
BOUNDARY-FREE SHEAR FLOWS 

Turbulent shear flows that occur in nature and in engineering are usually 
evolving that is, in the flow direction the structure of the flow is changing. 
This change is sometimes due to external influences, such as pressure or 
temperature gradients, and sometimes due only to evolutionary influences 
inherent within the turbulence. At the present time, very few evolving flows 
are well understood; those evolving because of external influences are particu- 
larly difficult to understand, unless the variation of the external influence 
happens to match in some way the flow's own evolutionary tendencies. In 
Section 5.5 we encounter an example of such a flow. Here we shall limit 
ourselves to flows evolving under the influence of their own evolutionary 
tendencies. Even this class of flows is not generally understood; we shall 
further restrict the discussion to two-dimensional flows whose evolution is 
slow and whose dynamics is not affected by the presence of a solid surface. 

4.1 
Almost parallel, two-dimensional flows 
There are two types of two-dimensional flows, the so-called plane flows and 
the axisymmetric flows. In both, the mean velocity field is entirely confined 
to planes. In the plane flows, mean flow in planes parallel to a given plane is 
identical; in the axisymmetric flows, mean flow in planes through the axis of 
symmetry is identical. We analyze in detail the plane flows (for algebraic 
simplicity) and give the results for the axisymmetric flows. 

Plane flows Let us consider flows whose principal mean-velocity com- 
ponent is in the x direction, which are confined to the x,y plane, and which 
evolve slowly in thex direction. Thus, 

Ui= {U,V ,O} ,  a/ax<<a/ay nearly everywhere. (4.1 . I )  

The classical flows falling within this class are wakes, jets, and shear layers 
(Figure 4.1). For these flows it is possible to simplify the equations of motion 
by discarding many terms that are small. To identify these terms, we must 
determine in what order the terms vanish as these flows become more and 
more nearly parallel. Slightly more complicated flows, such as jets flowing 
into a moving medium, are not treated here; they can be analyzed in the same ' 

way as the flows in Figure 4.1. 
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Figure 4.1. Plane turbulent wakes, jets, and shear layers (mixing layers). 
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Examining Figure 4.1, we can identify two velocity scales in the wake and 
one in the jet and the shear layer. In the wake, there is a scale UO for the 
velocity of the mean flow in the x direction; in a l l  of these flows there is  a 
scale Us for the cross-stream variation of the mean velocity component in the 
x direction. Let us define Us as the maximum value of IUo-UI. In wakes 
Us<<Uo far from the obstacle, while in jets and shear layers Uo = 0. Hence, 
in far wakes U = Uo + (U-Uo) = O(U0 + Us)  = O(U0). while in jets and shear 
layers U = 0 (Us)  (as before, 0 stands for "order of magnitude"). For 
convenience we use U = 0 (01, where (7= Uo for wakes and 0 = Us for jets 
and shear layers. 

If we agree to define a cross-stream scale t as the distance from the center 
line a t  which U-UO is about :Us (a more precise selection is made later), we 
can write 

away = o(u,/e). (4.1.2) 

We designate the scale of change in thex direction by L, so that 

auiax = o ( u ~ L ) .  (4.1.3) 

In addition to the velocity and length scales just defined, we need a velocity 
scale for the turbulence. Let us use the symbol U, so that 

-iiii= 0(2), 2= 0(Cz2), v2 = 0 ( U 2 ) .  (4.1.4) 

The magnitude of u relative to Us is determined later. Finally, we need a scale 
for the cross-stream component V of the mean velocity. This scale can be 
determined from the mean equation of continuity: 

auiax + away = 0. (4.1.5) 

Because aU&x - UJL, we need aV/ay - UJL in order to  balance (4.1.5). 
On the other hand, cross-stream length scales are proportional to  d ,  so that 
a Way - Vld. Equating these two estimates, we obtain 

v =  O(U,G/L). (4.1.6) 

- 

The cros-stream momentum equation We are now in a position to examine 
the equations of motion in the limit as G'L + 0, that is, as the flow becomes 
parallel. Let us first look at  the equation for V, which governs the mean 
momentum in the cross-stteam direction. This equation is 
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the negligibility of the f i rs t  two and the last two terms of (4.1.7). Weshall later 
show that (4.1 .lo) is  always satisfied, provided that R, is  sufficiently large. 

Integration of (4.1.9) is straightforward; it yields 

P/p + 2 = P o/p . (4.1.11) 

Here, Po is  the pressure outside the turbulent part of the flow field (y  -+ W. 
Equation (4.1 .I 1) holds for all narrow, slowly evolving flows. We will assume 
that the imposed downstream pressure gradient aPo/ax = 0. If PO were to 
vary in the x direction we could not state without hesitation that al l  deriv- 
atives in the downstream direction scale with L, since the variation of PO 
might introduce another scale. 

We need the derivative of (4.1 .I 1) with respect to x .  Because aPo/ax = 0, 
we obtain 

(i/p) w a x  + a2/ax = 0. (4.1.12) 

The streamwise momentum equation 
the downstream component of mean momentum, reads 

The equation for U, which governs 

au au a - a - a2u a2u u-+v -+ - (u  - v 2 ) + - ( u v ) = v  -+- . 
ax ay ax aY ( a x 2  ay2)  

(4.1.13) 

Here, (4.1.12) has been used to substitute for aP/ax. Using the scales already 
introduced, we estimate the orders of magnitude of the terms of (4.1.13) as 

2 au us,e us - us 2 e  v - :  
aY L e [(;) i]7,  

(4.1 .I41 
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If we assume that R, is sufficiently large, we can make the viscous terms 
as small as desired. In the limit as &/L + 0, the third term of (4.1.13) is also 
negligible. In order to balance the equation, a t  least one other term of the 
same order as a ( d l a y  is needed. Of the remaining terms, the first is  the 
largest because 0 2 Us. Thus, we must require that 

(4.1 .I 5) 

that is, this nondimensional group must remain bounded as QL + 0. 

Turbulent wakes There are two ways in which (4.1.15) can be satisfied. If, 
as one possible choice, we takeulU, = @(I), (4.1.15) requires that 

u l 0 = S ( R / L ) .  (4.1.16) 
This situation occurs in far wakes. Far wakes have turbulence intensities of 
the order of the velocity defect; both of these are small relative to the mean 
velocity. As a wake evolves downstream and as t /L becomes smaller, u/U 
keeps pace with it. 

With a =  @(Us)  and (4.1.16), the second term in (4.1.13, 4.1.14) is  neg- 
ligible relative to the first, so that the momentum equation for turbulent 
,wakes far from an obstacle reduces to 

u auiax t acull)/av = 0. (4.1.17) 

We can make one further simplification. For wakes, 0 = Uo and u - Us, so 
that we may write, by virtue of (4.1.161, 

( U -  U,)IUO = O(Us/U0) = O(8iL). (4.1 .I 8) 

This implies that the undifferentiated U occurring in (4.1 .I71 may be replaced 
by Uo.  Thus, (4.1.17) may be approximated by 

uo auiax t acUv)iay = 0. (4.1.19) 

This equation states that the net momentum flux due to the cross-stream 
velocity fluctuations v is replaced by x mornentuiii carried by the mean flow 
in the streamwise direction. 

Returning to the provisions expressed in (4.1.10), we see that the first is 
satisfied if e/L + 0 and if (4.1.16) holds. The second provision is satisfied as 
long as t/(R,L) -+ 0. This condition can be met easily. I f  we examine (4.1.141, 
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we see that the condition for neglecting the viscous terms in (4.1 .I31 is that 
I/Rl+ 0, which is more stringent than the second provision in (4.1 .lo). If the 
viscous terms are to be of the same order as the other terms that have been 
neglected, we must require the even stronger condition l/Rl = 0 (&I. Hence, 
roughly speaking, (4.1.19) i s  a valid approximate equation of motion for 
far wakes provided I/Rt-l/L <<I. 

Turbulent jets and mixing layers 
satisfied is by putting o= Us, so that (4.1 .I 5) becomes 

ulU,= O(e/L) . (4.1.20) 
The choice describes jets and mixing layers, in which turbulence intensities 
are about half an order of magnitude (measured in terms of t /L )  smaller than 
the jet velocity or the velocity difference in the mixing layer (shear layer). 
With the choice (4.1.20) the first and second terms in (4.1.14) are of the 
same order, so that the appropriate momentum equation is 

u auiax + v auiay + acG)/ay = 0. (4.1.21) 

Here, the x momentum removed by the cross-stream velocity fluctuations Y is 
replaced by mean-flow convection carried by both the downstream and the 
cross-stream components of the mean velocity. 

