
WALL-BOUNDED SHEAR FLOWS 

Boundary-layer flows are more complicated than flows in free shear layers 
because the presence of a solid wall imposes constraints that are absent in 
wakes and jets. The most obvious constraint is that the viscosity of the fluid, 
no matter how small it is, enforces the no-slip condition: the velocity of the 
fluid a t  a solid surface must be equal to the velocity of the surface. This 
viscous constraint gives rise to a viscosity-dominated characteristic length, 
which is of order v/w if w is characteristic of the level of turbulent velocity 
fluctuations. A t  large Reynolds numbers, the boundary-layer thickness 6 is 
much larger than v/w, so that we have to deal with two different length scales 
simultaneously. This problem will be thoroughly discussed for turbulent flow 
in channels and pipes. After the consequences of the presence of more than 
one length scale are fully understood, turbulent boundary layers in the atmos- 
phere and turbulent boundary layers in pressure gradients will be studied. 

5.1 
The problem of multiple scales 
It is instructive to take a preliminary look a t  the problem of multiple scales. 
We do so in a qualitative way, leaving the analytical details for Section 5.2. 
The solid wall may be smooth or rough, so that we have a small viscous length 
v/w or a characteristic height k of the roughness elements in addition to the 
boundary-layer thickness 6 .  Because 6 i s  generally much larger than v/w 
and/or k, we expect that the latter do not influence the entire flow. Instead, 
we expect that these small length scales control the dynamics of the flow 
only in some narrow region in the immediate vicinity of the surface. This 
region, called the wall layer or surface layer, has an asymptotic behavior in 
the limit as 6w/v += or 6/k + 00, which is quite distinct from the overall 
development of the boundary layer. Therefore, we must treat boundary 
layers in a piecemeal fashion by first dealing with the surface layer and the 
rest of the flow (which i s  called the outer layer) separately and then reconcil- 
ing these partial descriptions with appropriate asymptotic methods. 

As in boundary-free shear flows, a comprehensive analysis of boundary- 
layer flows can be performed only if the downstream evolution is slow. If L is 
a streamwise length scale, we need to require that  6/L << 1 in order to make 
sure that only the local scales 6, v/w, and w are relevant in the dimensional 
analysis. 
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Inertial sublayer There exists a close analogy between the spatial structure 
of turbulent boundary layers and the spectral structure of turbulence. At 
sufficiently large Reynolds numbers, the overall dynamics of turbulent boun- 
dary layers is independent of viscosity, just as the large-scale spectral dy- 
namics of turbulence is. In the wall layer of a turbulent boundary layer, 
viscosity generates a "sink" for momentum, much like the dissipative sink for 
kinetic energy a t  the small-scale end of the turbulence spectrum. In partic- 
ular, the asymptotic rules governing the link between the large-scale descrip- 
tion and the small-scale description lead to the closely related concepts of an 
inertial subrange in the turbulence energy spectrum (see Chapter 8 )  and an 
inertial sublayer in wall-bounded shear flows. In the literature, the inertial 
sublayer is called the logarithmic region because i ts  mean-velocity profile is 
logarithmic, as we shall see later. 

A preview of the concept of an inertial sublayer is in order. I f  the length- 
scale ratio 6w/v is  large enough, it should be possible to find a range of 
distances y from the surface such that yw/v >> 1 and y/s << 1 simultane- 
ously. In this region, the length scale v/w is presumably too small to control 
the dynamics of the flow, and the length scale 6 is presumably too large to be 
effective. If this occurs, the distance y itself i s  the only relevant length. 

A graphical representation of the situation i s  given in Figure 5.1. If w is 
representative of the turbulence intensity and if no other characteristic veloc- 
ities occur in the problem, the mean-velocity gradient aUAy can depend on 
wand y only in the following way: 

away = CWIY. (5.1.1) 

This integrates to 

U/w = c In y + d. (5.1.2) 

Under the assumptions already stated, (5.1.1) is a dimensional necessity, so 
that we may expect to find a logarithmic velocity profile wherever yw/v >> 1 
and y/s << 1 (see also Section 2.5). 

In most boundary-layer flows, the velocity scale w is not known a priori. It 
turns out that (5.1.2) is a crucial link in the determination of the dependence 
of w on the independent variables of the problem. 

Velocitydefect law As in wake flow, the scaling length for most of the 
boundary layer (with exclusion of the surface layer) is the thickness 6. This is 
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Figure 5.1. An inertial sublayer can exist only if the Reynolds number is large enough. 
For illustrative purposes, yw/v >> 1 and y/S << 1 have been interpreted as yw/v > 100, 
y/s < 0.01. For many practical applications, the limits do not need to  be as strict as this. 

the appropriate length because the large eddies in the flow have sizes compar- 
able to 6. If the turbulence in a boundary layer is driven by Reynolds stresses, 
the mean-velocity gradient aU/ay, which is the reciprocal of a ''transverse'' 
time scale for the mean flow, has to be of order w h  if w is the scaling 
velocity for the Reynolds stress. This argument does not apply to the flow 
near the surface, because the length scale is different there. The differential 
similarity law 

thus has to be integrated from outside the boundary layer toward the wall in 
order to obtain a similarity law for U. The result is 

(5.1.4) 

where UO is the velocity outside the boundary layer. We find later in this 
chapter that self-presetvation can be obtained only if w/Uo << 1. However, a 
velocity defect (Uo - U )  of order w can never meet the no-slip condition 
Uo - U = Uo a t  the surface if w/Uo << 1. This indicates that a dynamically 
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distinct surface layer with very steep velocity gradients must exist in order to 
satisfy the boundary condition. If the velocity and length scales in the surface 
layer are w and v/w, respectively, the velocity gradients must be of order 
w2/v; hence, they are very large compared to the velocity gradients in the 
outer layer (which are of order w/6) i f  w6/v i s  large enough. 

5.2 
Turbulent flows in pipes and channels 
The equations of motion for turbulent flows in pipes and in channels with 
parallel walls are relatively simple, because the geometry prohibits the con- 
tinuing growth of their thickness. If the pipe or channel is long enough, the 
velocity profile has to become independent of the downstream distance x. As 
a result, the nonlinear inertia terms UiaUilaxi are suppressed. This simplifies 
the theoretical analysis considerably and separates the surface layer-outer 
layer problem from the problems associated with the downstream develop- 
ment in other wall-bounded shear flows. 

Channel flow We consider turbulent flow of an incompressible fluid between 
two parallel plates separated a t  a distance 2h. The plates are assumed infin- 
itely long and wide; they are at rest with respect to the coordinate system 
used. A definition sketch is given in Figure 5.2. The mean flow is assumed to 
be in the x,y plane and steady, and all derivatives of mean quantities normal 
to that plane are assumed to be zero. All derivatives with respect t o x  are also 
assumed to be zero, except for the pressure gradient dP/dx, which drives the 

Figure 5.2. Definition sketch for flow between plane parallel walls. 
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flow against the shear stresses at the two walls. The continuity equation 
requires that the y component of the mean velocity is zero everywhere if it is 
zero a t  both walls. 

The relevant equations of motion for the mean flow are 

Integration of (5.2.2) yields 

PIP + P =  PoIp, 

(5.2.1) 

(5.2.2) 

(5.2.3) 
- 

where Po is a function of x only. Because v2 is  independent of x (by assump- 
tion), aPhx is equal to dPo/dx. Both of these gradients should be indepen- 
dent of x to avoid streamwise acceleration of the flow. Therefore, (5.2.1) can 
be integrated from y = 0 upward, to yield 

(5.2.4) 

As in Section 2.5, the stress at the surface has been defined as pu;; the 
velocity u, is called the friction velocity. The turbulent velocity fluctuations 
have to satisfy the no-slip condition, so that the Reynolds stress is zero a t  the 
surface. The surface stress is thus purely viscous stress. 

A t  the center of the channel (y  = h ) ,  the shear stress ( - p z + ~ . ( d U / d y )  
must be zero for reasons of symmetry. Hence, if y = h, (5.2.4) reads 

(5.2.5) 

In this problem the shear stress at the wall is determined by the pressure 
gradient and the width of the channel only, which i s  one reason why this flow 
is less complicated than others. 

If we use (5.2.5) to substitute for dPo/dx in (5.2.41, we obtain 

(5.2.6) 

Contemplating possible nondimensional forms of (5.2.61, we conclude that 
u: is the proper scaling factor for -E because we expect the viscous stress 
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to be small a t  large Reynolds numbers. Also, the experience gained in the 
study of wakes suggests that aU/ay should be scaled with uJh, because the 
turbulent scales of velocity and length presumably are u, and h. Thus, we 
should write 

(5.2.7) 

If the Reynolds number R ,  = ufi/v is  large, this particular nondimensional 
form suppresses the viscous stress. Because the stress at  the surface is purely 
viscous, (5.2.7) cannot be valid near the wall in the limit as R ,  +-. In the 
immediate vicinity of the wall, therefore, another nondimensional form of 
(5.2.6) must be found; it should be selected in such a way that the viscous 
term does not become small a t  large Reynolds numbers. From (5.2.7) we 
conclude that this can be done by absorbing R ,  in the scale for y. The 
resulting equation is 

(5.2.8) 

It is clear that this nondimensionalization tends to suppress the change of 
stress in the y direction if R ,  = u,h/v --f -. 

For convenience, l e t  us define 

y+ -= yu,/v, q -= Y h .  (5.2.9) 

Equations (5.2.7) and (5.2.8) then can be written as 

- 
- -+R; '  uv - ( - ) = I  d U  -71, 
4 dV u* 

(5.2.1 0) 

(5.2.1 1 )  

We are looking for asymptotic solutions of these equations in the limit as 
R ,  +=. From (5.2.10, 5.2.1 1) it i s  evident that these solutions depend on 
our point of view: for all but very small values of q we expect the viscous 
stress to be negligibly small, and at finite values of y +  (which correspond to 
very small values of q) we expect that viscous stresses are important and that  
the total stress is approximately constant. The region of viscous effects must 
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be confined to the immediate vicinity of the wall, since only there can we 
expect the local Reynolds numbers Uy/v and y+ to be so small that turbu- 
lence cannot sustain itself. 

