'); the integral (7.3.3) re- 
duces to 

~ ( x ,  t )  ={I{ 6 (a - a') B(a, x, t )  cial ciaz da3 = B(a0, x, t ) .  

- 
(7.3.6) 
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The mean concentration is then equal to  the probability density of the posi- 
tion of a moving point leaving from a:. This suggests that B(ao, x) can be 
measured by introducing a small point source of contamination a t  a: and 
measuring the mean concentration throughout the field. The omission of the 
argument t in B is intentional: in practice, continuous point sources with 
constant flux are used, so that C and B are independent of time. 

It i s  clear from (7.3.6) that minute tracer particles and nondiffusing con- 
taminants indeed may be used to  mark Lagrangian points. The conclusions 
obtained in Sections 7.1 and 7.2 thus apply to the concentration distribu- 
tion as well as to the probability density; however, it must be kept in mind 
that the identification can be made only if the Lagrangian velocity field is 
stationary. 

The effects of molecular transport If the contaminant has a finite molecular 
diffusivity y, the conservation equation for c" becomes 

(7.3.7) 

The presence of molecular diffusion makes it impossible to write (7.3.2), so 
that we have to proceed in a different way. The general problem raised by 
(7.3.7) is intractable; we consider the special case of a small spot of contami- 
nant, centered around a moving point. Let us change to coordinates moving 
with the wandering point. If t, is the difference between the Eulerian position 
xi and the position of the Lagrangian point Xi, (7.3.7) becomes 

(7.3.8) 

Here, the continuity equation has been used to bring Gi inside the derivative; 
of course, seen from a coordinate system moving with a Lagrangian point, the 
Eulerian velocity is  not iii(x) but Gi@) - i i i (0) .  Equation (7.3.8) describes 
dispersion relative to a moving point. If the patch of contaminant i s  smaller 
than the Kolmogorov microscale, the velocity distribution in the neighbor- 
hood of the moving point i s  approximately linear: 

(7.3.9) 

The velocity field around the moving point is then a combination of a solid- 
body rotation (corresponding to the skew-symmetric part of aii;/atj) and a 
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pure strain (corresponding to the symmetric part of aCila4;.). The value of 
aiii/agi a t  ti = 0, of course, generally varies in time. 

Substitution of (7.3.9) into (7.3.8) yields 

(7.3.10) 

It is easy to see that the total amount of contaminant in the spot must be 
conserved: 

(7.3.1 1) 

The integral has been normalized for convenience. The shape and size of the 
spot can be measured by lpq, which is defined by 

(7.3.12) 

The sum of the diagonal components of Ipq is  lpp; this is proportional to the 
square of the average spot radius. The equation for lPq can be obtained from 
(7.3.10); i t  reads 

(7.3.13) 

I f  aiiila[,. i s  equal to zero, the solution of (7.3.13) i s  straightforward: 

lpq = 2 7 t apq. (7.3.14) 

This states that, in the absence of relative motion near a point, the spot of 
contaminant is  round (Ipq = 0 if p and q are different) and that it spreads by 
molecular diffusion in a l l  directions. The radius of the spot i s  proportional to 
/:; ; clearly, the radius increases as (y t ) ” ’ ,  as in all diffusion problems. 

Theeffectof pure,steadystrain Equation (7.3.13) cannot easily be solved for 
a general velocity field. However, the solution of a special case is instructive. 
Let us restrict the analysis to the effects of pure strain. Take a twodimen- 
sional strain-rate field in which aul I& = s, au2lat2 = -s, au3/ag3 = 0, and 
in which all off-diagonal components of aiiilatiare zero. This represents pure, 
planestrain with stretching in the direction and compression in the t2 direc- 
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tion. The approximation (7.3.9) implies that s i s  uniform; we also assume that 
it does not vary in time. The choice of the symbol s is not an arbitrary one. 
We found in Chapter 3 that the strain-rate fluctuations sii in turbulence are 
quite large. We recall that s,-ulx (A i s  the Taylor microscale); these large 
strain rates are associated with the small-scale motion. For the small spot we 
are considering here, we may thus considers to be of order uA. 