The provisions (4.1 .lo) need to be examined. Wefind that the first of these 
is satisfied if t /L + 0 and if (4.1.20) holds. The second provision amounts to 
(&L)'/2 @' +O. This appears to be an easy condition. From (4.1.14) we 
conclude that the condition for the negligibility of the major viscous term is 
that (L/d)1/2 Rj' -+ 0, which is a fairly strong requirement. To assure that the 
viscous term is of the same order as the other terms which have been neglect- 
ed, we need the even stronger condition Rc = 0 (Lk')3/2. We conclude that 
(4.1.21) i s  a correct approximation i f  t /L + 0 and if (L/L')'/' Rd' +. 0. 

We shall find later that in wakes e/L continually decreases downstream, so 
that  (4.1 .I91 becomes a better approximation the farther downstream one 
goes. For mixing layers and jets, on the other hand, we shall find thatUL is 
constant. The observed values of t/L in jets and mixing layers are of the order 
6 x so that the neglected terms in (4.1.21) amount to about 6% of the 
terms retained. In the various plane and axisymmetric wakes, jets, and shear 
layers we shall study the Reynolds number Rc changes downstream in dif- 

The second way in which (4.1 .I 5) may be 

m 
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ferent ways. Hence, in each flow there are distinct regions in which the 
conditions on Rc are satisfied. 

The momentum integral Because (4.1.19) is a special case of (4.1.211, all 
relations based on (4.1.21) also hold for (4.1,19), so that we can confine 
further analysis to (4.1.21). If we subtract UO from U when the latter appears 
within the streamwise derivatives of (4.1.21), we obtain 

a a a -  
u - (U - UO) + v - (U - UO) + - (uv) = 0. 

ax aY aY 
(4.1.22) 

This i s  legitimate because Uo is  not a function of position (the imposed 
pressure gradient is zero). The continuity equation a U A x  + aV& = 0 may 
be used to rewrite the first two terms of (4.1.22) as 

a a 
ax, ax, 

u- - (U - U,) = - [UjW - U0)l . 

Thus, (4.1.22) becomes 

(4.1.23) 

(4.1.24) 

In j s a n d  wa_kes, U - Uo vanishes a t  sufficiently large values of y and so does 
UV. For those flows, we may integrate (4.1.24) with respect to y over the 
entire flow. The result is 

d - J- U(U-Uo)dy=O. 
dx - 
Consequently, 

(4.1.25) 

(4.1.26) 

where M is a constant. This integral relation i s  clearly inapplicable to shear 
layers because their velocity defect is not integrable. For shear layers, the left- 
hand side of (4.1.25) i s  equal to VoU,, which is unknown because Vo,  the 
value of Vat y + +m, is unknown. 

The integral (4.1.26) may be identified with the mean momentum flux 
across planes normal to the x axis. For wakes, p(Uo - U )  is the net 
momentum defect per unit volume, while U dy is  the volume flux per unit 
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depth. The integral (4.1.26) then is  the net flux of momentum defect per unit 
depth. When we use the term momentum defect, we mean it in the following 
sense: if the wake were not present, the momentum per unit volume would 
be pUo. The difference p(Uo - U )  is the momentum defect (or deficit). The 
constant M in (4.1.26) i s  the total momentum removed per unit time from 
the flow by the obstacle that produces the wake. 

For jets, Uo = 0, so that (4.1.26) simplifies to 

p I m  U2 dy=M.  (4.1.27) 

Here, pU is  the mean momentum per unit volume and Udy  is the volume 
flux per unit depth (depth is the distance normal to the plane of the flow). 
Therefore, M is the total amount of momentum put into the jet a t  the origin 
per unit time. 

.-DD 

Momentum thickness The momentum integral (4.126) can be used to de- 
fine a length scale for turbulent wakes..lmagine that the flow past an obstacle 
produces a completely separated, stagnant region of width 0.  The net momen- 
tum defect per unit volume is then pUo, because the wake contains no 
momentum. The total volume per unit time and depth is UoO, so that pug O 
represents the net momentum defect per unit time and depth. Thus, 

-pug 0 = M. (4.1.28) 

Equating (4.1.26) and (4.1.281, we obtain 

(4.1.29) 

The length 0 defined this way is  independent of x in a plane wake; i t  is called 
the momentum thickness of the wake. 

The momentum thickness is related to the drag coefficient of the obstacle 
that produces the wake. The drag coefficient cd is  defined by 

D Z c  d 2 P  1 u2 O d ,  (4.1.30) 

where D is the drag per unit depth and d is the frontal height of the obstacle. 
Clearly, D = -A4 because the drag D produces the momentum flux M. If we 
equate (4.1.28) and (4.1.301, we find 

C d  = 20fd. (4.1.31) 
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I f  the obstacle is a circular cylinder, Cd - 1 for Reynolds numbers (Uod/v) 
between lo3 and 3 x lo5, so that 6 is about i d  in that range. 

4.2 
Turbulent wakes 
Here we studv self-preservation (invariance), the mean momentum budget, 
and the kinetic energy budget of turbulence in plane wakes. 

Self-preservation In the preceding analysis, we assumed that the evolution of 
jets, wakes, and mixing layers is determined solely by the local scales of 
length and velocity. Let us evaluate this assumption. In general, we may 
expect that in wakes 

(UO - U)lUs = f(y/e, e/L,eus/v, Us/U0). (4.2.1 ) 

However, we have developed approximate equations that are valid for 
t/L + 0, tUs/v -+=, UJUo+ 0. Under these limit processes, the (presumably 
monotone) dependence of the function f on elL, dUslv, and UsIUo is  
eliminated, because no monotone function can remain finite if it does not 
become asymptotically independent of very large or very small parameters. 
Therefore, we expect that only the length scale t! is relevant and that all 
properly nondimensionalized quantities are functions of y / l  only. In 
particular, 

(UO - U)/US = f(Yle), (4.2.2) 

where, of course, L may change downstream (d=e(x) ) .  We expect that (4.2.2) 
is valid because it makes a statement about velocity differences, which are 
related to velocity gradients. Relations like (4.2.2) do not hold for the abso- 
lute velocity U, because the value of Uo clearly could be changed without 
changing the form of UO - U. 

In wakes, the turbulence intensity tl is of order Us, $0 that we expect that 
the Reynolds stress may be described by 
- 

-uv = u;g(yle). (4.2.3) 

The set (4.2.2, 4.2.3) constitutes the self-preservation hypothesis: the veloc- 
ity defect and the Reynolds stress become invariant with respect to x if they 

In order to test the feasibility of (4.2.2, 4.2.3), we must substitute these 
- are expressed in terms of the local length and velocity scales land  Us. 
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expressions into the equation of motion (4.1.1 9). Let us define ,$ = y/&, so that 
we may write 

aU - dUs Us d t  
ax dx t! dx 
---- f+--tEf, 

(4.2.4) 

where primes denote differentation with respect to t .  With (4.2.41, (4.1.19) 
becomes 

(4.2.5) 

I f  the shapes of f and g are to be universal, so that the normalized profiles of 
the velocity defect and the Reynolds stress are the same at  all x,  we must 
require that the coefficients o f f  and tEf in (4.2.5) be constant. Thus, taking into 
account that UO is a constant, we need 

= const. 
t! dUs 1 de const, -- 
U: dx Us dx 
--= (4.2.6) 

The general solution to the pair (4.2.6) is 8-x".  Us -xn- l ,  so that another 
relation i s  needed to make the result determinate. The momentum integral 
(4.1.26) provides the desired constraint; using (4.2.21, we may rewrite 
the momentum integral as 

(4.2.7) 

The second term in (4.2.7) i s  of order Us/Uo compared to the first. By 
virtue of (4.1.161, Us/Uo i s  of order l/L, so that  the second term in (4.2.7) 
should be neglected, Substituting for M with (4.1.281, we obtain 

U$ J m  f(E) d t =  ,Uoe. (4.2.8) 

We conclude that  the product U& must be independent of x .  If d-x" and 
Us -x"-', we find that 2n-1 = 0, so that n = i. Thus, e and Us are given by 

U S = A  x- ln ,  e= Bxln. 

The constantsA and B st i l l  have to be determined. 