In the limit as R, +m, but with 7) remaining of order one, (5.2.10) re- 
duces to 

-Z /u ’ ,=  1-7). (5.2.12) 

This equation cannot represent conditions as q + 0, which corresponds to 
finite values of y+.  We call the part of the flow governed by (5.2.12) thecore 
region (the name ”outer layer” is not appropriate in channel flow). 

In the limit as R,  +m, but with y +  remaining of order one, (5.2.1 1) 
becomes 

(5.2.13) 

This equation cannot represent reality if y+ --fa, which corresponds to finite 
values of q. The part of the flow governed by (5.2.13) i s  called the surface 
layer. 

The surface layer on a smooth wall We now restrict ourselves momentarily 
to flow over smooth surfaces, so that the roughness height k does not occur 
as an additional parameter. The flow in the surface layer is governed by 
(5.2.131, which is free of explicit dependence on parameters. I f  the surface is 
smooth, no additional parameters occur in the boundary conditions on 
(5.2.13), so that we may expect the solution of (5.2.13) to be 

u/u* = f(Y+), (5.2.14) 

-G/uu”, = g(y+).  (5.2.15) 

These relations are called the law o f  the wall. The only boundary conditions 
that the system (5.2.13, 5.2.14, 5.2.15) needs to satisfy at this point are 
f ( 0 )  = O,g(O) = 0. The similarity expressions (5.2.14,5.2.15) may not be valid 
if y +  +w, unless that limit i s  approached rather carefully. The shapes of fand 
g have been determined experimentally, but we prefer not to discuss the 
experimental evidence before we have taken a look a t  the other side of the 
coin. 
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The core region In the core region, al l  we have is a statement, (5.2.121, on 
the Reynolds stress. The momentum equation thus gives no explicit informa- 
tion on U itself. Let us look a t  an equation in which Udoes occur explicitly. 
Such an equation is the turbulent energy budget, which in this channel-flow 
geometry is 

(5.2.1 6) 

In (5.2.16), E stands for the viscous - dissipation of the turbulent kinetic 
energy i q 2 ;  viscous transport of i q 2  has been neglected (see Chapter 3). 
Referring back to (5.2.121, we see that the Reynolds stress -E is  of order 
u: for all finite values of q. Since the turbulent energy is generated by this 
stress, we expect qz and p/p to be of order u?, too. We have seen before 
that the large eddies in turbulent flows scale with the cross-stream dimensions 
for the flow. Hence, the terms on the right-hand side of (5.2.16) must be of 
order u:/h. Since the Reynolds stress is of order uz, we conclude that 
dU/dy is  of order u,h. I f  we stay well above the surface layer, so that no 
other characteristic lengths can complicate the picture, we can state without 
any loss of generality that 

- 

(5.2.17) 

with the understanding that dF/dq, which is the derivative of some unknown 
function F, is  of order one. Because h is not an appropriate length scale near 
the surface, (5.2.17) has to be integrated from the center of the channel 
(q = 1) toward the wall. This results in 

(U - uo )/u* = F(q) ,  (5.2.1 8) 

where Uo is the mean velocity a t  the center of the channel. We see that the 
appropriate similarity law for the core region is a velocity-defect law. Of 
course, (5.2.18) is not applicable as q += 0. 

Inertial sublayer A two-layer description as developed here requires special 
attention in the region where the two descriptions merge into each other. The 
existence of a region of overlap or matched layer i s  possible only if the limits 
y +  +. 00 and q + 0 can be taken simultaneously. In Section 5.1 it was demon- 
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strated that this is possible if the Reynolds number is  large enough (see Figure 
5.1). More specifically, if y+ =cR:, then 9 = c R t - ’ ,  so that y+  +a and 
7) + 0 simultaneously if 0 < a < 1. This is called an intermediate limit pro- 
cess; it corresponds to travel toward the right on a straight line with slope 
a - 1 in the plot given in Figure 5.3. 

The process of obtaining the proper limiting behavior of the law of the 
wall and the velocity-defect law is called asymptotic matching. Formally, 
matching requires that the intermediate limits of the functions involved be 
equal for any a in the interval 0 < a  < 1. However, in this particular case no 
such elegance is  needed. Since we have demonstrated that an intermediate 
limit process is  possible, we can now assume that the surface layer and the 
wall layer can be matched. It is most convenient to match the velocity 
gradients of the wall layer and the core region. According to (5.2.141, the 
velocity gradient in the surface layer is given by 

dU u’, df _ -  _ -  -. 
dy v dy+ 

(5.2.19) 

In the core region, (5.2.17) must be valid. Equating (5.2.17) and (5.2.19) and 

Figure 5.3. An intermediate limit process in which y +  + and r) + 0 simultaneously. 
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keeping in mind that we are considering some limit process in which y + + m  
and q + 0 simultaneously, we obtain 

On multiplication by yh,,  this becomes 

dF df 1 

dq 
77 -= Y + Z  =;a 

(5.2.20) 

(5.2.2 1) 

The left-hand side of (5.2.21) can be a function only of 17 and the right-hand 
side can be a function only of y+,  because neither F nor f depends on any 
parameters. Thus, in the inertial sublayer both sides of (5.2.21) must be equal 
to the same universal constant. If the constant is denoted by 1 / ~ ,  (5.2.21) can 
be integrated to yield 

1 
F ( q )  = - In q + const, 

K 
(5.2.22) 

1 
f (y+ )  = - In y+ + const. (5.2.23) 

K 

Both of these are valid only if q << 1 and y +  >> 1. 
The chain of arguments leading to (5.2.22,5.2.23) was developed by Clark 

B. Millikan, who presented it a t  the Fifth International Congress of Applied 
Mechanics (Millikan, 1939). At  that time, the formal theory of singular- 
perturbation problems was unknown; not until the decade 1950-1960 was a 
rational theory of multiple lengthscale problems developed by Kaplun, 
Lagerstrom, Cole, and others (see Cole, 1968). The constant K in (5.2.22, 
5.2.23) is  called von KBrmhn's constant, because Th. von KBrmBn was one of 
the first to derive the logarithmic velocity profile from similarity arguments 
(von KBrmBn, 1930). 

The logarithmic velocity profile in the inertial sublayer is one of the major 
landmarks in turbulence theory. With analytical tools of a rather general 
nature a very specific result has been obtained, even though the equations of 
motion cannot be solved in general. 

In this flow, matching of the Reynolds stress is straightforward. According 
to (5.2.12), =,u: + 1 if q + O .  According to (5.2.13) and (5.2.211, for 
Y + + * #  
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so that 

-uT/u’, + I if y++ *. (5.2.25) 

The inertial sublayer thus is a region of approximately constant Reynolds 
stress. From (5.2.24) it is also clear that the viscous stress (which is propor- 
tional to the second term in (5.2.24)) i s  very small compared to the Reynolds 
stress if y+ >> 1. The matched layer is called inertialsublayer because of thi: 
absence of local viscous effects. 

Logarithmic friction law 
and (5.2.231, respectively, there results 

I f  (5.2.18) and (5.2.14) are substituted into (5.2.22) 

u-uo 1 
u, K 

=- In g + b, (5.2.26) 

u 1  
u* K 

In y+ +a. (5.2.27) 

These expressions are valid only in the inertial sublayer. The constants a and 
b must be finite; they cannot depend on the Reynolds number R, =u,h/v 
because f and F are independent of R,. It follows from (5.2.26) and (5.2.27) 
that 

-= -  

(5.2.28) uo 1 - = - l n R , + a - b ,  

because (5.2.26) and (5.2.27) must be valid simultaneously in the inertial 
sublayer. This relation is called the logarithmic friction law; it determines Uo 
if the pressure gradient and the channel width are known. 

UI K 

Turbulent pipe flow Axisymmetric parallel flow in a circular pipe of con- 
stant diameter i s  of greater practical importance than plane channel flow. The 
geometry of pipe flow is sketched in Figure 5.4. We assume that the flow is 
fully developed, that is, independent of x. The origin of the y coordinate is 
put a t  the inner surface. This would be very inconvenient for most purposes, 
but it i s  convenient here, because we only need the mean-flow equation, 
which in these coordinates becomes 
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Figure 5.4. Definition sketch for pipe flow. 

- dU 1 dP0 

dY PdX 
- u v + v - = 2  ( y - r )  -. (5.2.29) 

The derivation of (5.2.29) is left as an exercise for the reader. The momen- 
tum integral in fully developed pipe flow is, if the wall stress is again denoted 
by PU;,  

The momentum equation thus becomes 

- dU 

dY 
-uv + Y - = u’, (1 - :) , 

(5.2.30) 

(5.2.31) 

which is identical to (5.2.6) if r is replaced by h. All of the conclusions 
obtained for channel flow thus apply equally to pipe flow. The shape of F(q), 
where q now is defined as y/r, may be different from the shape of F in plane 
channel flow because of different geometrical constraints. However, the shape 
of f(y+) should be identical to that in plane channel flow, because the curv- 
ature of the wall is nearly zero if seen from points close enough to the surface 
to make y +  finite. 

Experimental data on pipe flow For turbulent flows in pipes with smooth 
walls, the logarithmic velocity profile and the logarithmic friction law are well 
represented by 

UJu, = 2.5 In y+  t 5, 

(U - U,)/u, = 2.5 In q - 1, 

(5.2.32) 

(5.2.33) 

(5.2.34) U o h ,  = 2.5 In R ,  t 6. 
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There i s  considerable scatter in the numerical constants; the values given 
represent averages over many experiments. In  Section 5.4, we find that some 
of the "scatter" arises because no experiments have been performed at large 
enough Reynolds numbers. In particular, the logarithmic slope is probably 
very nearly 3 (instead of 2.5, which corresponds to the often-quoted K = 0.4) 
if the Reynolds number R, = ru,/v i s  large enough. 

nr2 ub = jOr 2n(r - y ) U  dy. I (5.2.35) 

A fairly crude, but frequently used, approximation to the relation between 
ub/u* and R, is 

ub/u* = 2.5 In R,  t 1.5. (5.2.36) 

This relation has an interesting application. The local velocity U ( y )  is  equal to 
u b  at  some point in the flow. If (5.2.32) and (5.2.36) are valid a t  that point, 
this occurs when 

2.5 In r/y = 3.5, (5.2.37) 

which yields y/r = :. It so happens that in pipe flow the velocity profile 
follows (5.2.32) closely up to and somewhat beyond q = :, even though this 
is well outside the reach of the inertial sublayer. Thus, the volume flow 
through a smooth pipe can be determined simply by putting a small total- 
head probe a t  q =: and drilling a static-pressure tap in the wall a t  the same 
value of x as that of the tip of the total-head tube. This is called a quarter- 
radius probe. 