For steady, plane strain, (7.3.13) becomes 

dl i l ld t -  2sl l l  = 27, (7.3.15) 

dl2 2/dt + 2~12 2 = 27, (7.3.16) 

dli, ldt= 0. (7.3.1 7) 

The solution of (7.3.1 5-7.3.1 7)  is  

exp (2st) - 1 

sinh (2st) 

1 - exp (-2st) 

2s 111 =2Y * I22 I 

2 s I  111 + I 2 2  = 4 Y  

(7.3.18) 

(7.3.19) 

1 1 2  =o. (7.3.20) 

For very small total strain st, sinh(2st) Q 2sr, so that I I  t 122 4yt. which 
agrees with (7.3.14). However, as the strain st  increases, (7.3.19) increases 
much faster than t ,  so that the spot spreads much faster than it would as a 
result of molecular transport alone. The straining motion thus accelerates 
molecular diffusion of small spots. In turbulence this effect is quite pro- 
nounced, because the fluctuating strain rates are so large. 

The cause of the accelerated diffusion is easy to understand. As a spot of 
contaminant is drawn out in the El direction (Figure 7.31, the concentration 
gradients in that direction are reduced. Because the diffusion of contaminant 
is proportional to the concentration gradient, the rate of spread in the El  
direction is reduced. In the E2 direction, however, the spot is being com- 
pressed, so that the gradients and the molecular diffusion in the t2 direction 
increase. At small values of st, the increase in the E2 gradient is about equal to 
the decrease in the El  gradient, but a t  large values of st  the increase of 
diffusion in the l2 direction i s  much larger than the decrease of diffusion in 
the E l  direction, so that the net rate of diffusion increases as indicated by 
(7.3.19). 

The interaction of turbulent and molecular transport thus results in much 
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Figure 7.3. Effect of strain on concentration gradients. 

faster spreading of the spot. This is one of the reasons why turbulent mixing 
i s  so effective. If there were no molecular transport, turbulent mixing would 
carry thin sheets and filaments of contaminant to every part of the flow. 
However, there would st i l l  be large inhomogeneities a t  small scales, because 
the filaments would be separated by regions of uncontaminated fluid, which 
would have to  be filled by unaccelerated molecular diffusion. 

The expressions (7.3.18) provide support for the calculations of the mini- 
mum scale in cases with y/v  < 1, given in Chapter 3 (see (3.3.681, (3.4.71, and 
Figure 3.6). Examining the expression for / 2 2 ,  we see that it never gets 
smaller than y/s, no matter how large the total strain becomes. The minimum 
scale then i s  (y/s)'". On substitution of s by t l / h - ( e / ~ ) " ~ ,  the contaminant 
microscale becomes (y/v) "'T,I. 

The assumption that the strain-rate field is steady is not unrealistic. As we 
saw in Chapter 3, time derivatives of the vorticity and strain-rate fields are of 
order RG"' relative to  l/s. In other words, the straining goes on for many 
times l/s. Of course, the strain rate eventually changes sign, so that the rate 
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of spreading is controlled not by s t ,  but by s(t.97 ’/’, where F i s  the Lagran- 
gian integral scale of the strain-rate field. The assumption that the strain-rate 
field is infinite compared to the spot size clearly corresponds to y /v  << 1. 
The assumption that the vorticity is zero is not vital to the argument; a more 
exact calculation that includes the vorticity does not change the conclusions 
obtained here (Lumley, 1972 b). 

Transport at large scales The effects of turbulence-accelerated molecular 
transport are mainly confined to small scales because the strain-rate fluctua- 
tions are most intense at small scales. As we have seen above, molecular 
diffusion rapidly removes the small-scale concentration inhomogeneities 
created by the straining motion. This interaction tends to make the concen- 
tration distribution approximately homogeneous at  small scales. The time 
needed for homogenizing may be large compared to ( V I E )  ‘ I 2 ,  but (v/E)’” - 
R i ’ / 2  (1.5.151, so that this time scale is likely to be small compared to 
the large-eddy time scale t/u. 