4 

(4.2.9) 

A self-preserving solution i s  possible only if the velocity and length scales 
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behave as stated in (4.2.91. Of course, the fact t h a t  such a solution is possible 
does not guarantee that it occurs in nature. In many problems, possible 
solutions are not observed because they are not stable and change to a diff- 
erent form when disturbed. We need experimental evidence to determine 
whether or not the solution (4.3.9) indeed occurs. Experiments with plane 
turbulent wakes of circular cylinders have shown that the development oft' 
and Us is well described by (4.2.9) beyond about 80 cylinder diameters. Also, 
measured mean-velocity profiles agree with (4.2.2) beyond x = 80d. However, 
turbulence intensities and shear stresses do not exhibit self-preservation much 
before x = 200d. In most turbulent flows the mean velocity profile reaches 
equilibrium long before the turbulence does. Generally, the more complicated 
the statistical - quantity, - the longer it takes to reach self-preservation. For 
example, v3 and v4 take longer to reach self-preservation than 3. However, 
al l  measured quantities in wakes are fully self-preserving beyond x/d = 500. 

The mean-velocity profile I f  we substitute (4.2.91 into (4.2.51, we obtain 

f (U,B/A 1 (y  ' + f )  = gl. (4.2.10) 

In order to proceed, we need a relation between f andg. If we define an eddy 
viscosity VT by -@= VT aU/ay, we can state, by virtue of (4.2.2,4.2.3), 

vT = -u,eg/f1. (4.2.1 1) 

Thus, we expect v,/U,t'to be some function of y/L Now,g/f'is a symmetric 
function, so that vT is approximately constant near the wake center line. 
Also, from physical intuition, we expect the turbulence in the wake to be 
thoroughly mixed, so that  the scales of length and velocity should not be 
functions of the distance from the center line. This again suggests that vT 
may be constant. 

It should be noted that (4.2.1 1) is a consequence of the existence of the 
single velocity scale Us and the two length scales y and .8 Therefore, (4.2.1 1 ) is 
a consequence of self-preservation; it should not be construed as support for a 
mixing-length model. The assumption t h a t  vT i s  constant is equivalent to 
assuming that one of the length scales (namely y )  i s  not relevant to vT. 

Because both g and f' have a zero at  the center line, there is some question 
whether VT remains finite as y + 0. This problem is resolved with I'H6pital's 
rule, which states that the limit of g/f as y + 0 is equal to the limit of g'/f, 
The latter is  finite a t  y = 0. 
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With these provisions, we proceed on the assumption that vT is constant: 

V~/(u,e) 1 /RT = -g/f’. (4.2.12) 

The parameter RT U&hT is  called the turbulenr Reynolds number; we 
need experimental data to determine i t s  value. We should keep in mind that 
(4.2.12) is likely to be valid only near the center line of the wake (because of 
symmetry); we should expect errors near the edges of the wake. 

I f  we substitute (4.2.12) into (4.2.101, we obtain 

(Y(c;f’ + f )  + f ” = 0, 

in which 

(4.2.1 3) 

(4.2.14) 1 
(Y= 2 R, UoB/A. 

The solution of (4.2.13) i s  

f = exp (-;a e2 1. (4.2.1 5) 

In accordance with the definition Us = max (Uo-U), we have f (0)  = 1. We still 
have not defined [precisely; a convenient definition i s  to take a = 1 so that 
f = exp (-;) z 0.6 a t  E = I (y =e). The normalized momentum integral then 
becomes 

S + = f ( E )  4 4 = (27d1”. (4.2.16) 

The observed value of RT, with Us and Gas previously defined, is  12.5. 
Substitution of (4.2.16) into (4.2.8) and of (4.2.14) (with (Y = 1) into (4.2.9) 
then gives, with some algebra, 

us/uo = 1.58(8/~)*~, (4.2.17) 

-- 

- 

eie = 0.252(~/8)~~. (4.2.18) 

It should be noted that  the Reynolds number defined by Us and k is constant: 

U,QV = 0.4 uoeiv. (4.2.1 9) 

Thus, once turbulent, a plane wake remains turbulent. 
The decay laws (4.2.17) and (4.2.18) are similar to those for plane 

laminar wakes. This is because the momentum deficit, which is proportional 
to Us/ ,  i s  independent of x, so that both the Reynolds number US&h and 
the turbulent Reynolds number UghT are constant. 
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0 . ~ 1  , :ta experimental', -:\ , 

0 1 2 3 
0 '\. 

- I  

Figure 4.2. The velocitydefect profile of a plane turbulent wake (after Townsend, 
1956). 

The velocity profile (4.2.15) is in excellent agreement with the observed 
velocity profiles in wakes for al l  values of $ less than 1.3. For larger values of 
5, (4.2.15) has the correct shape, but it predicts somewhat larger values o f f  
than areobserved (see Figure 4.2). The deviation is  never larger than 5% of Us. 
Because the predicted velocity profile (4.2.1 5) approaches the free-stream 
velocity Uo slightly more gradually than the observations indicate, the value 
of vT appropriate for the center of the flow is evidently too large near the 
edges. A glance at Figure 4.3 makes the main reason for this clear. Within the 
turbulent part of the flow, average scales of velocity and length do not vary 
with cross-stream position, because there is thorough mixing from side to 
side. Here, a constant value of vT would be appropriate. Near the edges, 
however, a point at a fixed distance y spends only a fraction of i t s  time in the 
turbulent flow. When the point is in the irrotational flow, the Reynolds stress 
i s  zero so that the net momentum transport should be multiplied by the 
relative fraction of time the point is in the turbulent fluid. This fraction is  
called the intermittency y; the variation of y is sketched in Figure 4.3. Thus, 
an expression like vT= yvTC (where vTC is  the value appropriate to  the center 
of the wake) would be a better estimate. Indeed, if a velocity profile is 
computed on this basis, it is found to f i t  the experimental data extremely 
well. For many purposes, however, (4.2.1 5) i s  sufficiently accurate. 



118 Boundary-free shear flows 

irrotational flow 
h 

Figure 4.3. lntermittency near the edges of a wake. 

Axisymmetric wakes If the  foregoing analysis is applied to axisymmetric 
wakes, there results Us - - x - ~ / ~ ,  8- , so that R,= Use/v -x- ln .  Defining 
Us and tf in a similar way as before, we obtain R, = 14.1. The structure of the 
axisymmetric wake is thus not likely to be markedly different from that of 
the plane wake, with the exception that  the Reynolds number of axisym- 
metric wakes steadily decreases. When Rl is  reduced to a value of the order 
unity, the wake ceases to be turbulent; it develops differently as the residual 
velocity disturbances decay. This is not a serious practical restriction, how- 
ever. Let us write 

u,iu0 - ( ~ I x ) ~ ‘ ~ ,  ele - C X / ~ ) ~ ’ ~ ,  (4.2.20) 

and let us assume that the coefficients involved are of order unity, as they 
were for the plane wake. The Reynolds number R, then varies as 

R, - ( U ~ ~ / Y ) ( ~ / X ) ~ ’ ~ ,  (4.2.2 1 ) 

so that R, reaches unity when x/B is of order ( U , B / V ) ~ .  Even for moderate 
Reynolds numbers this is a large distance. 
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Scale relations With (4.2.17.4.2.181, we are in a position to examine quanti- 
tatively some of the scale relations in plane wakes. With the help of (4.2.3) 
and (4.2.12). we may write 

-UV = -Ut f lRT. (4.2.22) 

The Reynolds stress attains a maximum when C; = 1, as differentiation of 
(4.2.15) (with cr = 1) shows. This yields 

- 

- 
(-uv/U; Imax = (R; e )  -In = 0.05. (4.2.23) 

If the correlation coefficient between u and Y is taken to be about 0.4, as it is 
in most shear flows (see Section 2.21, we obtain as an estimate for the rms 
velocity fluctuation u (az = 5 ux z uZ z vZ 1: 

u z (0.05U~/0.4)'n = 0.35Us. 

