
THE STATISTICAL DESCRIPTION OF TURBULENCE 

Up to now, we have considered only average values of fluctuating quantities, 
such as U and --uII. It is just as important to our understanding of turbulence 
to examine how fluctuations are distributed around an average value and how 
adjacent fluctuations (next to each other in time or space) are related. The 
study of distributions around a mean value requires the introduction of the 
probability density and i ts  Fourier transform, the characteristic function. The 
study of the relation between neighboring fluctuations calls for the introduc- 
tion of the autocorrelation and i ts  Fourier transform, the energy spectrum. 
This chapter is devoted to the development of these mathematical tools; in 
the following two chapters, they are used in the study of turbulent transport 
("diffusion") and of spectral dynamics. One other tool needed in the study of 
turbulent transport is the central limit theorem, which makes predictions 
about the shape of the probability density of certain quantities. The central 
limit theorem is  introduced and discussed at the end of this chapter. 

6.1 
The probability density 
We restrict the discussion to fluctuating quantities that are statistically 
steady, so that their mean values are not functions of time. Only under this 
condition does the idea of a time average make sense. A statistically steady 
function is called stationary; an example of a stationary function is given in 
Figure 6.1. The fluctuating G ( t )  might be the streamwise velocity component 
measured in a wind tunnel behind a grid. We are interested in measuring the 
relative amount of time that G ( t )  spends at various levels. We could get a 
crude idea of this by displaying G ( t )  on the y axis of an oscilloscope, with a 
rapid sweep on the x axis. A time exposure would have a variable density, 
proportional to the time spent a t  each value of y. A more accurate measure- 
ment can be obtained by the use of a gating circuit, which turns on when the 
signal u"(t) is between two adjacent levels. In Figure 6.1 the levels are placed 
fairly close together in terms of the width of G ( t ) .  The output of the gating 
circuit is shown below u"(t). I f  this is averaged, we obtain the percentage of 
time spent by G ( t )  between the two levels. Adjusting the electronic "window" 
successively to different heights, we obtain a function similar to the one 
shown to the right of Q(t) in Figure 6.1. 
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Figure 6.1. Measurement of the probability densitv of a stationary function. The func- 
tion I (t) is the discriminator output. 

We expect that the averaged output of the gating circuit is proportional to 
the window width AC, so that it is convenient to define a quantity B(0)  by 

1 

T+- T 
B(u') Ace lim - Z ( A t ) .  (6.1.1) 

The function B(0)  is called a probability density; the probability of finding 
Z ( t )  between u' and u" + h- i s  equal to the proportion of time spent there. 
Because B(u") represents a fraction of time, it is always positive, while the sum 
of the values of B(G) for all u' must be equal to one: 

(6.1.2) 

The shape of B(u") sketched in Figure 6.1 is typical of probability densities 
measured in turbulence. Many other shapes are possible; the probability den- 
sity of a sine wave is  sketched in Figure 6.2. This curve is zero beyond *1, 
because the sine wave has unit amplitude. Near *I ,  the slope goes to zero, so 
that the sine wave spends most time there, making the values of B(Z) near *l 
very large. 
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a - t  - - - t  
Figure 6.2. The probability density distribution of a sine wave. 

We may express the averages we are fami!iar with in terms of B ( 4 .  Sup- 
pose we wish to average some function f(u"). The time average 

(6.1.3) 

can be formed by adding al l  of the time intervals between to and t o  + Tduring 
which C(t)  is between u' and u'+ h-, multiplying this by f(u"), and summing 
over all levels. The proportion of time spent between u" and u" + AG is  equal to 
B(G) AU', so that we can write 

(6.1.4) 

The mean values of the various powers of u" are called moments. The first 
moment is the familiar mean value, which is defined by 

(6.1.5) 

In experimental work, the mean value is always subtracted from the fluctuat- 
ing function G(t). As in Chapter 2, we denote the fluctuations by u, so that 
u = ii- U and U = 0. We then have B(i7) = B(U + u), so that it is convenient to 
use a probability density B(u),  which is obtained by shifting B(C) over a 
distance U along the u" axis. The moments formed with u" and B(u) are 
called central moments. The first central moment, of course, is zero. 

The mean-square departure u2 from the mean value U is  called the variance, 
or second (central) moment. It i s  defined by 

(6.1.6) 
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The square root of the variance, u, is the familiar sta ard deviation (rms 
amplitude). The standard deviation is the most conv GY ient measure of the 
width of B(u). 

The value of u2 is not affected by any lack of symmetry in B(u) about 
the origin; if B b )  is written as the sum of symmetric and antisymmetric parts, 
the latter does not contribute to u2. The third moment, however, defined by 

(6.1.7) 

depends only on the lack of symmetry in B(u). If B(u)  is  symmetric about the 
origin, u3 = 0. It is customary to nondimensionalize 2 by d, which gives a 
dimensionless measure of the asymmetry. This is called the skewness (S): 

s f 2 / 0 3 .  (6.1.8) 

Figure 6.3 pictures a function with a positive value of S. The skewness is 
positive because large negative values of u3 are not as frequent as large posi- 
t ive values of u3.  