If the instantaneous concentration c’ i s  decomposed into a mean concentra- 
tion C and concentration fluctuations c, the conservation equation for C 
becomes (in the absence of mean flow) 

ac a - a2c 
- + -cui = y - 
at axi axiaxi . (7.3.21) 

The transport term on the left-hand side of (7.3.21 ) is  of order Cue, (l, is  a 
length scale characteristic of mean concentration gradients). The molecular 
diffusion term is of order yC/&z. The ratio of these is  Because turbu- 
lence-accelerated diffusion increasest, rapidly, ut,/y (which is comparable to 
the Reynolds number if y/v  1, as in gases) tends to become large, so that 
the effects of molecular diffusion on the mean concentration distribution can 
often be neglected. This conclusion, of course, is identical to the one ob- 
tained for the transport of mean momentum (Section 2.1). 

7.4 
Turbulent transport in evolving flows 
In the preceding sections we have discussed only cases in which the Lagran- 
gian velocities were stationary. The problem becomes much more difficult if 
they are not. Nonstationary Lagrangian velocities arise if the Eulerian flow 
field is nonstationary or inhomogeneous (or both); in this section, we discuss 
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the dispersion of contaminants in self-preserving, inhomogeneous, statistically 
steady flows. 

Thermal wake in grid turbulence Consider transport of heat released from a 
line source in grid turbulence. The turbulence i s  produced in a wind tunnel. 
The mean velocity U is  in the x direction; it i s  assumed to be uniform. The 
turbulence is  homogeneous in the y, z plane, but it decaysdownstream. The 
(Eulerian) integral scale increases as x'" downstream, while the turbulent 
energy uz decreases asx-' , to a first approximation (Section 3.2). 

The line source could be a heated wire stretched across the wind tunnel; 
we assume that the heat supply is steady. The wire produces a small tempera- 
ture rise in all the material points that happen to pass through i t s  boundary 
layer. The heated wake of the wire i s  slowly broadened by the turbulence- 
accelerated molecular transport, but it is also carried from side to side by 
larger eddies (Figure 7.4). If the mean temperature difference between any 
point within the thermal wake and the unheated fluid i s  called 0 and if the 
temperature fluctuationsare designated by 8, the equation for 0 reads 

(7.4.1) 

The second and fourth terms of (7.4.1) are small, as can easily be demon- 
strated by repeating the order-of-magnitude analysis for plane wakes (Section 
4.1). The last term of (7.4.1) is also small, but we will retain it to see what 
effect molecular transport has on the distribution of 0. Consequently, (7.4.1 1 
i s  approximated by 

(7.4.2) 

Figure 7.4. Definition sketch for plane thermal wake. 
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Integrating (7.4.21, we obtain 

H - 
U I  O d y = - .  

PCP 
-a 

(7.4.3) 

The total flux of heat past any downstream location is thus constant. This 
relation i s  similar to the momentum integral in ordinary wakes. 

Self-preservation We are looking for a self-preserving solution to (7.4.2, 
7.4.3). Immediately, a problem arises. The turbulence has a length scale 4 
whose growth i s  fixed; if the temperature distribution has another length 
scale, which might increase a t  a different rate, self-preservation cannot exist. 
I f  the virtual origin of the thermal wake is the same as the virtual origin of the 
turbulence, this problem would not arise. This could be arranged by putting 
the heated wire very close to the grid or, even better, by heating one of the 
bars of the grid. If the heated wire is a t  some distance from the grid, however, 
self-preservation does not seem possible. If the mean temperature difference 
a t  the center line of the wake is called 00 and if the length scale of the 
thermal wake is &e, the turbulent transport terp in (7.4.2) is of order 