A volume-flow velocity u b  ("bulk" velocity) can be defined by 

The viscous sublayer We now want to consider the law of the wall, (5.2.14, 
5.2.151, in more detail. The first issue to be considered i s  whether or not the 
Reynolds stress can contribute to the stress a t  small values of y+.  At  the 
surface itself, al l  of the stress i s  viscous stress. However, if the surface i s  rough 
and if y = 0 is taken at  the mean height of the roughness elements, the shear 
stress a t  y = 0, as distinct from the shear stress a t  the surface, can be borne 
partly by the Reynolds stress if the roughness elements are large enough. We 
return to this issue later; for the moment, we restrict the discussion to flow 
over smooth surfaces. 

It is useful to look a t  the problem from the point of view of the turbu- 
lence, rather than the mean flow, and to look from the inertial sublayer 
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downward toward the wall. In the inertial sublayer, the Reynolds stress is 
approximately equal to pu', and the mean-velocity gradient is given by 
O*/KY.  Hence, the turbulence production rate -E dU/dy i s  equal to U:/KY.  

If turbulence production i s  mainly balanced by the viscous dissipation E 

(experiments have shown that this is a fairly accurate statement in the inertial 
sublayer), we have 

E ?I UZ/KY. (5.2.38) 

The Kolmogorov microscale 9 (not easily confused with 77 = y/r in this con- 
text) thus varies with y according to 

(5.2.39) 

The integral scale 0 of the turbulence, on the other hand, must be of order y 
because the largest eddies should scale with the distance from the wall. In the 
inertial sublayer, aUhy = U,/KY, so that d'S KY is  a suitable estimate. Non- 
dimensionally, we obtain 

1 o3 

1 o2 

CilO 
1 

lo-' 

viscous 
sublayer - 

(5.2.40) 

(5.2.41) 

------l 

10-1 1 2 5 1 0  1 o2 103  - Y+ 
Figure 5.5. The variation of {and t) near the surface. 
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These relations are plotted in Figure 5.5; they show that the integral scale 
becomes smaller than the Kolmogorov microscale if y +  is small. This is impos- 
sible, so that we must conclude that the turbulence cannot sustain itself and 
cannot generate Reynolds stresses if y +  is small. Experimental evidence has 
shown that the Reynolds stress remains a small fraction of u', up to about 
y +  = 5. This region is called the viscous sublayer. In the viscous sublayer, the 
flow is not steady, but the velocity fluctuations do not contribute much to 
the total stress because of the overwhelming effects of the viscosity. In some 
of the literature, the viscous sublayer is  called the laminar sublayer; this 
name, however, is misleading because it suggests that no velocity fluctuations 
are present. In the viscous sublayer, the velocity profile must be linear 
(Uh, = y + ) ,  as indicated by the solution of (5.2.13) when -E is neglected. 

u/u 

t 

viscous buffer inertial 

I 

1 ' * = Y + l  
I 

I I  

lo-' 1 2 5 10 30 lo2 1 o3 1 oq - y+ 

Figure 5.6. The law of the wall. 
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Experimental data on the law of the wall The velocity profile in the surface 
layer must satisfy f = y+ for small y+ and the logarithmic law (5.2.32) a t  large 
y+. Experimentally obtained velocity profiles have the shape given in Figure 
5.6. Another useful plot is the distribution of stresses. According to (5.2.131, 
the sum of the (nondimensionalized) viscous and Reynolds stresses must be 
equal to one throughout the surface layer. The two curves are sketched in 
Figure 5.7. The region where neither one of the stresses can be neglected is 
sometimes called the buffer layer. In many engineering calculations, the buf- 
fer layer is disposed of by linking the linear velocity profile in the viscous 
sublayer to  the logarithmic velocity profile in the inertial sublayer. This causes 
an abrupt change from purely viscous stress to purely turbulent stress at  
y+= 11 approximately. The buffer layer is the site of vigorous turbulence 
dynamics, because the turbulent energy production rate g df/dy+ reaches a 
maximum of at the value of y+ where the Reynolds stress is equal to the 
viscous stress (g =df/dy+= 5 ) .  This occurs at  y+= 12 approximately, as is 
shown in Figure 5.7. 

A few approximate numbers on the turbulence intensity in the surface 
layer may be useful. If the rms value of a variable is denoted by a prime, the 

0 c 

df - 2.5 ,. 
dY+ Y,' 

0 
0 

/ 
0 5 10 12 20 - y+ 

Figure 5.7. Distribution of Reynolds stressg = -E/u+' and of viscous stress df/dy+ in 
the surface layer (adapted from Hinze, 1959). 
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following relations hold in the inertial sublayer: uf Y 2u,, v' Y O.~U,, 
wf=1.4U*, ;92=3.5u,2, -uv=u2 I Y0.4ufv' .  The u component is largest 
because the turbulence-production mechanism favors it; the distribution of 
energy among the components is performed by nonlinear interaction. 

- 

Experimental data on the velocitydefect law A plot of the velocity-defect 
law is presented in Figure 5.8. In pipe flow, the logarithmic velocity profile 
(5.2.33) happens to represent the actual velocity profile fairly well all 
through the pipe, which is often quite convenient in engineering applications. 
The difference between the actual velocity profile in the core region and the 
logarithmic law, normalized by u r r  is called the wake function W(q):  

W(q) = 1 - 2.5 In r )  + F(q). (5.2.42) 

The wake function happens to be approximately sinusoidal in many wall- 
bounded flows; in this particular case, W(q)  is fairly well represented by 

0 '  

i 
-10 

-20 

-y/r = q 
r5 1 o-4 lo-' lo-' 

I I I 

inner 
I aye r 

//' I inertial 
sublayer ( R ,  = l o 4  w 

1-1 1 

-30 
Figure 5.8. The velocity-defect law in pipe flow. The dashed curve on the left repre- 
sents the actual velocity profile in the wall layer for R, = lo4. The width of the inertial 
sublayer increases with R,. 
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(5.2.43) 

The amplitude of the sine wave is equal to in this case, but in boundary 
layers with opposing pressure gradients W can become quite large. The wake 
function W may be represented by a universal shape function .F multiplied 
by a numerical constant that depends on the conditions of the flow. This 
representation is called the law of  the wake because 9 is similar to the shape 
of the velocity-defect profile in wakes (Coles. 1956). 

The turbulence intensity drops slowly if one goes from the surface toward 
the center. In the core region, a crude approximation to the experimental 
data is u' = v' = w' 1 0 . 8  u,. The fluctuating velocity component v has a 
nearly constant amplitude across the pipe. 

The flow of energy The surface layer i s  a "sink" for momentum, and there- 
fore also for kinetic energy associated with the mean flow. Mean-flow kinetic 
energy transferred into the surface layer by Reynolds stresses is converted 
into turbulent kinetic energy (turbulence production) and into heat (viscous 
dissipation). If we integrate the transport term a(fi U)lay between the sur- 
face and a value of y near the outer edge of the inertial sublayer, we conclude 
that  the total loss of energy in that region is of order pUoui per unit area 
and time, because U is fairly close to Uo at the edge of the inertial sublayer. 
The direct loss to viscous dissipation occurs primarily in the viscous sublayer, 
because aUby has a sharp peak at the surface. This loss is  of order puq: 
p(aU/ay)2 is of order pu% in the viscous sublayer, but this loss is concen- 
trated in a region whose height i s  only of order v/u,. Most of the mean-flow 
kinetic energy transported into the surface layer is thus used for the main- 
tenance of turbulent kinetic energy. 

In the core region, on the other hand, the Reynolds stress is of order pu', 
and dU/dy i s  of order u,/r. Integrating over the entire core region, the turbu- 
lence production per unit area and time in the core region is of order poi. 
We conclude tha t  most of the turbulence production occurs in the surface 
layer. The surface layer is the source of most of the turbulent energy. This 
conclusion must be viewed with caution, though, because the rate of dissipa- 
tion of turbulent energy is also high in the surface layer. 

The main function of the core region is not turbulence production, but 
transport of mean-flow kinetic energy into the surface layer. In the core of 
the pipe, the pressure gradient performs work a t  a rate of roughly puiUo/r 
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per unit volume and time. This energy input is carried off by the Reynolds 
stress to the surface layer, where it is converted into turbulent kinetic energy. 

Flow over rough surfaces If the surface of a pipe or channel is rough, the 
arguments leading to the law of the wall require some modification. If the 
ratio k/r (k is  an rms roughness height, say) is small enough, the roughness 
does not affect the velocity-defect law. 

A definition sketch of flow over a rough surface is given in Figure 5.9. If 
y = 0 a t  the average vertical position a t  the surface, the velocity at y = 0 
cannot be defined for a substantial fraction of the streamwise distance. As 
discussed earlier, the no-slip condition has to be satisfied a t  the surface, but 
the mean velocity obtained by averaging the instantaneous velocity a t  y = 0 
over time and over all intervals Ax where the surface is below y = 0 need not 
be zero. 

The surface layer over a rough wall has two characteristic lengths, k and 
d u x ,  whose ratio is the roughness Reynolds number R, = ku,/v. We thus 
expect a law of the wall which can be written as 

or 

(5.2.44) 

(5.2.45) 

These expressions must be matched with the velocity-defect law. Because the 
tatter is independent of roughness as long as k/r<< 1 and because the 
matching is performed on the velocity derivative, the effects of roughness on 

X 

Figure 5.9. Flow over a rough surface. 
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the logarithmic velocity profile in the inertial sublayer can appear only as an 
additive function of the parameter: 

(5.2.46) 

(5.2.47) 

In the limit as Rk +O,  f 3  has to become equal to 5, as comparison with 
(5.2.32) indicates. It turns out that roughness has no effect on (5.2.46) as 
long as R, < 5, because the roughness elements are then submerged in the 
viscous sublayer in which no Reynolds stresses can be generated, however 
much the flow is disturbed. 

