
THE DYNAMICS OF TURBULENCE 

In Chapter 2, we studied the effects of the turbulent velocity fluctuations on 
the mean flow. We now turn to the other side of the issue. Two major 
questions arise. First, how is the kinetic energy of the turbulence maintained? 
Second, why are vorticity and vortex stretching so important to the study of 
turbulence? To help answer these questions, we shall proceed as follows. We 
first derive equations for the kinetic energy of the mean flow and that of the 
turbulence. We shall see that turbulence extracts energy from the mean flow 
at  large scales and that this gain is approximately balanced by viscous dissipa- 
tion of energy at very small scales. Realizing that dissipation of energy at 
small scales occurs only if there exists a dynamical mechanism that transfers 
energy from large scales to small scales, we then turn to a study of vorticity. 
In order to gain an appreciation of the role of vorticity fluctuations, we first 
analyze how they are involved in the generation of Reynolds stresses. It turns 
out to be convenient to associate the Reynolds shear stress with transport and 
stretching of vorticity. With the understanding obtained that  way, the vorti- 
city equations can be studied. We shall discover that energy is transferred to 
small scales by vortex stretching and that the dissipation rate of energy is 
proportional to the mean-square vorticity fluctuations if the Reynolds num- 
ber is large enough. The analysis of the interaction between the vorticity and 
the strain rate demonstrates the dynamical role of strain-rate fluctuations; 
th is  gives us the opportunity to discuss some other problems in which the 
strain-rate fluctuations play a role. 

3.1 
Kinetic energy of the mean flow 
We found in Section 2.1 that the equations of motion for steady mean flow 
in an incompressible fluid are 

(3.1.1) 

(3.1 2) 

The stress tensor Tji is 

(3.1.3) 
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The mean rate of strain Sii is defined by 

(3.1.4) 

Since the mean momentum F o f  the turbulent velocity fluctuations is zero, 
we cannot discuss the effects of the mean flow on the turbulence very well in 
terms of mean momentum. We shall study the equations for the kinetic 
energy of the mean flow and of the turbulence instead. The equation govern- 
ing the dynamics of the mean-flow energy :UiUi i s  obtained by multiplying 
(3.1.1) by Ui. It i s  useful to split the stress term in the resulting equation into 
two components. The energy equation becomes 

Because Tij is  a symmetric tensor, the product Tii aU,laxi is  
product of Tii and the symmetric part Sij of the deformation 
(3.1.5) thus becomes 

(3.1.5) 

equal to  the 
rate aUilaxj; 

(3.1.6) 

The first term on the right-hand side of (3.1.6) represents transport of 
mean-flow energy by the stress Tij. This term integrates to zero if the integra- 
tion refers to a control volume on whose surface either Tij or Ui vanishes. 
According to the divergence theorem, 

(3.1.7) 

The vector nj is  a unit vector normal to the surface element ds. I f  the work 
performed by the stress on the surface S of the control volume V i s  zero, only 
the volume integral of Tij Sij can change the total amount of kinetic energy. 
The term TijSii is called deformation work; by virtue of conservation of 
energy, it represents kinetic energy of the mean flow that is lost to or re- 
trieved from the agency that generates the stress. The distinction between 
spatial energy transfer and deformation work is crucial to the understanding 
of the dynamics of turbulence. 

Pure shear flow As an illustration, let us take a pure shear flow in which all 
variables depend on x 2  only and in which the only nonzero component of U, 
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is  Ul  . For this turbulent Couette flow, which i s  sketched in Figure 3.1, the 
energy equation reads 

(3.1.8) 

Figure 3.1 illustrates that the rate of work done by the stresses per unit 
volume i s  equal to the first term in (3.1.8). The average value of the stress is 
Tlz ;  the work done by the average stress is equal to the second term in 
(3.1.8). Because the left-hand side of (3.1.8) is zero, the work 3 ( T l 2  U1  )/ax2 
performed by the stresses does not result in a change of the kinetic energy of 
this flow; instead, it is all traded for deformation work. This is consistent 
with (3.1.8), because this equation implies that Tij is constant. A constant 
stress field does not accelerate a flow; the tendency to change iUiUi  by 
a(T1 U1  )/ax2 is balanced exactly by the deformation work T,  aUl/ax2. 
Work is performed, but iUiUi  does not change. We expect that deformation 
work generally will be an input term for the energy of the agency that 
generates the stress and that the kinetic energy lUiUi will decrease because of 
the deformation work unless this loss is balanced by a net input of energy. 
However, no specific conclusions can be made without a study of the indivi- 
dual contributions of the various stresses to the deformation work. 

The deformation work is caused by the stresses that contribute to Tjj. 
Substitution of (3.1.3) into Ti,Sij yields 

TI1 - - u, (0) 

Figure 3.1. Stresses on a small volume element in a pure shear flow. 
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The contribution of the pressure to deformation work in an incompressible 
fluid is zero: 

(3.1 .lo) 

The contribution of viscous stresses to the deformation work is always 
negative; consequently, viscous deformation work always represents a loss of 
kinetic energy. For this reason, the term 2p SilSij i s  called viscous dissipation. 
Note that the dissipation is related to the strain rate, not to the vorticity (the 
vorticity i s  related to the skew-symmetric part of aUi/axj). 

The contribution of Reynolds stresses to the deformation work is also 
dissipative in most flows: negative values of tend to occur in situations 
with positive Sij, as we have seen in Chapter 2. Positive values of ux Sii can 
occur in unusual situations; even then the region in which Sij > 0 i s  a 
small fraction of the entire flow. Since turbulent stresses perform the de- 
formation work, the kinetic energy of the turbulence benefits from this work. 
For this reason -p u 5 S i j  i s  known as turbulent energy production. 