- _  

(4.2.24) 

The rate a t  which the wake propagates into the surrounding fluid can be 
defined as d@dt = UO dfldx, which, with (4.2.18) and (4.2.191, becomes 

dYdt = UodUdX 0.08 Us. (4.2.25) 

In a self-preserving flow we expect that all velocities are proportional to Us, 
so that (4.2.24) and (4.2.25) are not surprising results. However, the values of 
the coefficients are interesting. The interface in Figure 4.3 propagates into 
the surrounding irrotational medium because it is contorted by the turbu- 
lent eddies. The contortion of the interface is caused by eddies of all scales; 
on the smallest scales, viscosity acts to propagate vorticity into the irrota- 
tional fluid. The net rate of propagation (or entrainment, as it is most often 
called), however, is controlled by the speed a t  which the contortions with the 
largest scales move into the surrounding fluid. Evidently, the largest eddies 
have a characteristic velocity roughly 0.08/0.35 Z 23% of that of the rms 
velocity fluctuation U. This is supported by direct measurements; the 
large eddies contributing most to the entrainment are fairly weak, but have 
dimensions as large as the flow permits. They are substantially larger than the 
eddies t h a t  contain most of the energy. 

A look a t  time scales i s  also instructive. A time scale t ,  characteristic of 
the turbulence i s  given by the total energy u 3  over the rate of production 
-Zii aUby (the latter roughly equals the dissipation rate E ) .  With ux 3u2 
and -uVZ O.4uz, tp becomes 
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(4.2.26) 

The minimum value of tp is reached at the maximum of f ’, which occurs at 
( = 1. We obtain 

t p  16 .2  elus. (4.2.27) 

On the other hand, a time scale characteristic of the development (the down- 
stream change) of the wake is  td =8/(d&dt), which becomes, on substitution 
of (4.2.251, 

td = e / ( d W )  z 12.5 //Us. (4.2.28) 

Hence, the ratio of time scales is  about 2: 

tdft, 2, (4.2.29) 

The time scale of transfer of energy to small eddies apparently is only about 
half the time scale of flow development. Clearly, the turbulence can never be 
in equilibrium because it never has time to adjust to i t s  changing environ- 
ment. The structure of turbulence in wakes can be self-preserving only be- 
cause the time scale of the turbulence and that of the flow keep pace with 
each other as the wake moves downstream. 

The turbulent energy budget The equation for the kinetic energy of the 
turbulence, in an approximation which is consistent with the momentum 
equation (4.1.191, reads 

o=-uo - ( ( i L 7 2 ) - u v - - - v ( j q 2  a 7  -au a +;) --@. 
ax av av 

(4.2.30) 

Here, = ux is twice the kinetic energy per unit mass. The first term of 
(4.2.30) i s  convection of 2 by the mean flow. This term is called advection 

in order to distinguish between it and thermal convection. The second term is  
production, the third is transport by turbulent motion, and the last is  dissipa- 
tion. We designate these terms by the letters A, P, T, and D. 

With a few approximations, the distributions of the terms in (4.2.30) 
across the plane wake can be computed. We retain the approximation 
-fi = -Us2 f’/RT, which is  known to be slightly in error toward the edges of 



121 4.2 Turbulent wakes 

9= I /measured 

- 
Figure 4.4. Comparison between (4.2.31) and the measured distribution of q2 in a 
plane wake (adapted from Townsend, 1956). 

the wake. An expression for 3 is  also needed. We expect that 4“ and -fi are 
closely related; le t  us assume that -uV 0.4 q2 /3 outboard from the peak in 
f ’ (which occurs a t  ,$ = 1 1. Thus for f > 1, we use 
- 
q2 2 -7.5 Ui f ‘/RT. (4.2.31) 

The region between the center line and f = 1 has to be dealt with separately, 
because q2 does not vanish a t  the center line while -uV = 0 and f = 0 a t  f = 0 
for reasons of symmetry (Figure 4.4). 

For the transport term we use a mixing-length assumption because it also 
must be self-preserving. Hence, we put 

- 

(4.2.32) 

This simple form is adequate for such a crude model. We assume that v-r is  
constant, realizing that this assumption is likely to be somewhat in error near 
the edges of the wake. Further, we take Q in (4.2.32) to have the same 
value as VT in (4.2.1 I), because the transport mechanism is probably similar. 
We should keep in mind that (4.2.32) cannot be applied to an off-axis peak of 
fg“, because we cannot use symmetry to argue for a constant (or even finite) 
value of VT. 

With (4.2.31) and (4.2.321, the transport term in (4.2.30) can be expressed 
in terms of f. Thus we can write all terms except E in terms of f. Using 
(4.2.15) and (4.2.17,4.2.18), we obtain 

LRT 0.3f f (3 - E2 1, (4.2.33) 
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{RT P/U: % t 2 f 2 ,  (4.2.34) 

{R, T/U: - 0.3 f t (3  - E2). (4.2.35) 

We see that, within th is  approximation, the advection exactly cancels the 
transport, leaving the dissipation to cancel the production. The exact equality 
seems hardly accidental. We leave it to the  reader to demonstrate that, i f  the 
exchange coefficients for momentum and energy are the same (but not neces- 
sarily constant) and if -F/' i s  constant, the advection and the transport 
always cancel, except for a term depending on the variation of R,. The 
difference between advection and transport becomes smaller as the edge of 
the wake is  approached. Also, production must be relatively small near the 
edge of the wake because it is  quadratic in f. 

The overall picture suggested by (4.2.33-4.2.35) i s  this: in the outer 
region of the wake (beyond t2 = 3 )  turbulent transport brings kinetic 
energy from the center of the wake, where it is  removed by advection. In 
other words, the edge of the wake is propagating into the surrounding un- 
disturbed fluid and is blown back by the component of the mean flow normal 
to the wake boundary. Closer to the center, production becomes important, 
but it is roughly balanced by dissipation. Inboard of t2  = 3, advection de- 
posits kinetic energy, which i s  removed by transport to the outer edges of the 
wake. The different terms are sketched in Figure 4.5 with solid lines. 

We do not expect dissipation to decrease in the center of the wake. On the 
contrary, we expect that  the dissipation i s  essentially constant in the turbu- 
lent part of the flow because of the thorough mixing from one side of the 
wake to the other. Hence, the curve representing D should have a shape 
similar to that of the intermittency y (Figure 4.3); the dissipation should 
decrease quite slowly from i t s  value on the axis (t = 0) to the value D = -P 
predicted by (4.2.34) near t h e  production peak a t  t = 1. This i s  also sketched 
in Figure 4.5 with a dashed line. 

The expression (4.2.34) for the production, of course, is  correct near the 
center of the wake because P =  0 a t  t = 0. I f  advection, which is  bringing in 
turbulent energy, continues to rise as the axis is approached, and if dissipa- 
tion, which removes energy, does the same, while production falls off sharply, 
the removal of energy by turbulent transport must decrease near the axis. The 
decrease is  somewhat delayed because the slope of A a t  [ = 1 is larger than 
that of D, so that transport must increase for a while. As A and D level off, 
however, T must decrease. In Figure 4.5 a dashed curve represents this effect. 
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-0.6 I , I 
1 2 3 

- t  

Figure 4.5. The turbulent energy budget of a wake. The solid lines are based on 
(4.2.334.2.35); the dashed lines are extrapolations described in the text. 

In the central part of the wake, therefore, the mean-flow transport (advec- 
tion) deposits turbulent energy, some of which i s  dissipated locally and some 
of which is transported toward the  outer part of the wake. Most of the energy 
transported to the outer part of the wake comes from just inboard of the 
production peak. As an aside, we note that  near the center line, gradient- 
transport (mixing-length) concepts are very poor: there i s  almost no energy 
gradient, a(; ?) lay ,  and what l i t t le  there i s  has the wrong sign. The energy 
flux is locally uphill. 

The predicted energy budget presented in Figure 4.5 i s  in good qualitative 
agreement with the available experimental data. However, the predicted 
values of advection and transport near the edge of the wake are too small by a 
factor of about 2. As we saw before, the measured velocity profile in wakes 
deweases more rapidly than the f calculated on basis of a constant eddy 
viscosity. Hence, the gradient of the actual f i s  larger than the gradient of the 
f that  has been used in these predictions (4.2.15). If the measured velocity 
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profile is used to calculate the  advection term, it increases substantially and 
matches the experimental data. As we have seen, T keeps pace with A, in- 
dependent of what curve is used for f, so that the use of the measured f also 
brings T in close agreement with the data. In effect, the predictions 
(4.2.33-4.2.35) should be modified for the effects of intermittency. 

The fact that  the dissipation decreases as fast as production near the edge 
of the wake is a l i t t le  surprising. If D -u3/4 we would expect that D would 
be proportional to (f’l3’’/t. Actually, the dissipation decreases as P, which is 
proportional to ( f ’ ) ’ .  The explanation must be that the length scale increases 
as (f‘-’I2 near the outer edge. This seems realistic; as we have noted before, 
the  eddies responsible for contorting the interface between the wake and the 
irrotational fluid are of larger scale. 