The fourth moment, nondimensionalized by u4, is called kurtosis or flatness 
factor; it is represented by the symbol K: 

- 

- 

(6.1.9) 

Two functions, one with a relatively small and the other with a relatively 
large kurtosis, are sketched in Figure 6.4. The value of the kurtosis is large if 
the values B(u) in the tails of the probability density are relatively large, The 
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Figure 6.4. Functions with small and large kurtosis. 

peaky function in Figure 6.4 frequently takes on values far away from the 
axis, so that i ts kurtosis is large. Because the fourth moment is nondimension- 
alized with u4, K contains no information on the width of the density B b ) .  

6.2 
Fourier transforms and characteristic functions 
Although it is easy to see the physical significance of the probability density, 
it is often more convenient to work with another quantity, the characteristic 
function. This function is defined as the Fourier transform of B(u).  This 
means that we have to discuss Fourier transforms. 

A Fourier-transform pair is defined by 

We have used the probability density B(u) and the corresponding character- 
istic function G(k) as examples; we use other Fourier-transform pairs later. The 
conditions on the existence of $(k)  and on i t s  ability to produce B(u) upon 
integration are straightforward and need not concern us here. 
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In order to gain an appreciation for the usefulness of Fourier trans- 
forms, the behavior of $(k) as reflected in B(u)  and conversely are explored. 
From the definition of the average of a function given in (6.1.41, and the 
definition of @(k), it is evident that 

@(k) = exp [iku(t)l.  (6.2.2) 

As always, the overbar denotes a time average. This equation suggests that 
@(k) can be measured by averaging the output of a function generator that 
converts u(t)  into sin u(t)  and cos u(t) .  The experimental convergence of B(u) 
is poor, because one must wait longer and longer to obtain a stable average as 
the window width Au i s  decreased. The convergence of @(k)  is much better. 
Of course, there cannot be a net gain; to determine @(k) accurately enough 
to obtain B(u) from the Fourier transform is bound to take just as long as a 
direct measurement of B(u) .  

I f  we have to deal with combinations of functions, say the sum of u( f )  and 
v ( d ,  the characteristic function of the sum (the joint characteristic function) 
is simply expressed by 

qYk,G) = exp [ iku(t)  + i tv ( t ) l .  (6.2.3) 

The corresponding probability density, which we encounter shortly, has no 
such simple form. This simplicity i s  one reason for the introduction of the 
characteristic function. We further discuss joint characteristic functions in 
Section 6.3. 

The moments of u(t)  are related to @(k) in a simple way. Differentiating 
the first of (6.2.1) with respect to k, we find that the moments are related to 
derivatives of $(k) at  the origin: 

(6.2.4) 

Because U= 0, the slope of @ a t  the origin is zero. Because of (6.2.41, the 
characteristic function can be written as a Taylor series of the moments: 

" 
(ik)" - 
n! 

a)= c - U " .  

n=O 

(6.2.5) 

Because no densities obtained in a laboratory have moments that are un- 
bounded, the corresponding characteristic functions in principle have all 
derivatives. We say "in principle," because the larger the order of a moment 
is, the longer it takes to obtain a stable value. High-order moments are very 
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strongly affected by large excursions from the mean, which seldom occur. 
Therefore, moments higher than the fourth are seldom measured, so that we 
never have more than the first few derivatives of @MI. 

If B(u) is symmetric, @(k) is  real. This can be seen if the first of (6.2.1) is 
written in terms of sin ku and cos ku. This yields 

Only the antisymmetric part of B(u) can contribute to the second integral. 
From (6.2.6) we also conclude that the real part of @(k) i s  even in k, while the 
imaginary part is odd. 

The modulus of @(k) is  given by 

because B(u) 2 0 and because the modulus of the exponential is unity. The 
last integral in (6.2.7) is equal to @ ( O ) ,  so t h a t  we can write 

The widths of @(k) and of B(u) are inversely related. Let us nondimension- 
al ire the fluctuations u by u, so that we have u/u = r). Let us define a new 
probability density B' by 

B'(r)) =uB(u) = uB(ur)). (6.2.9) 

Defined this way, the integral of B', according to (6.1.21, is equal to one. The 
characteristic function then becomes 

~ ( k )  = S, ekmB'(q) dr). (6.2.10) 

A measure for the width of @(k) can be defined as the value of k where the 
right-hand side of (6.2.10) is equal to :. This value is clearly proportional to 
l/u, because B'(q) has unit width. The effective width of @(k) thus increases if 
cr decreases. If #(k) is narrow, B(u) i s  broad, and vice versa. 

.. 