(7.4.4) 

If the thermal wake is self-preserving, because the heated wire is  located near 
the grid, the transport term is 

(7.4.5) 

The values of Oo in (7.4.4) and (7.4.5) are not the same; t ne heat flux is 
the same in both cases, the value of Oo at  some given down&harn distance x 
from the grid is larger for the wake of the wire that is closesr 'ox. Also, close 
behind that wire to<< t, so that (7.4.4) produces abnormall;large turbulent 
transport in the y direction. This causes rapid broadening of the Temperature 
distribution, so that we may expect to to catch up withe (Figure 7.5). 

Another way to understand this effect is to take account of the fact that 
the width of the distribution 0 increases roughly proportionally to the square 
root of the time since release for all but very small times. At a given mean 
velocity U, the width thus increases as the square root of the distance from 
the wire; if the distance from the wire is much smaller than the distance from 
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Figure 7.5. The growth of lo for a source not located near the virtual origin of the 
turbulence. 

the turbulence-producing grid, do increases faster than 4. Therefore, if we 
allow some distance for Go to become comparable to t ,  a self-preserving 
solution should be feasible. 

The assumption of self-preservation consists of 

8 = 0 0  f (y / t ) ,  -G= 0 0  ug(yfl) .  (7.4.6) 

Here, 00 = OO(X) and t'=t!(x). We have assumed that to = t; of course, the 
self-preserving decay of the turbulence prescribes 110: x-lI2, ta XI / * .  Substi- 
tution of (7.4.6) into (7.4.2) yields 

(7.4.7) 

Here, primes denote differentiation with respect to q(=y/d. Self-preservation 
can be obtained only if the coefficients in (7.4.7) are constant: 

(7.4.8) 

Because u a x - l R  and G a x I R  , the second and third of (7.4.8) are satisfied 
(P is a Phclet number). The first of (7.4.8) can be satisfied by any power law 
Qo ax", but the heat flux integral (7.4.3) requires that Ooe be constant, SO 

that Oo varies as x-'". This is not surprising, because Oo is  similar to the 
center-line velocity difference Us in momentum wakes (Section 4.1). It is 
convenient that the molecular transport term is also self-preserving; it will be 
retained. With these results, (7.4.7) becomes 
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-B(f+qf ’ )  =g’ + P-’ f ” .  (7.4.9) 

Integration of (7.4.9) yields 

-Bqf = g  + P-’ f’. (7.4.10) 

Let us assume that the eddy diffusivity is  constant. This is a much better 
assumption than in the wakes studied in Section 4.1, because this flow has no 
edges, is not intermittent, and is homogeneous in the cross-stream direction. 
If the eddy diffusivity is rT and the nondimensional groupu@yT is called the 
turbulent PBclet number PT, (7.4.10) becomes 

-Bgf = (PYI + P-’ ) f’. 

It is convenient to define t! by 

(7.4.1 1) 

(7.4.12) 

The solution of (7.4.1 1) then becomes 

f=exp(-! 277 ’ 1. (7.4.1 3) 
The mean temperature difference 0 thus has a Gaussian distribution, just like 
the momentum deficit in wakes (4.2.15). 

It i s  clear from (7.4.1 1, 7.4.12) that, to the degree of approximation used 
here, the effect of molecular transport on the mean temperature distribution 
is additive. If PT is  of the same order as RT in plane wakes (RT = 12.5, see 
Table 4.1) and if P is a t  a l l  large, the additional spreading due to molecular 
transport is negligible. 

Dispersion relative to the decaying turbulence It has been assumed that the 
width of the temperature wake scales with the length of the decaying turbu- 
lence, which increases as x ” * .  This implies that the dispersion, nondimen- 
sionalized with the local length scale, does not increase as soon as self-preser- 
vation has been attained. Clearly, wandering points are not being dispersed in 
the sense used earlier in this chapter. This peculiar behavior arises because the 
grid turbulence ”disperses” i t s  own length scales a t  a rate consistent with the 
dispersion of contaminants; it is characteristic of dispersion in evolving flows 
such as jets, wakes, and boundary layers. 