4.3 
The wake of a self-propelled body 
In order to find the behavior of the length and velocity scales in self-preserv- 
ing wakes, we were forced to make use of the momentum integral. In a very 
important practical case, that of a self-propelled body, the momentum in- 
tegral vanishes. Through i t s  propulsor (propellor, jet engine) a self-propelled 
body traveling a t  constant speed adds just enough momentum to cancel the 
momentum loss due to i t s  drag, so that the wake contains no net momentum 
deficit. We assume that  the  body does not operate near an interface of two 
media, so t h a t  no wave drag is  involved. Figure 4.6 illustrates th i s  situation. 
The integral (4.2.8) vanishes identically and the value of n in t u x n ,  
us - xn-l remains undetermined. 

It i s  not possible to resolve this problem without making the assumption 
that  vT i s  constant from the beginning of the analysis. In view of the more 
complex structure of a self-propelled wake, with the secondary extrema of U 
on either side of the center line, th i s  assumption i s  even more questionable 
than it was in the wake with nonzero momentum. For example, a t  the center 
line we have -== 0 and aUIay = 0, so that their ratio is constant because of 
symmetry. At the secondary extrema, however, symmetry arguments are not 
applicable, so that there is no reason to expect that -= is zero where 
aUDy = 0. All results based on a constant value of vT thus have a qualitative 
significance only. It is particularly important to recognize that the existence 
of similarity in wakes with finite momentum defect does not depend on the 
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Figure 4.6. The wake of a self-propelled body. The station shown is far downstream of 
the body. 

eddy-viscosity assumption. In the self-propelled wake, however, similarity can 
be obtained only by assuming that vT is  independent of y. 

Plane wakes Let us consider a plane self-propelled wake. I f  VT is 
independent of y, we may write the momentum equation (4.1.19) as 

(4.3.1 

Here, the constant Uo has been subtracted from U for convenience. I f  we 
multiply (4.3.1 .) by y" and integrate by parts twice, we obtain 

If we put n = 2, the right-hand side of (4.3.2) vanishes, so that we obtain 

00 1- yz Uo (U - Uo) dy = const. (4.3.3) 

I f  we further assume t h a t  the velocity-defect profile is self-preserving, there 
results 

U s t 3 j  t' f (0 dt = const. (4.3.4) 
a 
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Because self-preservation of the equations of motion requires that  e-fl, 
Us - x"-l (4.2.6), we obtain 3n + n - 1 = 0 or n = a. Hence, 1 

us =  AX-^'^, /= Bx 'I4, (4.3.5) 

where A and B are undetermined coefficients. The decay of Us i s  thus 
substantially faster than in the wake with finite momentum. 

If we substitute (4.3.5) and (4.2.12) into (4.2.5). we obtain 

Q(3f + ,y) + f" = 0, 

where a = UoB RT/4A. The solution to (4.3.6) is  

(4.3.6) 

(4.3.7) 

Here, /has been defined by selecting Q = 1, as before. The velocity profile 
(4.3.7) is qualitatively similar to the one sketched in Figure 4.6. No informa- 
tion on the value of RT in self-propelled wakes is available, although it is  not 
likely to be much different from the value of RT in ordinary wakes. 

From an experimental point of view, it is  of interest to ask what would 
happen if both the self-propelled and the finite-momentum wakes were simul- 
taneously present. Imagine that a slight inaccuracy has been made in satisfy- 
ing the condition of self-propulsion (zero momentum deficit). The wake then 
consists of 

(4.3.8) 

These are the f i rs t  two terms of a general expansion that could be used for 
any wake profile (a Gram-Charlier expansion). Substitution of (4.3.8) and 
(4.2.12) in the equation of motion (4.2.5) gives, by equating like powers of E ,  
e= (2~Tx/uo)11z, a a x - l l Z ,  b a x-3f2. (4.3.9) 

This rather surprising result claims that  the presence of a nonzero momentum 
integral dominates the growth of the  length scale and forces quite rapid decay 
of the self-propelled component of the wake. Consider an attempt to produce 
a self-propelled wake in the  laboratory. I f  we achieve self-propulsion to the 
extent tha t  b/a = lo2 a t  one body diameter (the momentum mismatch then is 
19/01, it takes only 10' body diameters downstream before the self-propelled 
component is overshadowed by the momentum-deficit component. This may 
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explain why no data on self-preserving, self-propelled wakes are available. The 
Reynolds number of the self-propelled component of the plane, "mixed" 
wake varies as x-l, so that th is  component quickly ceases to be turbulent as 
it progresses downstream. 

Axisymmetric wakes In the case of the axisymmetric wake of a self-pro- 
pelled body, an analysis similar to that  just presented gives Us ax415, 
Pax'/', so t h a t  Rtax-3/5. In the case of a "mixed" wake with self-pro- 
pelled and finite-momentum components, the development of the length 
scale is  again forced by the momentum defect, so that  to: x ' I3. The momen- 
tum-defect component then decays as x"13 and the self-propelled 
component decays as x40. Again, the Reynolds number of the self-propelled 
component varies asx-' . 

The fact that the self-propelled wake decays so much faster than the wake 
with finite momentum defect has some interesting implications. A maneuver- 
ing aircraft or submarine, which is accelerating or decelerating a t  times, leaves 
behind it a momentumdefect jet or wake when it is  changing speed and a 
self-propelled wake when it is not. The latter decays much more rapidly. 
After some time, only the patches of wake representing changes of speed 
survive. 

4.4 
Turbulent jets and mixing layers 
In jets and mixing layers there are two velocity scales, u and Us, which are 
related by u'/U: = O(p/L) as given in (4.1.20). It is clear that u/US needs to 
be constant in order to achieve self-preservation. The turbulence must retain 
the same relative importance as the jet develops; if the relative magnitudes of 
the turbulence and the mean flow are constantly changing, the flow cannot 
possibly be self-preserving. Because u'/%* = 8 (e/L), a consequence of &/Us 
being constant is that t/L must be constant. Since L is  a downstream length 
scale, we expect tha t  in mixing layers and je ts lax.  If &/L is constant, the 
approximations obtained in Section 4.1 do not improve as x increases. Ex- 
periments indicate that //L = 6 x lo", as was remarked earlier. 

Because u is proportional to Us, either one can be used as a scaling velo- 
city. Let us use Us, so that we can write 

u = U,f(E).  (4.4.1) 
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(4.4.2) 

-uv = U,2g([ ) ,  (4.4.3) 

,$ = y/& f = t ( x ) ,  us = U,(X). (4.4.4) 

Here, as before, primes denote differentiation with respect to E ;  t = 0 a t  the 
center line. We must bear in mind that g m a x  # 1; instead, we have 
gmax =cc'/u,' = O(4L).  

If we substitute (4.4.1-4.4.3) into (4.1.21), we obtain 

Self-preservation can be obtained only i f  we require 

(4.4.5) 

(4.4.6) 

where A and B are constants. The first of these is not a surprise, because we 
already knew that L x and that e/L must be constant. The second condition 
in (4.4.6) can be satisfied by any power law Us a x , ,  including n = 0. 

Mixing layers In a mixing layer, the velocity difference Us is imposed 
(Figure 4.1) by the external flow. I f  Us is constant, (4.4.5) reduces to 

With the eddy-viscosity assumption (4.2.12)' this becomes 

(4.4.7) 

(4.4.8) 

Here, of course, R, is taken to be constant. It is not possible to obtain a 
solution of (4.4.8) in closed form. However, for the scale relations this is 
irrelevant. Let us define 8 by taking R, dt/dx = 1, so that all adjustable con- 
stants in (4.4.8) are absorbed bye. This corresponds to the normalization 
used in wakes. The profile predicted by (4.4.8) is in fair agreement with 
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experimental data if 

R, = 17.3, /=x/17.3 = 5.7 x 10-2x. (4.4.9) - 
At the edges of the mixing layer there are small discrepancies due to inter- 
mittency. The Reynolds number Us//v of mixing layers apparently increases 
rapidly ( R G a x ) .  Because there is no initial length (such as the jet orifice 
height or the momentum thickness) in the mixing layer, length scales must be 
compared with the viscous length v/U,. Experiments indicate that the mixing 
layer becomes self-preserving when U$/v >4 x 1 05.  