The effects of spikes and discontinuities Suppose B(u) has a very high, 
narrow spike at some value of u,  which we denote by s. This is pictured in 
Figure 6.5. The f la t  spots in the function u( t )  might be caused by a "dwell" 
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Figure 6.5. The characteristic corresponding to a probability density with a spike. The 
dotted line indicates the attenuation of @ ( k )  due to the finite width of the spike. 

circuit of some kind. We assume that the area under the spike in B(u) is  A; 
the rest of the area enclosed by B(u) i s  then 1 -A. The spike in B(u) produces 
a component of the characteristic function which behaves as A exp iks. This 
component does not decay at infinity (Figure 6.5). In reality, of course, the 
spike is  never infinitely high and narrow. I f  Bs is the spike component of B 
and GS is  the spike component of @, the latter can be written as 

(6.2.1 1) 
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Here, @I (k )  is  the transform of B,, but shifted to the origin, so that it does 
not oscillate. Therefore, @\(k) is  a characteristic function with a width 
inversely proportional to the width of the spike. If the spike is infinitely 
narrow, q$l;(k) i s  constant. I f  the spike has a finite width us, qbi(k) decreases as 
klu,, thus reducing the amplitude of exp iks (Figure 6.5). 

If B(u) has a discontinuity, so that i t s  derivative has a spike, similar oscilla- 
tions of @(k) are generated. Integrating the first of (6.2.1) by parts once, we 
obtain 

(6.2.1 2) 

If the spike in dB/du is  infinitely narrow, we conclude that $ ( k )  behaves as 
(Ilk) expiks a t  large values of k. I f  the spike has finite width, $ ( k )  decreases 
somewhat faster. In general, if B(u) and i t s  first n derivatives are continuous, 
with a discontinuity in the (n + 1 )st, @(k) is  proportional to k-("+2) exp iks 
asymptotically. 

Three pairs of Fourier transforms are sketched in Figure 6.6. In the first 
example, B(u)  itself has a discontinuity, so that 4 decays as k-' . In the second 
example, B has a discontinuity of slope, so that @ decays as k - 2 .  The third 
example is the probability density of a sine wave; here B has a spike, but it is 
not infinitely narrow, so that does decay, though rather slowly. 

Parseval's relation Consider two functions, f and g, with Fourier transforms 
F and G: 

F(k)  = 1- ekxf (x )  dx, G ( k )  = jm eikxg(x) dx. (6.2.1 3) - 4 

With a l i t t le algebra it can be shown that 

F ( k ) G * ( k )  dk =27rJ 4 f ( x ) g * ( x )  dx ,  
(P 

(6.2.14) 

where asterisks denote the complex conjugates. This is known as Parseval's 
relation; it can be used to see how an operation carried out on a function 
affects i t s  Fourier transform. For example suppose that f ( x )  is  being averaged 
over an interval -X < x  G X .  This amounts to evaluating the integral on the 
right-hand side of (6.2.14) with the use of a function g*(x) that looks like the 
"top-hat" function a t  the top left of Figure 6.6: 

g* (x )  = ;x-'  for - x < x < x ,  

g*(x) = 0 otherwise. 
(6.2.1 5) 
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Figure 6.6. Some Fourier-transform pairs. Note that @(k) = @(-k) because B(u) is rea:. 

The integrand on the left-hand side of (6.2.14) consists of the product of 
F ( k )  and G * ( k ) .  The latter looks like the function on the top right of Figure 
6.6. Now, as g * ( x )  becomes wider, G * ( k )  becomes narrower, as we saw 
earlier. If the averaging interval is quite long so that G*(k )  is  quite narrow, 
the integral on the left-hand side of (6.2.14) may be approximated by F(0)  
times the integral of G*(k ) .  Apparently, averaging a function is equivalent to 
selecting the value of i t s  Fourier transform a t  the origin. I f  the physical 
variable is  time, the transform variable is  frequency; the origin in transform 
space corresponds to zero frequency. If we average something, the only thing 
left is  the component a t  zero frequency; al l  other components become zero. 

Similar problems arise when random variables are measured with sensors of 
finite dimensions. For example, a hot wire of finite length spatially averages 

u 
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the velocity fluctuations that are measured. The effects of this averaging on 
the output of the hot-wire instrument can be described in terms of the first 
two Fourier-transform pairs in Figure 6.6 (Uberoi and Kovasznay, 1953). 

6.3 
Joint statistics and statistical independence 
Let us consider the probability density for two variables simultaneously. A 
simple way to visualize this is to imagine that one variable u(t) is displayed on 
the x axis of an oscilloscope, while the other variable v(t) is displayed on the 
y axis (Figure 6.7). We assume that u and v are variables with zero mean, for 
simplicity. The joint probability density B(u,v) i s  proportional to the fraction 
of time that the moving spot in Figure 6.7 spends in a small window between 
u and u + Au, v and v + Av. If we took a time exposure of the screen, the 
intensity a t  a point would be proportional to the joint probability density. As 
before, the  sum of all the amounts of time spent a t  all locations must be 
equal to the total time, and the time fractions cannot be negative. Thus, 

N u ,  v) 2 0, JJ B(u, v) du dv = 1. (6.3.1) 

Also, if all of the values of v a t  a given value of u are combined, we should get 
the density of u( t ) ,  which we call B,(u).  On the oscilloscope, this amounts to 
turning the gain to zero on the y axis, so that the figure collapses to a 
horizontal line. A similar statement can be made about B,(v), so that we can 
write 

0. 