If the heated wire i s  not located close to the grid, self-preservation is 
unlikely to be observed experimentally. The time scale e/a of the turbulence 
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i s  of the same order as t = x / U  (3.2.32). It takes the length scale of the 
temperature wake several e/u to catch up with the length scale of the turbu- 
lence. However, {/a i s  also the time scale of decay, so that after several e/u the 
turbulence is no longer self-preserving, but has entered the final period of 
decay, in which eand c1 change downstream in a different way. 

The Gaussian distribution The result that the distribution of 0 is Gaussian 
(within the assumption of constant eddy diffusivity) is in good agreement 
with experimental data, even a t  small distances from the point of release. This 
should not be construed as support for a constant eddy diffusivity, because 
the probability density of the velocity fluctuations is also observed experi- 
mentally to be approximately Gaussian a t  all times, so that the Gaussian 
distribution of 0 would seem to be an unavoidable result. In fact, the posi- 
tion of a wandering point, nondimensionalited with the local length scale t!, 
itself becomes a stationary variable a t  a large distance from the grid; there 
is  no reason why it should have a Gaussian distribution, except for the 
dynamics of turbulence which happen to make it so. 

Dispersion in shear flows The analysis presented in this section may also be 
applied to dispersion by other self-preserving flows, such as jets, wakes, 
plumes, and boundary layers. Some time after release, the plume of contami- 
nant will have spread throughout the turbulent part of the flow; beyond that, 
dispersion of momentum and dispersion of contaminant go hand in hand, just 
as in the thermal plume discussed in Section 4.6. Because the contaminant 
cannot spread beyond the edges of the flow, the length scale of the contami- 
nant distribution remains the same as the length scale of the flow. 

If the point of release of contaminant does not coincide with the virtual 
origin of the flow, we cannot expect self-preservation near the point of r e  
lease. Because shear flows exhibit no cross-stream homogeneity, the initial 
dispersion problem is extremely complicated. Sometimes, approximate solu- 
tions are obtained by assuming that the turbulence is homogeneous and that 
the mean velocity U is  approximately constant in the neighborhood of the 
point of release; the initial dispersion can then be described with the analysis 
of Section 7.1, where the time t since release i s  replaced by x/U: The effect of 
mean shear is sometimes accounted for by assuming that the mean velocity 
gradient is approximately constant; the results obtained in Section 7.2 may 
then lead to qualitatively correct conclusions. 
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Problems 

7.1 A chemical i s  added at the center line of a fully developed turbulent 
pipe flow. The reaction rate is large, so the total reaction time is determined 
by turbulent transport. How many diameters are required for the reaction to 
be completed? 

7.2 A kilogram of a half-and-half mixture of two fluids i s  being homoge 
nized by a 25-watt mixer. The two fluids have about the same viscosity and 
density (about lo-' m*/sec and 1 kg/m3, respectively); the diffusivity of one 
fluid into the other is about 3 x  times the viscosity. This situation 
occurs if one of the fluids is a dilute solution of high molecular weight 
polymers. Make a conservative estimate of the mixing time required for 
homogeneity of the mixture. Suppose that in the mixing process it is neces- 
sary to use only strain rates small compared to 5 x lo2 sec-', because larger 
strain rates tend to tear the polymer molecules apart. If you limit yourself to 
strain rates one-tenth of this value, what mixing time is required? What is the 
power of the mixer in this case? If the mixer paddle is 5 cm in diameter, is 
the flow turbulent? 

7.3 A smokestack located in the lower part of the atmospheric boundary 
layer releases a steady stream of neutrally buoyant smoke. Estimate the 
downstream position of the point of maximum pollutant concentration a t  the 
surface. What i s  the effect of the stack height on the maximum surface 
concentration? 
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