For large values of Rk, a suitable nondimensional form of the equation of 
motion (5.2.31) is 

(5.2.48) 

This shows that the viscous stress is  very small a t  values of y/k of order one if 
Rk +w. It should be noted that k/r must remain small, or else a distinct 
surface layer cannot exist. From (5.2.48) we conclude that f4(Rk) in (5.2.47) 
should be independent of Rk if it is large enough. This indeed occurs in 
practice for values of Rk above 30. The physical concept here is  that rough- 
ness elements with large Rk generate turbulent wakes, which are responsible 
for essentially inviscid drag on the surface. For values of Rk between 5 and 
30, the additive constant in the logarithmic part of the velocity profile 
(5.2.44,5.2.45) depends on Rk. 

(5.2.49) 
U l Y  
u, K k 
Often, the position y = 0 i s  not known accurately enough to  bother with the 
additive constant; instead, it is absorbed in the definition of k .  Also, the 
logarithmic profile is often assumed to be valid all the way down to y/k = 1 
(which makes U = O  a t  y/k = 1 if the additive constant is ignored), even 
though i t s  derivation was based on the limit process y/k + w. The friction law 
corresponding to (5.2.49) is 

The rough-wall velocity profile becomes, in the limit as Rk +w, 

- In-  + const. 

UO 1 r 
- = - In - t const. 
u, K k 

(5.2.50) 
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5.3 
Planetary boundary layers 

The geostrophic wind The flow of air over the surface of the earth is 
affected by the Coriolis force that arises in any coordinate system that is 
rotating with respect to an inertial frame of reference. Under favorable condi- 
tions, the flow outside the boundary layer a t  the earth's surface is approx- 
imately steady, horizontal, and homogeneous in horizontal planes. In that 
case, the equations of motion reduce to a simple balance between pressure 
gradient and Coriolis forces. In the coordinate system of Figure 5.10, which is 
a Cartesian frame whose x, y plane is normal to the local vertical a t  latitude $, 
this geostrophic balance i s  

1 ap 
fu, = - - - P a Y '  

(5.3.1) 

(5.3.2) 

In these expressions U, and Vs are the x and y components of the geo- 
strophic wind, whose modulus is G = (Ui + V i ) " .  The parameter f ,  which 
may be taken to be constant if the flow covers only a small range of latirudes 

n 

Figure 5.10. Coordinate system for planetary boundary layers. 
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9, i s  equal to twice the z component of the angular velocity 52 a t  latitude $: 

(5.3.3) 

at 

f = 2 52 sin 9. 

This is  called the Coriolis parameter. I t s  value is  approximately 
9 = 40°. 

The Ekman layer The geostrophic wind does not meet the no-slip condition 
at  the surface, so that a boundary layer must exist. I f  the flow in the boun- 
dary layer is steady and homogeneous in horizontal planes, the equations of 
motion for this planetary boundary layer, or Ekman layer, become 

d -  
dz 

- f ( V -  Vg’ = - (-uw), 

d -  
dz 

f (U - u ) = - (-vw). 

(5.3.4) 

(5.3.5) 

Here, (5.3.1, 5.3.2) have been used to substitute for the pressure gradient. 
Also, it has been assumed that the roughness Reynolds number is so large that 
viscous stresses can be neglected. It is convenient to assume that the stress a t  
the surface (put, by definition) has no y component, so that, forz --f 0, 

(5.3.6) 

The velocitydefect law The equations of motion show quite clearly that a 
velocity-defect law is called for. We assume that u* is the only characteristic 
velocity; th is  restricts us to flows in which no appreciable heat transfer 
occurs, because heat flux in a flow exposed to gravity may cause additional 
turbulence or may suppress turbulence, depending on its direction (see 
Chapter 3). The Reynolds stresses are presumably of order ui, but the 
height h of the Ekman layer is unknown. A tentative nondimensional form of 
(5.3.4,5.3.5) is thus 

(5.3.7) 

(5.3.8) 
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Figure 5.1 1. The Ekman velocitydefect spiral. The nondimensional height zf/u* 
increases toward the right on the curve. 

We are a t  liberty to select h for maximum convenience. If we choose 

h = cu,/f, (5.3.9) 

where c is some constant of order unity, the equations of motion become 
independent of any parameters, because al l  possible dependence has been 
absorbed by careful scaling. Thus, we expect that the velocity-defect law for 
Ekman layers should be (Blackadar and Tennekes, 1968) 

(U - Ug)/u*  = Fu(zf/u*), (5.3.10) 

( V -  v*,/u* = F,(zf/u*). (5.3.1 1) 

Figure 5.1 1 shows a polar velocity plot of the experimentally observed defect 
law (5.3.10, 5.3.1 1) for the velocity vector in the Northern Hemisphere. The 
pressure-gradient vector is normal to the geostrophic wind, as (5.3.1) and 
(5.3.2) show. The Ekman spiral is located to the le f t  of the geostrophic wind 
vector, because the Coriolis force in the boundary layer, where velocities are 
generally smaller than G, i s  insufficient to balance the pressure gradient. The 
angle between the surface wind (which is, as we shall see, parallel to the 
surface stress, that is, in the positive x direction) and the pressure gradient is 
thus less than go", so that the Ekman spiral rotatesclockwise with increasingz. 

The surface layer The Ekman spiral equations (5.3.10, 5.3.11) are not valid 
near the surface, because h is not the relevant length scale there. I f  the surface 
is rough, with a roughness height zo such that zou./v>> 1, the relevant 
nondimensional form of (5.3.4, 5.3.5) is 
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(5.3.12) 

(5.3.13) 

The left-hand sides of (5.3.12, 5.3.13) can be a t  most of order fzoG/ut. If 
we use (5.3.9), this can be written as zoG/hu,. For typical conditions in the 

atmosphere, G/u, 30, h 1,000 m, zo 0.01 m, so that zoG/hu,, 
3 x This is very small indeed. We shall neglect the left-hand sides of 
(5.3.12, 5.3.13); we shall shortly see that this is justified under the limit 
process which is involved. The surface layer, to first approximation, is thus a 
constant-stress layer which does not feel the turning effects of the Coriolis 
force. Because the stress a t  the surface has been assumed to have no y 
component, the wind in the surface also has no y component. The law of the 
wall must read 

v/u* = 0, (5.3.14) 

u/u * = fu (z/zo 1. (5.3.15) 

These relations show that near the surface the wind is in the positive x 
direction, so that the Ekman spiral in Figure 5.11 must depart to the right 
horizontally from U = 0, V = 0. Also, because the spiral rotates clockwise, 
vg <o. 

The logarithmic wind profile The law of the wall (5.3.14, 5.3.15) must be 
matched to the velocity-defect law (5.3.10, 5.3.1 1). This yields, where the 
usual procedures have been followed (Blackadar and Tennekes, 19681, 

(5.3.16) v9 - = -F,(O) = -A, 
u* 

In (3 +c, u-ug- 1 

u* K 

(5.3.17) 

(5.3.1 8) 

(5.3.19) 
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Here, (5.3.17) and (5.3.18) are valid only in the region wherez/zo >> 1 and 
zf/u, << 1 simultaneously. The parameter u,/fzo functions like a Reynolds 
number for the turbulent flow over smooth surfaces; it is called the friction 
Rossby number. The relations given above are asymptotic approximations, 
valid only for large enough friction Rossby numbers. From (5.3.16) and 
(5.3.19) we conclude that fzoG/u: 2 fzoU,/u? 2 (fzo/u,) In(u,/fzo), so that 
fz0Gh.Z + O  as u,/fzo +m. The approximation involved in obtaining the law 
of the wall is  indeed valid asymptotically. 

The angle a between the wind in the surface layer and the geostrophic 
wind is given by (see Figure 5.1 1) 

tan&=-V g 9  lU =Au,IUg=A/[(l/K) In (u,/fzo) t B - C l .  (5.3.20) 

12, C 4. The value of B is often set at 
zero, with a consequent minor change in ZO. If B = O  and if zo and 1 / ~  are 
known, (5.3.17) can be used to determine the friction velocity u, from a 
wind profile near the surface. This is a common practice because direct meas- 
urements of stress are quite difficult. 

Measurements suggest that A 

Ekrnan layers in the ocean The turbulent boundary layer near the surface of 
a body of water exposed to wind stresses is similar to the Ekman layer in the 
atmosphere, except for the boundary conditions. If there is no current at 
great depth and if pressure gradients may be neglected, the water current a t  
the surface makes an angle a, given by the equivalent of (5.3.201, with respect 
to the stress a t  the surface. The polar plot of water currents in the Northern 
Hemisphere is given in Figure 5.12. The formal analysis of the problem is l e f t  
to the reader. 

1 
-V 

Figure 5.12. Ekrnan layer near the surface of the ocean (Northern Hemisphere). 
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5.4 
The effects of a pressure gradient on the flow in surface layers 
So far, we have encountered only surface layers in which the characteristic 
velocity is the friction velocity u,. However, there exist conditions under 
which u, is not appropriate. An interesting case is the surface layer of a 
boundary layer in which the stress a t  the wall is kept equal to zero for a 
considerable downstream distance by a carefully chosen distribution of an 
opposing pressure gradient. In engineering terms, such a boundary layer is on 
the verge of separation. Normally, this requires a rather large opposing pres- 
sure gradient, because Reynolds stresses can transfer momentum rapidly 
enough to prevent excessive deceleration in moderate pressure gradients. 