Q 

J B(u, v) dv  = B,(u), J B(u, v )  du = B,(v). , (6.3.2) 
a -0 

The moments of u(t) and v ( t )  can be obtained separately, or with (6.3.2). The 
most importantjoint moment is UV, which is  defined as - 
Z E  [[ uvB(u, v) du dv. 

4 

(6.3.3) 

This is called the covariance or correlation between u and v. Students of 
mechanics will recognize that the covariance is equivalent to the product of 
inertia of a distribution of mass. The correlation is thus a measure of the 
asymmetry of B(u, v). I f  the value of B(-u, v) is the same as that of B(u, v), 
then E= 0. A few examples are given in Figure 6.8. 

As we discussed in Section 2.1, if z= 0, u( t )  and v ( t )  are said to be 
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Figure 6.7. The joint probability density. 
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V 

Figure 6.8. Examples of joint densities with various correlations. 

i 

Figure 6.9. Probability density for two uncorrelated variables that tend to inhibit each 
other. 

uncorrelated. Uncorrelated variables, however, are not necessarily indepen- 
dent of each other. The correlations in Figure 6.8 can be made zero by 
rotating the figures on the left and right until they are symmetric about one 
of the axes. In other words, it is possible to select two linear combinations of 
u( r )  and v ( t )  and to create two new variables u'( t )  and v ' ( t )  which are 
uncorrelated. Clearly, the absence of correlation is no clue for the presence or 
absence of a dependence between the variables. 

Two variables are statistically independent if 

B(u, v )  = B,(U) B,W. (6.3.4) 

The probability density of one variable is then not affected by the other 
variable, and vice versa. For variables that depend on each other, the joint 
density cannot be written as a product. An example of the joint density of 
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uncorrelated, but dependent, variables is shown in Figure 6.9. Here, one 
variable tends to inhibit the other, so that they are seldom large simulta- 
neously. 

The joint characteristic function, defined by (6.2.31, i s  clearly the 
two-dimensional Fourier transform of the joint density, B(u, v ) .  In the case of 
statistically independent variables, the joint characteristic function is a simple 
product: 

@(k,G) = exp [iku +iGvl = exp [ikul exp [idvl = @“(k) @,(!I. (6.3.5) 

6.4 
Correlation functions and spectra 
If we want to describe the evolution of a fluctuating function u(t) ,  we need to 
know how the values of u at  different times are related. This question could 
be answered by forming a joint density for u(t )  and u(r ‘ ) .  However, as we 
have seen, the correlation provides much of the required information. The 
correlation u(t)u(t’) between the values of u at  two different times is called 
the autocorrelation. Because we are working with stationary variables, the 
autocorrelation gives no information on the origin of time, so that it can 
depend only on the time difference T = t’ - t .  Also, because u(t)u(t‘) = 
u(t’)u(t),  the autocorrelation must be a symmetric function of 7. 

I u(t)u(t’)l< [ u r n .  uZ01”~. (6.4.1 

For stationary variables, -0 = 
define an autocorrelation coefficient p ( r )  by 

Schwartz’s inequality states that  

= const, so that it is convenient to 

With (6.4.1) and (6.4.2), we obtain 

IPI G 1 = P ( 0 ) .  

(6.4.2) 

(6.4.3) 

An autocorrelation coefficient similar to P(T)  was used in Section 2.3. The 
integral scale F is  defined by 

T Z  JOm p(T)  dT. (6.4.4) 

In turbulence, it is always assumed that the integral scale is  finite. The value 
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Figure 6.1 0. Sketch of an autocorrelation coefficient. 

of f i s  a rough measure of the interval over which u(t) is correlated with 
itself. A sketch of p ( r )  i s  given in Figure 6.10. 

Also shown in Figure 6.10 is the microscale A, which is defined by the 
curvature of the autocorrelation coefficient a t  the origin: 

d2p/dr2(T=0 -2/A2. (6.4.5) 

Expanding p in a Taylor series about the origin, we can write, for small r,  

p ( 7 )  4 1 -T2 /h2 .  (6.4.6) 

The microscale is thus the intercept of the parabola that matches p(7)  at the 
origin (Figure 6.10). Becauseu(t1 is stationary, we can write 

From t6.4.5) and (6.4.7) we obtain 
- -  

(6.4.7) 

(6.4.8) 

In Chapter 3, the Taylor microscale, defined in a similar way from the spatial 
velocity autocorrelation, was extensively used. 

The convergence of averages Suppose we want to obtain the average value of 
a function G(t) in the laboratory. Of course, we cannot integrate over an 
infinitely long time interval, so that we have to consider the error due to 
finite integration time. The average i s  

(6.4.9) 
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The difference between UT and the true mean value U (recall that G = U + u )  
is  given by 

(6.4.10) 

Here we took ro = 0 for convenience. The mean-square value of (6.4.10) is 

I f  the integrating time T is much longer than the integral scale % 7/TN 0 in 
the range of values of 7 where p ( d  f 0, so that, by virtue of (6.4.41, the 
mean-square error may be approximated by 

It is clear that the average value can be determined to any accuracy desired if 
the integral scale is finite. 