Plane jets In i t s  initial stage of development, a plane jet consists of two plane 
mixing layers, separated by a core of irrotational flow (Figure 4.7). Some 
distance after the two mixing layers have merged, the jet becomes a fully 
developed, self-preserving turbulent flow. The center-line velocity Us then 

Figure 4.7. A plane turbulent jet. The jet becomes selfpreserving some distance after 
tke two mixing layers near the orifice have merged. 
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varies as x" (n #O), and a momentum integral is needed to determine the 
power n. If t h e  velocity profile is self-preserving, the momentum integral 
(4.1.27) becomes 

(4.4.1 0) 

where U, i s  the initial jet velocity and d i s  the orifice height (Figure 4.7). We 
conclude that 2n + 1 = 0 or n = T: in order to make the momentum flux in the 
jet constant. Thus we obtain, for large enough values of x/d, 

U,/U, = C(x/d)-"*, (4.4.1 1) 

while c!= Ax, as given by (4.4.6). The Reynolds number R, = USdb increases 
asx'"  , so that  the viscous terms become smaller and smaller asx  increases. 
With the use of the eddy-viscosity assumption, (4.4.5) becomes 

--- ' de R, ( f 2  +f 's, '  f dE) = f" .  
2 dx 

(4.4.12) 

If we define 4 again by taking dQdx = ~ / R T  (as in the other cases, this corres- 
ponds to f S e-ln a t  t= 11, we can solve (4.4.1 2 J to obtain 

f = sech2 (E2/2) 'I2. (4.4.1 3) 

This fits the experimental data very well, except near the edges of the jet, if 
we take 

e= O.O78x, R, = 25.7, Us/UJ = 2.7(d/x)'/'. (4.4.14) 

Compared with the wake, the value of R, in jets is surprisingly large. The 
value of R, in the  mixing layer (4.4.9) i s  intermediate between those of the 
jet and the wake, because the mixing layer is jetlike on one side and wakelike 
on the  other. 

Not much experimental information is available on plane jets. Measured 
mean-velocity profiles appear to be self-preserving beyond about five orifice 
heights (x/d > 5). 

U /U = 6.4d/x, e= O.O67x, R, = 32. (4.4.1 5) 9 -- " - I__(__c^_ 

The Reynolds number U,e/V is constant in axisymmetric jets. No measure- 
ments have been made beyond 40 orifice diameters. The mean-velocity p ro  

- ___.- -- ---1 - -_ ._-_-_______ -. 

The axisymmetric jet can be approached in the same way. We obtain 
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file appears to be self-preserving beyond about x/d = 8, while the turbulence 
quantities are st i l l  evolving a t  40 diameters. 

The energy budget in a plane jet If the analysis of Section 4.1 i s  applied to 
the turbulent energy budget in a plane jet, we find that  to lowest order 
production balances dissipation. This is too crude; if we want to take advec- 
tion and transport into account, we have to include terms that  are of order 
(e/L)ln andUL compared to the leading terms. The full equation reads 

(4.4.16) a 
aY 

-- “ ; q 2 + P / P ) V l - € .  

We designate the terms by A l ,  A2,  P I ,  P2, T, and D. With the same approxi- 
mations as made in Section 4.2, we can obtain expressions for A l ,  A2,  P1, 
and T. The only term that presents a problem is  P2,  which is  a production 
term caused by normal-stress differences. On grounds of self-preservation we 
expect that  K, defined by 

- -  - -  
u2 - v2 K(u2 + v’), (4.4.1 7) 

i s  a function of  5 = y/lonly. The energy in the u component differs from that 
in the v component because the major production term P1 feeds energy into 
u z ,  so t h a t  the energy must leak into 7 by inertial interaction. The value of 
the difference depends on the ratio of the supply rate to the leakage rate; this 
ratio may be expected to be constant because the two rates are determined 
by the same turbulence dynamics. Hence, we assume that  K is not a function 
of position. Clearly, K is less than unity. If we use (4.2.31 1, (4.4.1 71, and the 
approximate relation u2 + v2 2 3q2 ,  we can also express p2 in terms o f f .  

Even near the edge of the jet ( E  > 3). we st i l l  have y/x << 1. Therefore, 
we do not violate the assumption of a slow evolution, and (4.1.16) remains 
valid. Approximate expressions for the terms in (4.4.16) near the edge of the 
jet (t > 1 ) are, if we use the mean velocity profile (4.4.131, 

RTt‘Pl /U = 2f2 ,  (4.4.1 8) 

R,tP2/U,3 = 0.28Kf2, (4.4.19) 

RTGAI/Ui = -0.58Ef2, (4.4.20) 

- 

- -  
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R-&Az/Ui = -0.41f, (4.4.21) 

R,d'T/Ui = 0.41f. (4.4.22) 

The dissipation D again can be found by difference. From (4.4.18-4.4.22) it 
i s  clear that PI ,  Pz, and A l  all are proportional to f Z ,  so that  near the edge of 
the jet they become negligible long before A z  and T, which are proportional 
to f. As in wakes, we find that A2 and T have the same numerical coefficient; 
it can be shown that  this is valid for any f if z/? is constant and if the 
transport term can be represented by a gradient-transport expression like 
(4.2.32). Thus, the energy carried by transport from the center of the jet is 
removed by the second advection term, A2. 

Physically, what is happening is this: near the outer edge of the jet, only 
one component of the mean velocity, V, i s  nonzero; it approaches a constant 
value in the plane jet, thus entraining the fluid surrounding the jet. Because 
the average boundary of the jet i s  stationary, turbulent energy must be trans- 
ported into the "entrainment wind" a t  just that speed which keeps the aver- 
age position of the interface stationary. This result is  essentially independent 
of the assumptions embodied in (4.4.184.4.22). BecauseAz and T balance, 
dissipation plays no role. Note thatA1 plays no dominant role here, contrary 
to the situation in wakes. 

Closer to the center line of the jet, the energy budget becomes more 
complicated. Calculated distributions of the terms in (4.4.161, based on the 
same approximations that  were used for wakes, are presented in Figure 4.8. 
The mean velocity profile (4.4.13) was used; the second production term 
(Pz )  has not been plotted because it is never larger than -0.003 if K in 
(4.4.1 7) i s  0.4. The plot shows that  Az and T balance in the far edge of the 
jet, as we discussed earlier. Somewhat closer to the center line, the sum of A ,  
and A2 approximately balances T while P and D balance each other, as in 
wakes. Close to the center line, A2 becomes negligible and A 1  reverses sign. 
Also, P1 must decrease to zero a t  = 0 because f' = 0 there, and D levels out 
near the center line. The energy budget in the center region thus may be 
expected to be similar to that in the wake (Figure 4.5). 

Unfortunately, there are almost no measurements with which this analysis 
can be compared. Near the edge of a jet, the mean velocity i s  small, so that 
the turbulence level, measured as a fraction of the mean velocity, reaches very 
high values, and reversal of the flow becomes a frequent occurrence. The 
instruments customarily used to measure turbulence (hot-wire anemometers) 
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Figure 4.8. Calculated energy budget in the plane jet. 

cannot tolerate this situation. However, the agreement between experimental 
data and predicted values is fairly good in the energy budget of a plane wake, 
so that we may expect that Figure 4.8, which is based on the same set of 
assumptions, a t  least presents a qualitatively correct picture. 

4.5 
Comparative structure of wakes, jets, and mixing layers 
In Table 4.1 are collected the exponents of the power laws describing the 
downstream variation of Us, d, and R, = U,Lp/v in the various flows we have 
examined. Also listed are the exponents, including those of the temperature 
scale, for buoyant plumes (Section 4.6). The values of RT of the various 
flows are also listed. 

The large variation in the values of R, requires some explanation. The 
definition R, = U,e/vT uses the velocity scale Us rather than a velocity scale 
characteristic of the turbulence. For jets and mixing layers, cl2/US2 - / /L ,  so 
that the use of a suitably defined a should substantially reduce the value of 
RT. Let us define a velocity scale u ,  characteristic for the turbulence by 
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Table 4.1. Powers of x describing the downstream variation of Us, C, Rd, and the tem- 
perature scale T of free shear flows. Also listed are the values of RT and U,,C,,IVT; these 
parameters are independent of position. 