The equations of motion, for steady two-dimensional flow, read 

au av 
ax aY 
- +-=o, (5.4.1) 

(5.4.2) 
au au l a p  a -  a -  a2u a2u 

U - t v - = - - - - - ( u v ) - - ( u ? ) + v ~  + v 2 ,  
ax ay p ax aY ax ay ax 

We use a coordinate system with a solid wall a t  y = 0. The mean flow in the 
half-plane y 2 0 i s  in the positive x direction; the pressure gradient a P h  is 
positive. I f  the characteristic velocity in the surface layer is w, the length scale 
must be v/w in order to preserve the viscous-shear stress in (5.4.2). We assume 
that U, u, and v scale with w, because no self-preservation can exist if the 
mean flow and the turbulence scale in different ways. The downstream length 
scale is L; we assume that Lw/v >> 1. 

With aUAx - w/L and a V A y  - Vw/v, the continuity equation (5.4.1) 
gives V - v/L. The left-hand side of the y-momentum equation (5.4.3) is  then 
of order vw/L2. The orders of magnitude of the turbulence terms in (5.4.3) 
are 

aP)iay = o (w3/v) ,  acGvax = o ( w ~ / L ) ;  (5.4.4) 

Y a2v/ay2 = o ( w ~ / L ) ,  v a2 wax2 = o ( v ~ / L ~ ) .  (5.4.5) 

the viscous terms in (5.4.3) are of order 

Because Lw/v>> 1, the major turbulence term, a(p)/ay, must be balanced 
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by aP/pay to first order. Integration of this simplified equation with respect 
toy  and differentiation with respect to x yields the familiar equation 

- 
1 aP av' 1 dP 

p a x  aX p d x  
(5.4.6) 

Here, Po is the pressure a t  the surface (y = 01, which, of course, is not a 
function of y. 

The various terms of (5.4.2) now may be estimated as follows: 

(u auiax + v auiay)  = ~ ( W ~ I L ) ,  

If wL/v>> 1, only the shear-stress terms survive, while aP/dx may be 
approximated by dPo/dx. The approximate equation of motion is thus 

1 dP0 

Because Po i s  independent of y ,  this integrates to 

- aU y dPo 
-uv -4. v - = - -. 

aY P dx 

(5.4.8) 

(5.4.9) 

Here, we have put the stress at  the wall equal to zero, because that is the 
special case we want to consider. The pressure gradient now plays the role of 
an independent parameter, much like pu2 is treated as an independent para- 
meter in other surface layers. Because we are considering a surface layer, the 
boundary-layer thickness 6 and the downstream scale L are not relevant, so . 

that a characteristic velocity has to be constructed with dPo/dx and v (the- 
surface is smooth). The only possible choice is 

v dPo u3 = - - 
p d x '  

The only parameter-free nondimensional form of (5.4.9) is 

(5.4.1 0) 

(5.4.1 1 ) 

This equation has only one characteristic velocity (up) and one characteristic 
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length, and its boundary conditions are homogeneous (both U and the stress 
are zero a t  y = 0). I t s  solution must be a law of the wall of the form 

u/up = f(YU,/V), (5.4.12) 

--ii-iYu; = g(yup/v). (5.4.13) 

The derivation of the corresponding velocity-defect law wou Id carry us too 
far from the problem at  hand. In first approximation, the flow in the outer 
part of these boundary layers is probably a pure ”wake flow” in the sense 
that  a wake function W ( y / s )  like the one defined in (5.2.431, but with a 
peak-to-peak amplitude Uo, gives a good description of the first-order flow. 
At finite Reynolds numbers this wake flow is modified by a velocity-defect 
law that matches the law of the wall (5.4.1 2). 

The mere existence of a velocity-defect law is  all that needs to be assumed 
to predict that, a t  large yu,,/v, 

U/up = (11 In yupIv + P. (5.4.14) 

This statement is supported by the observation that aUAy must be of order 
up& if up i s  the only velocity scale in the problem and if y >> v/up. Experi- 
ments with a flow with zero wall stress were performed by Stratford (1959); 
his results suggest that a 5, 0 S 8. A sketch of the velocity profile is given 
in Figure 5.13. 

1 2  5 1 0  lo2 l o 3  - YUpIV 

Figure 5.13. The surface layer in a flow with zero wall stress. The dashed curve a t  the 
right gives the velocity profile in the outer layer as i t  begins to deviate from the logarithm 
(based on data by Stratford, 1959). 
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A secondorder correction to pipe flow The results obtained above suggest 
that it should be possible to estimate the effect of the pressure gradient on 
flows in other surface layers. Generally, pressure gradients are associated with 
acceleration or deceleration of the mean flow, so that their effects may be 
inseparable from nonlinear inertia effects. However, in pipe flows the inertia 
terms in the equation of motion vanish because of downstream homogeneity. 
Let us recall (5.2.29) and (5.2.30): 

dU 1 dP0 *T+Y-- = -  ( y - r )  -, 
dY 2 PdX 

r dPo 

P dx 
-- = - 2 4 .  

(5.4.1 5) 

(5.4.16) 

If we substitute for rdPo/dx with (5.4.161, the equation of motion becomes 

- dU 1 Y dpo 
dY 2 p  dx 

-uv + v -= u’, + -- -. (5.4.1 7) 

The second term on the right-hand side of (5.4.17) is small in the surface 
layer, so that it is commonly neglected (see Section 5.2). In this particular 
case, there is no need to do so if we are willing to exploit the results obtained 
for the surface layer with zero wall stress. 

We will think of the wall-layer flow and stress as consisting of two parts 
which add without interacting with each other. It can be shown that this is a 
valid procedure (Tennekes, 19681, but the formal proof requires multivariate 
asymptotic techniques, which are outside the scope of this book. The first- 
order flow and stress are associated with the constant stress pu2, and the 
second-order flow and stress are related to the small stress correction 
1 ydPo/dx. With these assumptions, we obtain the following system of 
equations : 
2 

(5.4.18) 

(5.4.19) 

(5.4.20) 

dU2 1 Y dPo tv-=-- -. 
dy 2 P dx 

(5.4.21) 
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The solution of (5.4.20) is the familiar law of the wall 

u1 lu, = f (YU*/V),  

which, at large y +  = yu,/v, behaves as 

(5.4.22) 

(5.4.23) 1 
U1 lu, = - In y+ + C. 

K 

The solution of (5.4.21) must be similar to the solution of (5.4.91, that is, it 
must be a law of the wall like (5.4.12). However, in pipe flow the pressure 
gradient is negative, so that U2 i s  presumably also negative. The appropriate 
velocity scale for Uz isup,, which is defined as 

3 -  V dP0 up2 - - - -. 
2p dx 

(5.4.24) 

In this way, up2 > 0. Nondimensionalized with up2 and v, (5.4.21) becomes 

(5.4.25) 

This is identical to (5.4.1 1). except for the sign reversal in the total stress. 
The solution of (5.4.25) is  thus identical to the solution of (5.4.1 11, except 
for a change of sign. This yields the counterpart of (5.4.12): 

u2 lup2 = -f ~YUp21V). 

In particular, for large yup2/v, 

UzIup2 = - OL In (yup21v) - p. 

(5.4.26) 

(5.4.27) 

According to (5.4.16) and (5.4.24). up2 and u, are related to each other by 

Hence, (5.4.27) can be written as 

Uzlu, = -a! R,  

where h(R;’” ) contains al l  additive constants. 

-113 In y+ + h(R;“ j ) ,  

(5.4.28) 

(5.4.29) 

The slope of the logarithmic velocity profile There is too much experimental 
scatter in pipe-flow data to allow for a verification of all aspects of (5.4.29). 



176 Wall-bounded shear flows 

3 ,  I 

t 1 
2 1  I 

1 o2 lo3 1 o4 1 o5 1 O6 
-+R* 

Figure 5.14. The slope of the velocity profile in pipe flow. The experimental scatter is 
indicated by the shaded area (adapted from Tennekes, 1968). 

One major consequence of (5.4.29) is  that the slope of the logarithmic velo- 
city profile, in a region where up2y/v >> 1, u*y/v >> 1, but y/r << 1, is a 
function of the Reynolds number R,: 

(5.4.30) 

The correction term is  appreciable: if R, = 1,000 and a z 5, aR,'/3 z 0.5, 
which is 20% of the value I/K = 2.5 that is most often used. The asymptotic 
value of 1 / ~  must thus be about equal to 3. Experimental data (Figure 5.14) 
show that the trend predicted by (5.4.30) indeed exists. 

The characteristic length for the second-order flow is v/up2,, which is larger 
than v/u, by a factor Therefore, the inertial sublayer of the second- 
order flow begins a t  a value of y much larger than the lower edge of the 
first-order inertial sublayer. It is instructive to look at this problem graph- 
ically. Figure 5.15 shows that the second-order inertial sublayer is substan- 
tially narrower than the first-order one. The limit lines in the figure are more 
or less arbitran/, but Figures 5.6 and 5.13 suggest that the respective flows are 
nearly inviscid for y +  > 30 and yupz lv > 10, respectively. 

If the asymptotic value of 1/u is approximately 3 and if cy z 5, it takes an 
experiment a t  R, z 5 x lo6 (which corresponds to Ubr/v Z 2 x lo8) to 
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10) 104 1 0 5  lo6 107 108 lo9 - R* 
Figure 5.15. First-order and second-order inertial sublayers in pipe flow. Equation 
(5.4.301 should be valid in the crosshatched area. 

determine I/K within 1% error. An experiment set up near a hydraulic power 
plant with a pipe of 4 m radius and water flowing a t  a velocity u b  = 50 m/sec 
would do the job. The pipe would have to be a t  least 1,000 m long in order to 
make sure that downstream homogeneity i s  achieved near the exit. 

5.5 
The downstream development of turbulent boundary layers 
The thickness of boundary layers flowing over solid surfaces generally increases 
in the downstream direction, because the loss of momentum a t  the wall is 
diffused either by viscosity (molecular mixing) or by turbulent mixing. The 
growth of turbulent boundary layers, of course, i s  generally quite rapid 
compared to the growth of laminar boundary layers. 