Ergodicity The requirement that a time average should converge to  a mean 
value, that is, that the error should become smaller as the integration time 
increases and that the mean value found this way should always be the same, 
is called ergodiciry. A variable is called ergodic i f  averages of all possible 
quantities formed from it converge. An ergodic variable not only becomes 
uncorrelated with itself a t  large time differences (7 -+ -1, but it also becomes 
statistically independent of itself. A variable is ergodic if al l  integral scales 
that can be formed from it exist. Actually, this condition is not quite neces- 
sary; more general statements could be made. Let us consider a laboratory 
average of exp iku(r),  which should differ l i t t le  from the characteristic func- 
tion @(k)  = exp iku(r) defined by (6.2.2). If the integral scale of exp iku(r) 
exists, the autocorrelation between exp iku(r) and exp iku(r’) should vanish 
for large 

[exp iku(t) - @(k)l [exp iku(r ‘ )  - ~ ( k ) l - +  0, 

so that 

exp [iku(t) + iku(t’)l+ @(k)@(k). (6.4.14) 

From the definition (6.2.3) of a joint characteristic function, and the form 
(6.3.5) which it takes for statistically independent variables, it i s  clear that 

- r. Thus, for large t )  - r, 

(6.4.13) 
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the left-hand side of (6.4.14) would not approach a simple product unless the 
joint density itself were a simple product. Thus, by virtue of (6.3.41, u ( t )  and 
u(t’)  are statistically independent a t  large time differences. 

It i s  reasonable to expect that a l l  the integral scales associated with u( t )  are 
about thg same, because they are determined by the scale of the physical 
proceis that produces u(t) .  The integral scale Y o f  u ( t )  itself is thus not only 
a measure of the time over which u(t)  is  correlated with itself but also a 
measure of the time over which u ( t )  i s  dependent on itself. For time intervals 
large compared to  Z u(t)  becomes statistically independent of itself, so that 
9- is a measure for the time interval over which ~ ( t )  ”remembers” i t s  past 
history. 

Another look a t  this concept i s  obtained if the output of the discriminator 
circuit in Figure 6.1 is considered. Let us call this function / ( t ) ;  it i s  equal to 
one if u ( t )  appears in the window between u and u t du, and zero otherwise. 
The mean value of / ( t )  is  the value of B(u) Au we wish to determine: 

lo= B(u) Au. (6.4.15) 

The mean-square error in the measurement of B(u) Au is obtained as follows. 
The variance u2 of / ( t )  is given by 

u2 = [ / ( t )  - 8 Au]’  =/-) - 2/(t) B Au + (B Au)2 

= /Z(t) - (B Au)’ = BAu - (BAu)’ .  (6.4.16) 

The last step in (6.4.16) could be taken because / ( t )  and I 2 ( t )  always have 
the same value (either one or zero). Applying the error estimate (6.4.12) to 
the laboratory average IT (obtained by integrating / ( t )  over a time T ) ,  we 
find, if T i s  large and B Au is small, 

(IT - B Au)? = 2 Y B  AuIT. 

The mean-square relative error i s  then given by 

(IT/BAU - I ) ’ =  2 Y l ( T B  b). 

(6.4. 

(6.4. 

7) 

8) 

Now TB Au is  the amount of time spent by u( t )  between u and u + Au if the 
averaging time is T. Hence, (6.4.18) shows that the error i s  small if the 
averaging time is so long that the amount of time spent in the window Au is  
large compared to the integral scale 5 

Another way to obtain BAu is  to sample / ( t )  a t  time intervals large enough 
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to  make the samples statistically independent of each other. With this proce- 
dure, the mean-square relative error is 

1 l f l  1 1 [ / ( t , )  - BAu]' -* 

n=l  

~- 
NB Au (BAu)* N 

(6.4.19) 

Here, N is the total number of independent samples taken. If we compare 
(6.4.19) with (6.4.181, we see that T/2Ymay be regarded as the number of 
independent samples in a record of length T. Therefore, sampling once every 
two integral scales is  adequate. We conclude that averages converge and 
integral scales exist if u(t)  may be regarded as consisting of a series of records 
of length 2Y(say, pieces of an analog tape), which are approximately statist- 
ically independent of each other. 

The Fourier transform of p(r)  The autocorrelation coefficient p ( 7 )  i s  a funo 
tion that is equal to  unity at the origin and is majorized by that value, that is 
real and symmetric, and that goes to zero faster than 1/r, so that i t s  integral 
scale exists. Referring back to Section 6.2, we conclude that p ( 7 )  must be the 
Fourier transform of a continuous, symmetric, positive, real function S(w) 
whose integral is unity. The transform of p ( 7 )  must be continuous because p 
goes to zero faster than 1/r; it must be symmetric because p is  real; it must be 
real because p i s  symmetric; it must have a unit integral because p = 1 a t  the 
origin; it must be positive because p i s  majorized by i t s  value at  the origin. 