Powers of x for 

us 4 Rd T RT u+t+lvT 

Plane wake 

Self-propelled plane wake 

Axisymmetric wake 

Self-propelled 
axisymmetric wake 

Mixing layer 

Plane jet 

Axisymmetric jet 

Plane plume 

Axisymmetric plume 

-1  12 

-314 

-213 

-415 

0 

-112 

-1 

0 

-1 13 

1r2 o - 12.5 2.75 

114 -112 - 7 7 

113 -113 - 14.1 2.92 

115 -315 - ? ? 
1 1  - 17.3 4.00 

1 112 - 25.7 4.18 

1 0  - 32 4.78 

1 1  -1 7 ? 

1 213 -513 14 2.9 

(4.5.1 ) 

The maximum value of f‘ is, of course, different in each case we have dis- 
cussed. Also, the definition of /varies somewhat from case to case. It would 
be preferable to  use a length scale€* such that Us//* is  the same fraction of 
the maximum of aU/ay; a convenient number is e lR ,  because that is the 
inverse of the maximum slope for plane and axisymmetric wakes. Thus, 

which yields 

e/e, = el” max(f’). 

(4.5.2) 

(4.5.3) 

A more meaningful turbulent ReynolL- number, which allows us to com- 
pare all of the boundary-free shear flows on an equal footing, can now be 
defined as 

1/2 u*8* - = (  - 
RT I ]  * vT emax(f ) 

(4.5.4) 
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The value of max(f9 can be computed from the mean-velocity profile of each 
flow. If these numbers are substituted into (4.5.4, the values of u*e*/vT 
given in Table 4.1 are obtained. 

The values of u.&/v, clearly separate into two groups, wakes on the one 
hand, jets and mixing layers on the other hand. Within each group the varia- 
tions in u,/,/v, are probably not significant, although there seems to be a 
consistent tendency for axisymmetric flows to have higher values than plane 
flows. 

The difference between the two groups of flows requires explanation. 
The only quantity in u*e*/vT which is open to question is d* : it is related in a 
uniform way to the slope of the mean-velocity profile, but we do not know 
how it is related to the length scale of the turbulent eddies. Suppose that the 
cross-stream scales of eddies which contribute to the momentum transport in 
jets and mixing layers are smaller than they are in wakes. We expect 
that the eddy viscosity V ,  - UJ,, where d, is a turbulence length scale. The 
value of u,&/v, would then be effectively equal to d*/C,. In order to explain 
the observed difference, the value of A/& in jets and mixing layers needs to 
be about 1.5 times the value in wakes. How can we explain this? 

The one important way in which jets and mixing layers differ from wakes 
is that the cross-stream advection term V a U h y  is of the same order as 
U aUhx in jets and mixing layers, while the former is negligible compared to 
the latter in wakes. In jets and mixing layers, therefore, as much momentum 
is carried by the transverse flow as by the downstream flow. The transverse 
flow has a strain rate (aV/ay)  associated with it, which tends to compress 
eddies in the cross-stream direction. This may explain why these eddies tend 
to have smaller length scales than those in wakes. In fact, a crude calculation 
(Townsend, 1956) indicates that the expected compression factor is about 
1.5. This is in agreement with observations on the intermittency 7 in 
axisymmetric jets. The region over which 7 decreases from one to zero in jets 
is much narrower than that in wakes, implying that the large eddies, which 
are responsible for contorting the interface, are indeed relatively small. 

4.6 
Thermal plumes 
In a medium that  expands on heating, a body that i s  hotter than i t s  surround- 
ings produces an upward jet of heated fluid which is driven by the density 
difference. The most familiar example is the plume from a cigarette in a quiet 
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room. Atmospheric thermals rising over a surface feature of high temperature 
and plumes from smokestacks are other common examples. Also, if liquid of 
a certain density is poured into a liquid of lower density, it forms an upside- 
down density-driven plume. These flows can be analyzed in the same way as 
wakes and jets by employing the concept of self-preservation (Zel’dovitch, 
1937). In the atmospheric examples we will study, we have to assume that 
the environment is neutrally stable. The stability plays the role of a stream- 
wise pressure gradient; no self-preserving solutions can be expected if the 
stability is an arbitrary function of height. 

We restrict the analysis to thermal plumes in the atmosphere, in which 
density differences are created by temperature differences. We use the Bous- 
sinesq approximation to the equations of motion, which was introduced in 
Section 3.4. We recall that in the Boussinesq approximation, the buoyancy 
term -gp’/p is replaced by g6/O0, where Oo is  the temperature of the adiabatic 
atmosphere and 6 is the difference between the actual temperature and Oo. 
The temperature difference 6 is decomposed into a mean value 8 and temper- 
ature fluctuations 6 (6 0). I f  6 = 0, the atmosphere is neutrally stable. If 5 
increases upward, the atmosphere is stable; if it decreases upward, the atmo- 
sphere is unstable. 

The Mach number of these plumes is presumed to be low, so that the 
continuity equation retains i ts  customary form. If the acceleration of gravity 
points toward the negative x 3  direction, the equations of mean motion and 
mean temperature difference are 

- 

(4.6.1) 

(4.6.2) 

(4.6.3) 

Two-dimensional plumes Let us consider two-dimensional plumes driven by 
a line source of heat (Figure 4.9). We take thez axis to be vertically upward. 
The line source is  assumed to be parallel to they axis, so that 

V =  0, a/ay =o.  (4.6.4) 
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We assume that the flow in the plume is nearly parallel, just as in ordinary 
jets; we develop approximate equations of motion based on this premise. 
Referring to Figure 4.9, we have 

a/az - I IL, a/ax - I 14 awpx - us/& (4.6.5) 

Substituting these estimates into (4.62), we obtain for the horizontal velocity 
component 

u 4 U , l  L . (4.6.6) 

We further take the turbulent velocity fluctuations to be of order a, the 
turbulent temperature fluctuations to be of order t ,  and 6 to be of order T. 
The relations between these scales must be determined in the course of the 
analysis. 

The x-momentum equation is exactly the same as (4.1.7) expressed in the 
proper coordinate system because the buoyancy term occurs only in the 
equation for the z momentum. Hence, the orders of magnitude are the same 
as those given in (4.1.8). Thus, with the provisions expressed in (4.1.10), 
(4.1.9) holds for plane plumes: 

pz t P = Po. (4.6.7) 

L 

U 

Figure 4.9. Plane thermal plume. 
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Substitution of (4.6.7) into the z component of (4.6.1 ) gives 

aw aw a - a - -  u- +w- + - b W )  + - (w2- u2) 
ax az ax az 

(4.6.8) 

Far away from the center of the plume, where there is  no flow or turbulence, 
(4.6.8) reduces to 

(4.6.9) 

Hence, the sum of the pressure term and the buoyancy term in (4.6.8) may 
be written as 

lap, 9 - 9 - - 
p az 0, a, --- +-  8 =-  ( I 9  - 8 0 ) .  (4.6.1 0) 

In plane plumes, the temperature equation reads 

We have to assume that 90 is independent of z. In the momentum equation 
only the difference 8-19, appears, but if the temperature equation (4.6.1 I) is 
written in terms of 6-19,, a term WaFo/az is generated, which makes self- 
preservation impossible. We would haveadditional terms on the right-hand side 
of (4.6.1 I), too, but we do not expect those to be dynamically important. If 
80 is constant, the mean temperature can be written as a temperature differ- 
ence everywhere in the equations, so that we lose no generality if we simply 
put & = 0, which means a neutral atmosphere. 

- -  
- -  

The orders of magnitude of the terms in (4.6.8) are 
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(4.6.12) 

In order to have any mean-flow terms a t  all, we must again assume that 

UlU, = 0 (e/L 1 1'2. (4.6.1 3) 

The scaling thus is the same as in the "mechanical" jet, so that we have, to 
first order, 

aw aw a - g -  u- 4- w- i. -uw =-a. 
ax ax ax 0 0  

(4.6.14) 

Note that the pressure term has been removed from (4.6.11) with (4.6.10) 
and a. = 0. The temperature term has been kept in (4.6.1 I), although we do 
not know i t s  magnitude yet. If we want thermal effects to be as important as 
the Reynolds stress, we need 

g7-I00 = 0(u2/er. (4.6.1 5) 

The orders of magnitude of the various terms in the temperature equation 
(4.6.1 1) become 
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a - t a  
-9u 'a '  ax 

(4.6.16) 
a - tu t tu - -ow : __- ._  az L L e '  

az 9 
azz r- 

In order to have a term which is of the same order as the third, we must 
require that 

lTUs = 0 ( L t a). (4.6.17) 

I f  the molecular diffusion terms in (4.6.12) and (4.6.16) are to be of the same 
order as the neglected turbulent transport terms, we need 

(4.6.18) 

With the aid of (4.6.13) and (4.6.171, these conditions reduce to 

R i l  = 0(4'Ll3", ( r l ~ ) R i ' =  0(t/L)3/2. (4.6.19) 

In gases, y / u r  1, so that the provisions (4.6.19) are equally stringent. Of 
course, if Rc is larger than (LI?))"~ , the molecular terms in (4.6.12, 4.6.16) 
are even smaller than the neglected transport terms. 