A general treatment of boundary-layer development under arbitrary boun- 
dary conditions i s  out of the question, because the equations of motion 
cannot be solved in general. Engineers who have to predict the development 
of a turbulent boundary layer on a wing or a ship's hull, say, use semiempir- 
ical techniques, such as described by Schlichting (1960). Here, we concen- 
trate on a family of turbulent boundary layers in steady, plane flow in which 
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X 

Figure 5.16. Definition sketch of plane boundary-layer flow. 

the downstream pressure distribution is adjusted in such a way that their 
velocity profiles, if nondimensionalized with an appropriate velocity-defect 
law, are independent of the Reynolds number and of the downstream dis- 
tance x. Such boundary layers are called equilibrium layers; they are equiv- 
alent to the Falkner-Skan family of laminar boundary layers. 

We consider steady, incompressible, plane flows over a smooth surface 
without heat or mass transfer. A definition sketch is given in Figure 5.1 6; the 
equations of motion are 

( -  3 sax(- 3 au au I ap a 
ax a~ P ax aY 

u -+v -= - - -+ -  -uv+v-  +- 4 + v -  , (5.5.1) 

U - + V - = - - - + -  av av I ap a (-?+ v 5) + f (-z+ v g), (5.5.2) ax aY P aY aY 

au av - 
ax + a V = O -  

The flow outside the boundary layer is assumed to be irrotational: 

auo avo 
ay ax 

0. ---= 

(5.5.3) 

(5.5.4) 

A length scale L,  associated with the rate of change of Uo downstream, is 
defined by 
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1 1 auo _- -- 
L =I uo ax I. (5.5.5) 

If the flow outside the boundary layer is uniform, L 300. In that case, the 
distance x from a suitably defined origin is the appropriate length scale; the 
procedures used to obtain approximate equations of motion in that case are 
identical to those used for turbulent wakes. It turns out tha t  the limit 
L/x +=*does not cause any change or singularity in the first-order equations 
of motion, so that we can conveniently ignore the special case L/x +a in the 
analysis to follow. 

We look for solutions to the equations of motion that satisfy a velocity- 
defect law, 

in such a way that f is independent of the downstream distance x. In other 
words, we are looking for self-preserving flows. Of course, the self-preserving 
solutions should be asymptotically independent of Reynolds number, so that 
they can describe an entire family of flows, in which a suitably nondimen- 
sionalized pressure gradient is  the only parameter. The velocitydefect law 
(5.5.6) i s  not expected to be valid in the surface layer, so that the latter must 
be treated separately. 

From the experience gained with pipe flow we can safely assume that 
u,lUo << 1 if the Reynolds number 6uJv is made sufficiently large. This 
implies that the shear stress a t  the wall, puz, is very small compared to pU& 
We also assume that the boundary layer grows fairly slowly: 6/L << 1 and 
6/x << 1. All of these assumptions will have to be justified a posteriori. 

The potential flow The flow outside the boundary layer is governed by 

together with the appropriate continuity equation and (5.5.4). 
With (5.5.6). the continuity equation (5.5.3) may be written as 

(5.5.7) 

(5.5.8) 

(5.5.9) 



180 Wall-bounded shear flows 

Now, the length scale associated with changes in the potential flow is L, so 
that aU&x i s  essentially constant over a distance 6 if 6/L << 1. Treating 
aUo/ax as a constant, we obtain by integrating (5.5.9) from y = 0 t o y  = 6 :  

(5.5.10) 

Here, V o ( 6 )  is the value of Vo just outside the boundary layer. If the integral 
in (5.5.10) i s  finite and if u, << UO,  (5.5.10) may be approximated by 

auo Vo(6)  = -6 -* 

ax (5.5.1 1) 

This equation is not valid if aUo/ax is very small, as it would be if the 
pressure gradient aPo/ax were small. In that  case, the approximations d e  
veloped for turbulent wakes should be used. 

Differentiating the condition of zero vorticity (5.5.4) with respect to x ,  we 
estimate 

(5.5.12) 

This shows that the relative change of aUo/ax over a distance 6 is of order 
@/LIZ ,  so that aUo/ax can indeed be treated as a constant as far as the 
boundary layer is concerned. 

From (5.5.4) and (5.5.1 1) we find that aUo/3y = aVo/ax = O(6Uo/LZ 1. 
We can now estimate the left-hand side terms of (5.5.7, 5.5.8) just outside 
the boundary layer. The result is 

avo 6u2 uo -= 0 (F), vo-=O(-$), 
ax aY 

(5.5.13) 

(5.5.14) 

If 6 / L  << 1, aPolay << aPolax, because both terms of (5.5.8) are of the 
same order and both are a factor 6 /L  smaller than the dominant term of 
(5.5.7). This implies that the entire equation for Vo is dynamically insignifi- 
cant. The second term on the left-hand side of (5.5.7) is of order 6’/L2 
compared to the first. If 6/L << 1, the equations for the inviscid flow above 
the boundary layer may thus be approximated by the single equation 



181 5.5 The downstream development of turbulent boundary layers 

duo- 1 dP0 uo----- 
dx p dx 

(5.5.1 5) 

No partial derivatives are needed to this approximation, because UO and Po 
are essentially independent of y as far as the boundary layer is concerned. 

The pressure inside the boundary layer We now estimate the order of magni- 
tude of all terms in (5.5.2). If the Reynolds number is large enough, viscous 
stresses are small compared to Reynolds stresses, so that we may write 

(5.5.16) 

Since the velocity defect is small, U is of order Uo. The order of magnitude of 
V is Vo(6) ,  which is equal to 6UolL. Thus, U aVBx =O(6Ui /L2 ) .  The grad- 
ient aVby =0(Vo/6) ,  so that V d V B y  =0(6Ui /Lz) .  The Reynolds stress 
terms are a7 lay  =O(uz/S) and &37Bx = O(u:/L). The last two estimates are 
based on the assumption that the stress is of order pu? throughout the 
boundary layer, so that u, is the relevant velocity scale for the turbulent 
motion. This assumption is not valid if the pressure gradient causes separa- 
tion, as we have seen in Section 5.4. 

The second Reynolds-stress term in (5.5.16) may be neglected compared 
to the first. An approximate integral of (5.5.16) then reads 

(5.5.17) 

The first term on the right-hand side of (5.5.17) is of order uz and the 
integral is of order (6U0/L)’ .  These two terms are of the same order of 
magnitude if 7 ,  defined by 

y= U*L/UoG, (5.5.18) 

is  finite. This amounts to UJUO =O (6 /L) ,  which is similar to the scale rela- 
tion used in wakes. We assume, subject to later verification, that y indeed is 
of order one. Differentiating (5.5.171, we obtain 

(5.5.19) 
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The boundary-layer equation With these results, the boundary-layer approx- 
imation to (5.5.1) can be obtained. The approximation has to be performed 
rather carefully, because (5.5.1) is  dominated by U aUAx and aP/pax, both 
of which are of order U i / L .  We are looking for flows which satisfy the 
velocity-defect law (5.5.61, so that the following decomposition is useful: 

aU dUo a dU0 a 
ax dx ax dx ax 

u- =uo - +uo - ( U -  UO) t ( U -  UO) -+ ( U -  Uo) - ( U -  UO). 

(5.5.20) 
The first term on the right-hand side of (5.5.20) cancels the pressure gradient 
by virtue of (5.5.15). If F is finite, the next two terms are of order Uou,/L; it 
is clear that these should be retained. However, terms of order u i / L  can be 
neglected. The difference between aP/pax and dPo/pdx is of order (u:/L), as 
(5.5.19) shows, so that aPDx can be replaced by dPo/dx. The stress term 
auz/ax = 8 (uz/L) can be neglected for the same reason. The viscous term 

that it also can be neglected if u,6/v is  not small. 

- 

vazu/axz = o ( v u ~ / L ~ )  = O ( U : / L ) ( V / U , ~ )  i f  u,/u, = o ( L / ~ )  (5.5.181, SO 

On basis of the results obtained so far, (5.5.1) may be approximated by 

="(-G+v;). aY (5.5.21) 

The last term on the left-hand side could be written in terms of the velocity 
defect because Uo is independent of y. The assumption that the velocity 
defect (Uo - U )  i s  of order u, has not yet been applied to the left-hand side 
of this equation. Because the velocity defect is not small in the surface layer 
and because the surface stress is purely viscous, further simplification of 
(5.5.21) should be delayed until a momentum integral has been obtained. 

Before we do this, let us look a t  the orders of magnitude of the various 
terms in (5.5.21). The Reynolds-stress term in (5.5.21) isof orderu2/6. The 
first and second terms on the left-hand side of (5.5.21) are of order U0u,/L. 
The Reynolds-stress term, therefore, is of order u,L/6Uo = r  compared to 
the major inertia terms. Three limit processes are possible. I f  r + O  as 
6u,/v + m, Reynolds stresses are negligible. This corresponds to situations 
with extremely rapid acceleration or deceleration of the flow; the particular 
limit process involved i s  sometimes used to compute the initial reaction of 
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turbulent boundary layers to very rapid changes in pressure. If y+-, the 
inertia terms are small compared to the Reynolds stresses. Physically speak- 
ing, this is an impossible situation; it corresponds to a Reynolds stress which 
is  independent of y, and therefore equal to zero (because the stress must be 
zero outside the boundary layer). 

The distinguished limit is  clearly the case in which y remains finite, no 
matter how large the Reynolds number is. This is a significant conclusion, 
because it implies that equilibrium flows can be obtained only if the ratio of 
the turbulence time scale 6/u, to the flow time scale L/Uo is finite and 
remains constant as the boundary layer develops. In other words, the boun- 
dary-layer turbulence has to keep pace with the flow. 

Let us return to t h e  momentum integral. Rearranging (5.5.21) with help of 
the continuity equation (5.5.3). we obtain 

(5.5.22) 
Integration of (5.5.22) yields 

(5.5.23) 

As before, the stress a t  the surface is defined as pu:. Outside the boundary 
layer, the stress and the velocity defect are zero. The exact location of the 
upper limit of the integrals in (5.5.23) is immaterial; the infinity symbol is 
merely used for convenience. 