The Fourier transform S ( o )  of p ( r )  i s  known as the powrspectral den- 
sity, or simply spectrum; it is  defined by 

An appreciation for the relevance of S ( w )  can be obtained by attempting 
to  formulate a Fourier transform of u(t)  itself. Le t  us define 

(6.4.21) 

Let us recall the discussion on Parseval's relation a t  the end of Section 6.2. In 
this case, the function multiplyingu(t') isg*(t'), which is  given by 

g*( t ' )  = (I/T) exp iwt' for t < t' < t + T, 

g* ( t ' )  = 0 otherwise. 
(6.4.22) 
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The transform of g*(t ' )  is  

(6.4.23) 

The exponential has an absolute value of unity; it is present only because the 
midpoint of the integration interval T is a running variable. The first factor on 
the right-hand side of (6.4.23) is exactly the same as the function on the top 
right of Figure 6.6 but displaced to the center frequency 0. The average in 
(6.4.21) thus selects the value of the Fourier transform of u( t )  a t  the fre- 
quency u rather than a t  the origin, i f  the time interval T is  large enough. 

Apparently, (6.4.21) i s  obtained by passing u(t )  through a f i l ter that 
admits only frequences near w. The width of the filter is about 1/T. If we 
think of u(t )  as being synthesized from contributions a t  many frequencies, 
only the contributions close to w form a square with expiwt', so that only 
for those contributions does the integrand in (6.4.21 1 not oscillate. The contri- 
butions to u(t )  from all other frequencies cause the integrand to oscillate, so 
that they do not contribute to aT(o,t )  if the integration time T is large (that 
is, if the bandwidth 1/T is small). 

With a l i t t le  algebra, it can be shown that the mean-square value of 
aT (w,t) i s  related to the spectrum S(o) by 

(6.4.24) 

For a similar calculation, see Hinze (19591, Section 1-12. The spectrum thus 
represents the mean-square amplitude of the filtered signal or the mean- 
square amplitude of the Fourier coefficient of u( t )  at  w; it may be thought of 
as the energy in u( t )  at  that frequency. 

From (6.4.20) we conclude that the value of S(w) a t  the origin is given by 
S(0) = .%In. Also, if p(7 )  2 0 everywhere, S(w) is  maximized by i t s  value a t  
the origin. Conversely, if S(w) has a peak away from the origin, then p ( ~ )  
must have negative regions. However, this does not imply that S(w) must 
have a peak away from the origin if p(7)  is  negative somewhere, as the Fourier 
transform pairs in Figure 6.6 demonstrate. 

The spectrum of the derivative of a function is related to the spectrum of 
the function in a simple way. The autocorrelation of du/dr is given by 

du(t) du(t') - d2 - d2p 
dt dt' dt dr' dT2 

-u2 - p(t'  - t )  = 4 - . --- (6.4.2 5 1 
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1 

7 

Figure 6.1 1. The autocorrelation coefficient of the first derivative of u(t) .  

Differentiating the first of (6.4.20) twice, we obtain 

(6.4.26) 

From (6.4.25, 6.4.26) we conclude that the spectrum of the first derivative 
is proportional to 02S(w) .  This relation, of course, also can be applied to 
higher derivatives; for example, the spectrum of the second derivative i s  
proportional to w4S(0). Because S(0)  is  finite (it i s  equal to Yh, a5 we have 
seen), the spectra of derivatives vanish a t  the origin. This means that the 
integral scales of derivatives are zero. An example is given in Figure 6.1 1 ; the 
area under the curve is zero: 

(6.4.27) 

6.5 
The central limit theorem 
In the analysis of turbulence, many quantities can be written as averages of 
stationary variables. In Chapter 7 we find that such quantities frequently arise 
in the discussion of turbulent transport (diffusion, mixing). The question 
arises, do averages of stationary variables have a probability density that is 
independent of the nature of the variable that is being averaged? In other 
words, we wonder if the very process of averaging introduces i t s  own char- 
acteristic pattern, which masks the characteristics of the variable that is 
averaged. Subject to some simple conditions, the answer to this question is 
yes; the probability density of averages of stationary variables always tends to 
have the same shape. 
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Let us consider N statistically independent quantities x, ( t ) .  We assume 
that a l l  x, , ( t )  have identical probability densities and that their mean values are 
zero. It is convenient to work with the characteristic function 4(k) ,  which is 
defined by 

@(k)  expikxn(t). (6.5.1) 

Because the densities of al l  x,(t)  are the same, (6.5.1 1 holds for al l  n between 
1 and N.  Let us define the sumz(t) of all x,,(t) by 

z(t) = c X , ( t ) .  (6.5.2) 

The variance of z is given by 

N 

n=l  

- N N  N 
z 2 =  c xnxm = 2 x i = N u 2 .  

n=l  m = l  n = l  
(6.5.3) 