With these provisions, the temperature equation reduces to  

as a5 a -  u - + w - + - eu = 0. 
ax a Z  ax (4.6.20) 
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The combination of (4.6.13) and (4.6.17) gives 

t lT= 6 ( u l U s )  = 6 ( P / L ) ' n .  (4.6.2 1 ) 

Self-preservation In order to have self-preservation, t/Tand u/US need to  be 
constant, because the temperature fluctuations 6 should play the same rela- 
tive role in the mean-temperature field g a t  all z, and the velocity fluctuations 
u,w should have the same relative importance in the mean-velocity field U,W 
a t  all z. We conclude from (4.6.21) that these requirements are consistent 
with the approximations developed so far if U L  i s  a constant. Because z is the 
only possible choice for L, thermal plumes grow linearly ( l a  z ) ,  just like jets. 

Because t/T and u/U, are constant, we can use T and Us as scales of 
temperature and velocity. The assumption of self-preservation then can be 
expressed as 

w= Usf(xl& = USf(( ) ,  

(4.6.22) 

- 
- u w = U i g ( ( ) ,  - % = T U s h ( ( ) ,  9 = TF(E),  

whered=&z), Us = Us(z), T = T(z), and ( = x/L If (4.6.22) is  substituted into 
(4.6.14) and (4.6.201, there results 

- " F ,  
0 0  u: (4.6.23) 

- - - F ' [  / dUs t t f d ( + s F ' [ f  ( f ' d ( + - - f F - - ( f F ' = h ' .  e dT d t  
Us dz 0 dz T dz dz 

(4.6.24) 

Here the primes denote differentiation with respect to  (. If we are to  obtain 
self-preservation, the coefficients in (4.6.23,4.6.24) must be constant: 

(4.6.25) 
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We clearly need linear growth of the plume; that is, 4=c22.  The first and 
third relations in (4.6.25) only state that Us and T must be powers of z. If 
Us an" and T a z m ,  the fourth relation in (4.6.25) gives m + 1 = 2n. so that 

us = A Z ~ ,  T =  B Z ~ ~ - ~ .  (4.6.26) 

We obviously need a constraint similar to a momentum integral. However, 
momentum is not conserved in a plume because the potential energy repre- 
sented by the buoyancy is being converted into kinetic energy, so that the 
momentum is continually increasing. Instead, an integral related to the 
amount of heat added per unit time is constant. 

The heat-flux integral 
the continuity equation, as 

Let us take (4.6.20) and rewrite it, with the help of 

This may be integrated with respect to x ,  which yields 

(4.6.27) 

(4.6.28) 

The constant may be identified as H/pcp, where H is the total heat flux in the 
plume, because pcp 3 is  the amount of heat per unit volume and Wdx is  the 
volume flux per unit depth. Substituting the first and last of (4.6.22) into 
(4.6.281, we obtain 

- H 
6TUs f F d [ = - .  

PCP 
Q 

(4.6.29) 

Therefore, with (4.6.26) and t =  c2z, we find 

Us = const, T = Bz-' . (4.6.30) 

If exactly the same reasoning is applied to axisymmetric plumes, we obtain 

C a  z, Usa z - ' I 3 ,  T a  z- ' I3.  (4.6.31 ) 

Further results Let us return to the equations for the plane plume. Because 
dU,/dz = 0 by virtue of (4.6.301, several terms in (4.6.23) and (4.6.24) are 
zero. With a l i t t le manipulation, the equation of motion reduces to 
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The simplified temperature equation can be integrated once, to yield 

dL' E 
dz o 

- - F j  fdE=h.  

(4.6.32) 

(4.6.33) 

The presence of d tldz - u2 lU: i s  due to the use of -uT = U: g rather than 
u2g: g is  not of order one, but of order d[/dz. 

The set (4.6.32, 4.6.33) can be solved only if the turbulent transport of 
momentum and heat is represented by mixing-length expressions. The eddy 
viscosity vT and the eddy thermal diffusivity yT may be assumed to be 
constant. The turbulent Prandtl number YTIVT may be taken to be equal to 
one, because the horizontal temperature transport depends mainly on the 
temperature fluctuations produced by the horizontal temperature gradient, so 
that temperature transport is governed by the same mechanism as momentum 
transport. As in "mechanical" jets, [may be defined by putting dqdz ?/RT. 
No experimental data on RT in plane plumes are available, but in axisym 
metric plumes the value of RT is  about 14, with dudz E 1 /RT if [is taken as 
the value of x where f E exp(-i)  (Rouse, Yih,and Humphreys, 1952). This 
value is comparable to that in wakes, but it is substantially smaller than that 
in mechanical jets (Table 4.1). The entrainment wind apparently does not 
reduce the size of eddies in plumes. This is due to the stable temperature 
gradient near the plume, which compresses eddies vertically and expands 
them horizontally. We leave it to the reader to convince himself that this 
effect quantitatively tends to balance the horizontal compression caused by 
the entrainment wind during the life of a rising eddy. 

are substituted into (4.6.32) 
and (4.6.331, there results 

I f  mixing-length expressions for uW and 

(4.6.34) 

(4.6.35) 

These equations incorporate the assumptions dUdz = I/RT and yT = vT. At 
the center line of the plume, F = 1 and f = 1 by definition. If the shape o f f  
may be approximated by exp(- E2), f' = -1 at  = 0. At  the center line, the 
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first term of (4.6.34) vanishes, so that we obtain 

(4.6.36) 

The integral in (4.6.29) is about one i f  F r f z e x p  (-:$*). Therefore, we 
obtain the approximate relation 

/TUs z H/pcp. (4.6.37) 

From (4.6.361, (4.6.37), and t = z / R ~ ,  we obtain 

(4.6.38) 

(4.6.39) 

With RT = 14, T and Us can be determined if the heat flux is known. 

Problems 

4.1 Consider an axisymmetric jet that issues from an orifice of diameter d 
with a velocity Uo. The ambient fluid is not a t  rest but moves in the same 
direction as the jet, with a velocity 0.1Uo. Describe the early and late stages 
of development of this jet. 

4.2 A very long cylinder (diameter 1 mm) i s  placed perpendicular to a 
steady airstream whose velocity is 10 m/sec. The cylinder is heated electric- 
ally; the power input i s  100 watts per meter span. A t  what distance down- 
stream is the rms temperature fluctuation in the wake of the cylinder reduced 
to I'C? Assume that the distribution of the mean temperature difference in 
the wake is similar to the distribution of the mean velocity defect. For air a t  
room temperature and pressure, p = 1.25 kg/m3, cp  lo3 joule/ kg"C. 

4.3 A Boeing 747 taxies away from the airport gate. The pilot applies a thrust 
of 10,000 Ib (5 x lo4 newton) per engine; the engines are a t  a height of about 
4 m above the ground. The jet exhaust is initially hot, but it rapidly cools 
through mixing with the ambient air. For the purposes of this problem, the 
initial jet velocity may be taken as the one that produces the correct amount 
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of thrust a t  ambient density through the I-m-diam engine exhaust. How far 
behind the engine must a 2-m-tall man stand to be reasonably sure that he 
will not encounter gusts (mean plus fluctuating velocities) greater than 
10m/sec? As a rule of thumb, you may assume that the probability of 
encountering a velocity fluctuation greater than three times the rms value is 
negligible. 

4.4 Fresh cooling water from a nuclear power station a t  a river mouth is 
pumped out to sea in a large pipe and released at  the bottom to avoid thermal 
pollution. Assuming that the cooling water rises as an axisymmetric density- 
driven plume, a t  what depth must the cooling water be released to avoid 
raising the temperature in the first 30 m below the surface by more than 1"C? 
The volume flow of cooling water i s  10 m3/sec; the temperature and density 
a t  the point of release are 100°C and 0.96kg/m3, respectively. At 5"C, the 
density of fresh water is 1 kg/m3, and the density of sea water is 1.03 kg/m3. 
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