A normalized boundary-layer thickness A may be defined by 
" 

A u , ~  [ (Uo - U) dy. 
0 

(5.5.24) 

If Uo - U is of order u* through most of the boundary layer, A and 6 are of 
the same order of magnitude. Using (5.5.24). we can write the first integral in 
(5.5.23) as 

..- I -  

u(U - Uo) dy = Uou,A - J (U - U0)* dy. 
- J o  0 

(5.5.25) 

If the velocity defect is small, the last integral in (5.5.25) is  of order uZA. In 
the surface layer, however, U - Uo - Uo, so that the contribution to the last 
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integral made in the surface layer is of order Ugv/u, (the thickness of the 
surface layer is of order v/u,). Therefore, it is of order (UO/U,)’ (v/u,A) 
relative to the contribution made by the rest of the boundary layer. Because 
we expect that Uo/u, --f = much slower than Au,Iv, this contribution can be 
neglected. Finally, because u,/Uo << 1, only the first term on the right-hand 
side of (5.5.25) needs to be retained in f irst approximation. Therefore, 
(5.5.23) may be approximated by 

(5.5.26) 

We can now return to (5.5.21). Outside the surface layer, the viscous term 
can be neglected if 6 u J v  is large. The third inertia term is of order u?/L if 
the velocity defect is of order u* ,  so that it is smatl compared to the leading 
terms. The cross-stream velocity component V occurs in (5.2.21); if the 
analysis leading from (5.5.9) to (5.5.1 1) is repeated with an arbitrary upper 
limit of integration, there results V = -y dUo/dx with a correction term that 
can be neglected if uJU0 << 1. The equation of motion for the outer layer 
thus becomes 

This equation i s  linear in the velocity defect UO-U; it is called the linearized 
boundary-layer equation. 

Equilibrium flow We want to find solutions to (5.5.27) which satisfy 

(5.5.28) 

(5.5.29) 

where 

q = yIA. (5.5.30) 

The normalized boundary-layer thickness A has been used here for conven- 
ience. Substitution of (5.5.28) and (5.5.29) into (5.5.27) yields 

(5.5.31) 

If the coefficients in this equation can be made independent of x,  the equa- 
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tion of motion allows self-preserving solutions. However, further analysis of 
(5.5.31) cannot proceed until the equations for the wall layer have been 
examined. 

The flow in the wall layer Let us consider the equation for U in the immed- 
iate vicinity of the surface. We expect U to be of order u,,, so that U aUAx is 
of order u:/L. Also, aU/ax = O(u,/L), so that V = O(v/f ) if v/u, is  the length 
scate for the wall layer. Hence, VaU/ay= O(u:/f) .  The pressure- 
gradient term is of order Ui IL ,  so that the inertia terms should be neglected 
if u,/Uo << 1. The length scale in the wall layer is v/u* in order to keep 
Reynolds stress and viscous stress of the same order of magnitude. The lead- 
ing stress terms in the equation for U are auY/ay and v a2U/ay2 ; they are of 
order u:/v. The pressure gradient is of order vUi/Lu: compared to the other 
stress terms. Now, 

(5.5.32) 

The first factor on the right-hand side of (5.5.32) is I/?. Because we decided 
not to deal with very rapidly accelerating or decelerating flows, 7 is finite. As 
was stated before, Uo/u+ + 00 rather slowly compared to 6uJv.  Therefore, 
the pressure gradient is small compared to the principal Reynolds-stress and 
viscous-stress terms in the inner layer. The equation of motion reduces to 

(5.5.33) 

It can be seen intuitively that this approximation i s  correct. Throughout the 
analysis, it has been assumed that the velocity defect is of order u, and that 
Reynolds stresses are of order pu: . These assumptions can be valid only if no 
other characteristic velocity is relevant. In conditions where the pressure 
gradient might generate a new velocity scale (like the one used in Section 
5.4), the obvious requirement is that it be small compared to the friction 
velocity u,. 

The law of the wall Equation (5.5.33) defines a constant-stress layer with 
wall stress puz. The nature of the solutions of (5.5.33) has been studied in 
Section 5.2; we recall that 

Ulu, = f (YU, lv ), (5.5.34) 
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- 
-uvlu: =g(yu*/u). (5.5.35) 

To first approximation the flow in the wall layer is independent of the 
pressure gradient. This result was first discovered in experiments made by 
Ludwieg and Tillmann (1949). 

The logarithmic friction law We assume that solutions to the equation of 
motion for the outer layer which satisfy the velocitydefect law (5.5.28) do 
exist. If this is the case, the law of the wall (5.5.34) must be matched to 
the velocitydefect law (5.5.28) through a logarithmic velocity profile. The 
logarithmic velocity profile gives a logarithmic friction law, which may be 
written as 

(5.5.36 1 - - - In - t A, 
u* K v 

The additive constant A can be a function of a pressure-gradient parameter. 
For later use, a differentiated form of (5.5.36) i s  given. A convenient form is 

uo - 1  A 4  

(5.5.37) 

The pressuregradient parameter We now determine under what conditions 
self-preserving solutions to (5.5.31) may be expected. The coefficients occur- 
ring in (5.5.31) may be expanded as follows: 

A d  AdUo AUZ d 
- -((uou*) = 2 - - 
ui dx 

The momentum integral (5.5.26) may be rearranged to read 

uo d A dU 
u: dx u, dx 
--(Au*) = 1 - 2 --O. 

(5.5.38) 

(5.5.39) 

(5.5.40) 

Substitution of the differential friction law (5.5.37) into (5.5.38, 5.5.39) 
shows that the last terms of (5.5.38) and (5.5.39) are small compared to the 
others if uJU0 << 1. Inspection of the set (5.5.38, 5.5.39, 5.5.40) then 
indicates that a convenient pressure-gradient parameter is fl, defined by 
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(5.5.41) 

This result i s  not surprising: self-preservation can be obtained only if the ratio 
of the time scales (dUo/dx)-' and Ah,  is a constant (see the discussion 
following (5.5.21) and (5.5.56)). 

In terms of 11, (5.5.31) and (5.5.40) read 

(5.5.42) 

(5.5.43) 

The system (5.5.36, 5.5.42, 5.5.43) is  subject to a normalization condition 
imposed by the definitions (5.5.24) and (5.5.28) of A and F,  respectively. 
The normalization condition i s  

F dq = -1. (5.5.44) 

The boundary conditions imposed on (5.5.42) are 

F + O , G + O  for??+-, (5.5.45) 

q dF/dq + 1/u for q + 0. (5.5.47 1 

G+l forq+O, (5.5.46) 

The system of equations (5.5.36,5.5.42-5.5.47) is independent of x if 11 i s  a 
constant. Therefore, we may expect self-preserving boundary-layer flows in 
pressure distributions that make 11 independent of x. The problem defined by 
(5.5.42-5.5.47) is also independent of the Reynolds number, so that the 
solutions F(q), G(q) exhibit asymptotic invariance (Reynolds-number simi- 
larity). Therefore, boundary layers in which 11 is constant are equilibrium 
layers; their velocity profiles are self-preserving and the velocity profiles of 
two different boundary layers a t  the same value of ll are identical, even if 
their Reynolds numbers are not the same. Of course, all of these statements 
are only valid asymptotically as AuJv +-. 

These conclusions were f irst obtained by F. H. Clauser (1956). Clauser 
performed a series of experiments in which the pressure distribution was 
carefully adjusted in order to obtain downstream invariance of the velocity- 
defect function F(r)).  His experiments showed that the pressure distribution 
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Figure 5.17. Velocitydefect profiles at different values of n. The scaling length for y is 
the boundary-layer thickness 6 ,  defined as the value of y where F = -0.1 (based on data 
by Clauser, 1956). 

was well represented by a constant value of n. The significance of n was 
discovered from an ad hoc argument involving the relative contributions of 
the wall stress and the pressure gradient to the rate of increase of momentum 
deficit in the boundary layer. 

Some of the velocity profiles obtained by Clauser and others for differ- 
ent values of Il are shown in Figure 5.17. The additive constant in the 
logarithmic part of F increases rapidly with n; the amplitude of the wake 
function W(Q), which i s  the difference between F and i t s  logarithmic part, 
therefore also increases with n. In the limit n +w, the velocity profile may 
be a pure wake function. 

Free-stream velocity distributions The equations governing the downstream 
development of equilibrium layers (5.5.41, 5.5.43,5.5.36) are 

--n, -- ' 0  - In% t A ( n ) .  "O (All,) = 1 t 217, - - - A dUo 
u* dx u,' dx U, K V 

No general solution to the set (5.5.36,5.5.41,5.5.43) i s  known. Approximate 
solutions, however, can easily be obtained if the very slow change of U,/u, 
with respect to x is exploited. If the range of values of x for which an 
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approximate solution is desired is  fairly small, it may be assumed that u,lUo 
is equal to  i t s  value a t  the beginning of the interval (x = x i ) .  If we put 

we may replace (5.5.41) and (5.5.43) by 

A dUo 
Uo dX 

- -Pi nr 

(5.5.48) 

(5.5.49) 

In this approximation, the logarithmic friction law has to be ignored. The 
solution of (5.5.49, 5.5.50) was first given by A. A. Townsend (1956); it 
reads 

where 

(5.5.5 1 ) 

(5.5.52) 

(5.5.53) 

and 

Ti = (I + 313) PixilAi. (5.5.54) 

The coefficient Ti is of order u,x/AUo, so that it is similar to the time-scale 
ratio y defined in (5.5.18). The length scale L, defined in (5.5.5) has the value 
Ailpin at  x = x i ,  so that yi may be written as 

The time-scale ratio 7, on the other hand, is given by 

(5.5.55) 

(5.5.56) 

The singularity of (5.5.56) in the limit as n-+ 0 is due to  the particular way 



190 Wall-bounded shear flows 

in which L i s  defined. If ll = 0, (5.5.50) yields dAfdx = pi, which corresponds 
to finite values of AUo/xu,, so that again the ratio of time scales is finite. It 
should be noted that A16 is always finite if 6 is defined as the value of y 
where F is  some small number (say 0.1). 

It is  clear that (5.5.51) and (5.5.52) are singular i f  ll +=. This singularity 
has physical significance, because it represents flows that are approaching 
separation. According to (5.5.52) and (5.5.531, this occurs if UO In 
experimental practice, no steady, stable flows at ll > 10 can be obtained. 
Equation (5.5.51) also shows that equilibrium layers become thicker more 
rapidly at  large positive values of ll. It should be noticed that all boundary 
layers grow linearly in x if u,/Uo is assumed to be constant. For large values 
of (x - x i ) ,  the slow decrease of u,/Uo with A (and thus with x )  takes effect; 
the boundary-layer thickness then increases roughly as 6 0: xlln x. 