Here, u2 is the variance of x,, which is the same for each x ,  because they 
have identical densities. The double sum becomes a single sum becausex, and 
x ,  are statistically independent and have zero mean, so that they are uncor- 
reiated. The variance of z increases as N increases, so that it is more convenient 
to  define a new quantity w ( t )  by 

w ( t )  N-lD z(t). (6.5.4) 

The variance of w(t )  is equal to u2, no matter how large N becomes. Can we 
predict the probability density of w(t)? First it is convenient to compute the 
characteristic function $,(k) of w(t ) .  We obtain 

(6.5.5) 

The last step in (6.5.5) could be taken because the x, are statistically 
independent, so that the mean of the product of all exp (ikx,N-”2 ) is equal 
to the product of all 4. If the first few moments of the probability density of 
x, exist, 4 (kN-’12 ) may be expanded in a Taylor series: 

~ ( k ~ - i n )  = 1 - k w 2 ~  + o (k3 N - ~ 2  1. (6.5.6) 

This expansion is based on (6.2.5); the last term in (6.5.6) indicates that the 
remainder i s  of order k3  N-3’2, so that it can be made as small as desired by 
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selecting a sufficiently large value of N. Substituting (6.5.6) into (6.5.5), we 
obtain, for very large N, 

4,(k) = lim ( 1  - kZo2/2NIN = exp (-kZoz/2). (6.5.7) 

This i s  called the central limit theorem; the characteristic function & ( k )  is  
called a Gaussian characteristic function. The probability density B ( w )  corre- 
sponding to &(k )  can be computed from the definition (6.2.1) of the 
Fourier transform pair and the shape (6.5.7) of @,(k); the result is 

N+ - 

(6.5.8) 

This is called a Gaussian probability density. The function exp - k is the 
only one that preserves i t s  shape under a Fourier transformation. We con- 
clude that asymptotically (as N +m), the sum of a large number of identi- 
cally distributed independent variables has a Gaussian probability density, 
regardless of the shape of the density of the variables themselves. 

The statistics of integrals Let us now consider an integral of u( t )  over a time 
interval T. Because u(t )  i s  a stationary random variable, the value of the 
integral is also a stationary random variable which depends on the origin of 
the time interval. If the integration is performed in the laboratory, the prob 
ability distribution of the integral could be obtained by repeating the experi- 
ment many times. 

An integral i s  like a sum, so that the central limit theorem may govern its 
probability distribution under suitable conditions. If the integration time T is 
large compared to the integral scale $, the integral may be broken up into 
sections of length larger than 2 Z  so that the sections are approximately 
independent (recall the discussion of (6.4.1 8)  and (6.4.1 9)): 

jOTu(t) dt = j (6.5.9) 

As n increases, the sections of integral become more nearly independent, 
because adjacent sections depend on each other only near the ends. If the 
length of each section is nSand the total integration time is T, the number of 
sections is T/nS. It is easy to arrange this in such a way that both nSand 
T/nFgo to infinity as T-tw.  We then have more and more sections, and they 
become less and tess dependent, so 'that the probability distribution of the 

n 9  2nS 
u(t )  dt + jnS u ( t )  dt + . . . . 

0 
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integral on the left-hand side of (6.5.9) becomes Gaussian under favorable 
conditions. 

The primary question i s  whether the sections of the integral become in- 
dependent fast enough. It is possible to show (although we cannot do it here) 
that, as long as all integral scales exist and are nonzero, the sections become 
independent fast enough for the central limit theorem to apply. For a full 
discussion, see Lumley, 1972a. 

The condition on the behavior of the correlation a t  large separations may 
be translated into a condition on the behavior of the spectrum near the 
origin, as we recall from the discussion in Section 6.2. From the definition 
(6.4.20) of S(w) we conclude, in analogy with (6.2.4). that the derivatives of 
the spectrum near the origin are the moments of the correlation coefficient 
~ ( 7 ) ;  if the moments exist, the derivatives do too, and vice versa. The 
condition that the correlation should be integrable to a value # O  then 
becomes the condition that the spectrum near the origin be finite and 
nonzero. 

A secondary question, which is not apparent in terms of correlations, 
becomes clear when stated in terms of the spectrum. We know from the 
discussion following Parseval's relation (6.2.14) that the average of u( t )  is 
equivalent to an operation on the Fourier transform of u(t) .  In fact, the 
top-hat function a t  the top left of Figure 6.6 corresponds to an average. 
Evidently, averaging u(t )  is  equivalent to multiplying the Fourier transform of 
u(r) by the "filter" function a t  the top right of Figure 6.6. As the tophat 
function representing the average becomes wider, the filter function on the 
right becomes narrower. The requirement that the spectrum be nonzero a t  
the origin guarantees that the product of the Fourier transform and the filter 
function gets narrower as the integration time increases. 

It i s  easy to find a violation of this condition. Consider du/dt; near the 
origin, i ts  spectrum is proportional to w2, because S(w) i s  approximately 
constant at small w. The Fourier transform of du/dt must then be propor- 
tional to w near the origin. However, the filter function on the top right of 
Figure 6.6 behaves as w Hence, the product remains of constant width; it 
does not become narrower as the integration time increases. Therefore, we do 
not expect that the integral of du/dt will become Gaussian. This is obvious, 
because the integral of du/dt is  u(t)  itself, which certainly does not need to be 
Gaussian. 
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A generalization of the theorem On the basis of the preceding discussion the 
central limit theorem can be simplified and generalized. Any variable having 
finite integral scales takes on a Gaussian distribution if it is filtered with a 
filter that is narrow enough; it becomes more Gaussian as the filter becomes 
progressively narrower. Clearly, we are not limited to simple averages. A 
variable u ( t )  may be multiplied by any function before it is integrated; the 
only condition is that the Fourier transform of that function be a filter that, 
multiplied by the Fourier transform of u ( d ,  makes the product progressively 
narrower. 

For example, a second integral may be written as 

dt j:t u( t ' )  dt' = 2T 1 (1 - y )  u ( t )  dr. 
-T -T 

(6.5.10) 

The factor 2T in front of the integral on the right-hand side need not 
concern us here. It is merely a normalizing factor that affects the variance of 
the double integral but not the applicability of the central limit theorem. The 
multiplying function in (6.5.10) has the same shape as the triangular function 
a t  the center left of Figure 6.6. Hence, the corresponding filter function 
decreases as If the Fourier transform of u ( t )  rises more slowly than a', 
the integral (6.5.10) becomes asymptotically Gaussian. This implies that a 
double integral of the first derivative of a stationary function u ( t )  becomes 
Gaussian, even though a single integral of du/dt does not. 

More statistics of integrals In the derivation (6.5.1-6.5.8) of the central 
limit theorem, the sum of the variables was normalized, so that the variance 
of a(t) remained finite. That was a matter of convenience only; if the sum 
were not normalized, i t  would sti l l  have a Gaussian distribution, but with a 
variance that would increase with N. 

Let us define an integral X(T)  of a stationary variable u( t )  by 

(6.5.1 1 )  

The variance of X(77 becomes (see (6.4.1 1 )) 

s = p  Jj p ( t ' - t ) d t d t ' = 2 T ~  joT(l - k ) p ( r ) d r z 2 T u 2 9 - .  (6.5.12) 

The characteristic function @x(k) of X(T) is  Gaussian: 

- T 

0 
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c$x(k) = exp i k X ( T k  exp(-k2s T n .  

The probability density BDO corresponding to (6.5.13) is 
- 

If a double integral W(T) i s  defined by 

it can be shown that the variance of W ( n  i s  given by 

The characteristic function of W ( n  is  Gaussian: 

(6.5.13) 

(6.5.14) 

(6.5.15) 

(6.5.16) 

(6.5.17) 

We use these relations in Chapter 7. 

Problems 

6.1 Fluctuating velocity derivatives are associated with vorticity and strain- 
rate fluctuations. Wil l  the skewness of a velocityderivative signal ever be 
zero? Experiments have shown that the kurtosis of velocity derivatives is large 
if the Reynolds number i s  large. Use the simple model of Problem 3.2 to 
make estimates of the skewness and kurtosis. 

6.2 Consider a stationary random variable with zero mean and a Gaussian 
probability density. Derive an approximate expression for the probability of 
exceeding amplitudes much larger than the standard deviation u. What is the 
probability of exceeding 3u? What is the probability of exceeding loo? 

6.3 Compute the autocorrelation curve of a sine wave. What is  the corre- 
sponding Fourier transform? What i s  the value of the integral scale? 

6.4 In turbulent flow at  large Reynolds numbers, the Taylor microscale A is  
very small compared to the integral scale Y, and some investigators find it 
convenient to approximate the autocorrelation coefficient by p ( 7 )  = 
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exp(-lTI/fl. What is the shape of the spectrum corresponding to this approx- 
imation? Also, is  the spectrum of the derivative well behaved? Compare your 
results with the spectra given in Chapter 8. 

6.5 Estimate the form of the spectrum of ocean waves in the range of 
frequencies where the Fourier coefficients of the wave amplitudes are deter- 
mined by the frequency and the acceleration of gravity only. 

6.6 Consider a sum of two statistically independent Gaussian variables, one 
of much lower frequency content than the other, both having zero mean. 
What do the autocorrelation and the spectrum look like? Suppose there is a 
gap between the spectra of the two, and the averaging time is long enough to 
average the fast one but not the slow; what do the correlation and spectrum 
look like in this case? What is the integral scale? 

6.7 Consider one Gaussian variable modulated by another. The variables are 
statistically independent of each other; the second has a lower frequency 
content than the first. Both variables have zero mean. The product of the two 
variables appears to be "intermittent," that is, the low-frequency modulation 
appears to turn the high-frequency signal on and off. What i s  the kurtosis? 
What is the spectrum? Also consider a product of three independent variables, 
or of four. What i s  the kurtosis? If there are gaps between the spectra of the 
individual spectra, how does the measured kurtosis depend on the averaging 
time? Try to construct a continuous model, in which the logarithm of the 
signal is represented as the integral of a stationary process. Use the central 
limit theorem. 
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