Boundary layers in zero pressure gradient A somewhat more detailed dis- 
cussion of the case Il = 0 (corresponding to constant Uo) i s  in order. If the 
pressure gradient is zero, (5.5.42). (5.5.43). and (5.5.36) become 

(5.5.57) 

(5.5.58) 

2 = 1 In - A u* +A(o) .  (5.5.59) 
U, K V 

The short-range growth of A may be approximated by 

dA 
dx 
- =pi, (5.5.60) 

where ei is the value of u,/Uo at  xi. In the case ll = 0, A16 2 3.6 if 6 is 
defined as the value of y where F = -0.1. 

It is worthwhile to consider the entrainment of fluid outside the boundary 
layer by the turbulent motion a t  the edge of the boundary layer. The con- 
tinuity equation may be integrated to yield 

(5.5.61) 

Since the integral in (5.5.61) is equal to -1 by virtue of (5.5.441, we may 
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write for the slope a0 of the mean streamlines at the edge of the boundary 
layer 

(5.5.62) 

where 6* is the displacement thickness (5.5.66). By substitution of (5.5.58) 
we find that 

(5.5.63) 

The average slope 
dA/dx if A/& S 3.6. From (5.5.58) and (5.5.37) we conclude that 

of the edge of the boundary layer is d6/dx% 0.28 

(5.5.64) 

If u,fUo << 1, a6 >ho. A few numbers may be helpful. If U 0 h ,  = 30, 
Q 2 0.064" and as S 0.57' . If UO/ut= 20, a. s 0.14' and ix8 2 0.92". 
Figure 5.18 illustrates the situation. The entrainment process is believed to be 
maintained by large-eddy motions like those sketched in the figure. These 

1 

+ x  I 

Figure 5.18. Entrainment by a boundary layer in zero pressure gradient. The mean 
streamlines do  not represent the actual flow pattern over the interface shown. 
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eddies continually distort the interface between the turbulent and nonturbu- 
lent fluid and may on occasion engulf parts of the nonturbulent fluid. The 
entrainment velocity is about 0.28~. i f  I/K i s  neglected compared to Uo/u, 
and if a. is  neglected compared to a6.  The interface between the turbulent 
boundary layer and the potential flow is quite sharp; i t s  characteristic thick- 
ness is believed to be of order v h + ,  which is comparable to the thickness of 
the viscous sublayer (Corrsin and Kistler, 1954). 

The momentum integral (5.5.58) is associated with the linearized equa- 
tions of motion. This implies that the momentum thickness 8, defined by 

(5.5.65) 

has been assumed to be equal to the displacement thickness 6 * ,  defined by 

(5.5.66) 

This approximation, of course, is consistent with the assumption that the 
velocity defect Uo- U is  small compared to Uo. Experiments have shown 
that the velocity-defect law is satisfied rather accurately even if the velocity 
defect is not small. Substitution of (5.5.28) into the definitions of 6" and 8 
yields for the shape factor H S "18 

H = (1 - Cu,/Uo)- ' ,  

where 

C= joaF2 dq. (5.5.68) 

The value of C i s  about 6 for ll = 0. If u,/Uo = 0.04, H r  1.3, which is 30% 
larger than the asymptotic value, which is 1. In semiempirical calculations 
of the downstream development of turbulent boundary layers, H is often 
assumed to be constant, but ur/UO is allowed to vary according to some 
empirical friction law (empirical friction laws express the friction co- 
efficient cf, defined as 2u$/U8, as a function of some power of the Reynolds 
number ~ U O / V ) .  

The distribution of the Reynolds stress, G(q),  can be computed from 
(5.5.57) if F(q)  is known from experiments (see Figure 5.17). For small 
values of q, F is logarithmic, so that (5.5.57) gives 

d G / d q = - I / ~  forq'0. (5.5.69) 

(5.5.67) 
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Figure 5.19. The Reynoldsstress distribution for ll = 0. The solid line is computed 
with (5.5.57) and F given by Figure 5.17. The straight dashed line is (5.5.70). with 
l / ~  = 2.5, A/6 = 3.6. The curved dashed line is (5.5.72). with K = 1/60. 

Since G + 1 if r) + 0, (5.5.69) may be integrated to yield 

G(q)  = I - r)/K. (5.5.70) 

This expression is valid only near the surface. Figure 5.19 gives a sketch of 
the distribution of G(r)). 

Equation (5.5.57) relates the velocity profile to the stress profile. So far, 
we have avoided any assumptions on the relation between stress and velocity 
gradient. With similarity arguments and asymptotic rules, we have resolved all 
of the essential features of boundary-layer flows without ever solving the 
equations of motion. If we want to solve equations like (5.5.571, we need a 
constitutive relation to link the stress to the velocity gradient. A simple 
constitutive relation is 

G = K dF/dq, (5.5.71) 

where K is an eddy viscosity, nondimensionalized with u ,  and A. If K is 
independent of q, (5.5.57) and (5.5.71 ) can easily be solved for the stress G. 
The result is 
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G(q)  = exp(-q2/2K). (5.5.72) 

The value of K, of course, has to be determined by curve fitting. A curve 
according to (5.5.721, with K =  A, has been drawn in Figure 5.19. The 
velocity distribution F(q)  can be obtained from (5.5.72) by integrating once 
more. This introduces an arbitrary integration constant, which can be ad- 
justed in such a way that the resulting curve is close to the logarithmic 
velocity profile a t  small values of r). This is hardly worth the effort, though; if 
an analytical expression for F(v)  is desired, a sinusoidal wake function of 
suitable amplitude does just as well. 

Transport of scalar contaminants Within the scope of this book, it is impos- 
sible to discuss the transport of heat or other scalar contaminants in turbulent 
boundary layers in any detail. Let us briefly consider passive contaminants 
that are released from the surface (for example, the heat flux through a 
boundary layer on a hot wall). I f  the ratio of the kinematic viscosity to  the 
diffusivity of the contaminant is near unity, the distribution of the contamin- 
ant is similar to the distribution of the mean-velocity defect; the rate of 
spread of contaminant in the y direction is the same as the rate of growth of 
the boundary layer. The rate of transfer of contaminant away from the 
surface is coupled to the stress a t  the surface. In the case of temperature, the 
transfer law reads 

Ow-Oo 1 Au, 
0, K Y  

= - In - + const, (5.5.73) 

where 

e, = H I P C ~  u,. (5.5.74) 

In these expressions, it has been assumed that the thermal diffusivity is equal 
to v. The rate of heat transfer from the surface, H, can be computed if the 
temperatures a t  the surface (0,) and outside the boundary layer (001, as 
well as u+ and A, are known. 

If the diffusivities for the scalar and for momentum are not the same, the 
thickness of the viscous (momentum) sublayer and of the molecular diffusion 
layer of the scalar near the surface are not the same. The transfer of scalar 
contaminants through the boundary layer then becomes a very complicated 
problem. A case in point is heat transfer in turbulent flow of liquid mercury. 
In mercury at  room temperature, the thermal diffusivity (7) is 35 times as 



195 Problems 

large as the kinematic viscosity. If the transport of heat by turbulent motion 
is represented by an eddy diffusivity Y ~ ,  which i s  about u,A/60, the ratio 
re l y  becomes equal to one for u,Alv - 2,000. At moderate Reynolds num- 
bers like this, much of the heat transfer i s  caused by molecular motion, even 
though nearly all of the momentum transfer is caused by the turbulent 
motion. Effectively, the molecular diffusion layer extends through the entire 
momentum boundary layer. 

Problems 

5.1 Consider fully developed turbulent flow in a two-dimensional diffuser 
with plane walls. Estimate the opening angle of the diffuser for which the 
downstream pressure gradient is equal to zero. 

5.2 Describe the radial distribution of the circulation and of the mean tan- 
gential velocity in a turbulent line vortex. The circulation outside the turbu- 
lent vortex is constant; it has a value ro. This is an inner-outer layer problem. 
The inner core of the vortex is in solid-body rotation; it has negligible Rey- 
nolds stresses. For the equations of motion in cylindrical coordinates, see 
Batchelor (19671 or other texts. 

5.3 Estimate the volume flow in the Gulf Stream. This flow is due to the 
flow in the Ekman layer of the North Atlantic Ocean. Assume that the 
Ekman layer is  driven by westerly winds across the Atlantic a t  middle lati- 
tudes. The wind speeds are of order 10 m/sec. What is the direction of the 
volume flux in the Ekman layer? 

5.4 Experiments have shown that small amounts of high molecular weight, 
linear polymers added to water can cause a substantial drag reduction in 
turbulent pipe and boundary-layer flow of water. No satisfactory explanation 
of this phenomenon has been found, but an appreciation for the order of 
magnitude of this effect can be obtained by assuming that the polymer solu- 
tion doubles the viscosity experienced by the turbulence without changing 
the viscosity experienced by the mean flow. Obtain an estimate for the drag 
reduction on basis of this assumption. An analysis of the effects of polymers 
on Figure 5.5 is helpful. 
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5.5 Write an equation for the kinetic energy Uz of the mean velocity in 
fully developed turbulent flow in a plane channel. Sketch the distributions of 
all terms across the channel. Use the data in Figures 5.6, 5.7, and 5.8 when- 
ever needed to obtain reasonable accuracy. The energy exchange between the 
core region and the wall layers is  of particular interest. Interpret your results 
carefully. 

5.6 Repeat the analysis of Problem 5.5 for a turbulent boundary layer Over a 
plane wall without pressure gradient. 

5.7 From the data in Section 5.5, obtain an approximate friction law of the 
type cf = a! R i p  (q = 2(u,/U0 12, R, = OUo/v, 6' is the momentum thickness) 
for turbulent boundary layers in zero pressure gradient. Integrate the momen- 
tum integral equation (cf = 2d6'/dx i f  dP/dx = 0 )  to obtain an approximate 
drag formula for a plate of length L. 
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