The effects of viscosity 
equation for the mean flow becomes 

If (3.1.3) i s  substituted into (3.1.5), the energy 

+ 2YSiiSg + upj  sii. (3.1.1 1) 

The first three terms on the right-hand side of (3.1.11) are called pressure 
work, transport of mean-flow energy by viscous stresses, and transport of 
mean-flow energy by Reynolds stresses, respectively. The word "transport" 
refers to the integral property expressed by (3.1.7): i f  UiTij is  zero on the 
surface of a control volume, the first three terms of (3.1.11) can only re- 
distribute energy inside the control volume. 

In most flows the two viscous terms in (3.1.1 1) are negligible. This  can be 
demonstrated easily by invoking the scale relation aUi/axj - u// (d' is  an 
integral scale) and the stress estimate -ui7 -2 which were developed in 
Chapter 2. Of course, these relations are valid only if the turbulence i s  charac- 
terized by cc and t and if no other characteristic scales are present. We define 
the representative velocity cc by 
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- 
2 k I u u  -3 I i -  (3.1.12) 

With Sii -#/land - u i  -p, turbulence production is  estimated as 
- 
U . U .  s-. = c1 uGSi,sii; (3.1.1 3) / I  rl 

in the same way, energy transport by turbulent motion is estimated as 
- 

-u-u. ui = cz ueuis,. (3.1.1 4) 
1 I  

In most simple shear flows, the undetermined coefficients C1 and C2 are of 
order one. Comparing (3.1.13) and (3.1.14) with the corresponding viscous 
terms (3.1.1 I ) ,  we see that the turbulence terms areuUv times as large as the 
viscous terms. This Reynolds number tends to be very large (except in situa- 
tions very close to smooth surfaces), so that the viscous terms in (3.1 .I 1 )  can 
ordinarily be neglected. This conclusion again illustrates that  the gross strue 
ture of turbulent flows tends to be virtually independent of viscosity. Vis- 
cosity makes itself felt only indirectly. 

Although the equation for the energy of the mean flow is  helpful in 
obtaining additional insight into the dynamics of turbulent motion, it does 
not contain any more information than the momentum equation for the 
mean flow since the former is obtained from the latter by mere manipulation. 

3.2 
Kinetic energy of the turbulence 
The equation governing the mean kinetic energy f u 7 o f  the turbulent velo- 
city fluctuations is obtained by multiplying the Navier-Stokes equations 
(2.1.1) by Gi, taking the time average of all terms, and subtracting (3.1.111, 
which governs the kinetic energy of the mean flow. This i s  a fairly tedious 
exercise, which i s  lef t  to the reader. The final equation, the turbulent energy 
budget, reads 

-1 a I - ~ -  
ax, ( p I 

a 1- - (- U.U. )  = - - -u.p + 5 upiui - 21, uisg 2 I I  ui ax, 
- - 

-u.u. sg - 2vs,sg. (3.2.1) 
I /  

The quantitysii is the fluctuating rate of strain, defined by 

(3.2.2) 
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The rate of change of iG i s  thus due to pressure-gradient work, 
transport by turbulent velocity fluctuations, transport by viscous stresses, and 
two kinds of deformation work. The transport terms, like those in (3.1.11), 
are divergences of energy flux. If the energy flux out of or into a closed 
control volume is zero, these terms merely redistribute energy from one point 
in the flow to another. 

The deformation-work terms are more important. The turbulence produc- 
tion -= Sii occurs in (3.1.1 1 )  and in (3.2.1) with opposite signs. As we had 
anticipated, this term apparently serves to exchange kinetic energy between 
the mean flow and the turbulence. Normally, the energy exchange involves a 
loss to the mean flow and a profit to the turbulence. 

The last term in (3.2.1) is the rate a t  which viscous stresses perform 
deformation work against the  fluctuating strain rate. This always is a drain of 
energy, since the term is quadratic in sji. The term is called viscous 
dissipation; unlike the dissipation term in (3.1.11). it is essential to the 
dynamics of turbulence and cannot ordinarily be neglected. 

Production equals dissipation In a steady, homogeneous, pure shear flow (in 
which all averaged quantities except Ui are independent of position and in 
which Sij is a constant), (3.2.1) reduces to 

-u.u. s.. = 2vs ..s... (3.2.3) 1 1  rl r ! r !  

This equation states that in th i s  flow the rate of production of turbulent 
energy by Reynolds stresses equals the rate of viscous dissipation. I t  should 
be noted that in most shear flows production and dissipation do not balance, 
though they are nearly always of the same order of magnitude. Keeping this 
in mind, we may use (3.2.3) as an aid in understanding those features of 
turbulence that are not directly related to spatial transport. For thif reason, 
(3.2.3) is often written in symbolical form. If we define 

g=-u .u .  I J s.. r ! f  

- - 

- 
(3.2.4) 

- 
€ =  2vs..s.., r ! r !  

(3.2.3) reads simply 

8= €. 

(3.2.5) 

(3.2.6) 
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In order to interpret (3.2.6), we again employ the scale relation Sq -a// 
and the stress estimate - u 7  -a2, keeping in mind that these estimates are 
valid only in shear-generated turbulence with one length scale and one 
velocity scale. 

With th is  provision, we use (3.1.13) as an estimate for the Reynolds stress. 
The energy budget (3.2.3) becomes 

- 
c1 c%es,si, = 2v s p , .  (3.2.7) 

Since the Reynolds numberaflu is generally very large, we conclude that 

(3.2.8) 

The fluctuating strain rate sij is thus very much larger than the mean rate of 
strain Sii when the Reynolds number is  large. Since strain rates have the 
dimension of sec-', this implies that the eddies contributing most to the 
dissipation of energy have very small convective time scales compared to the 
time scale of the flow. This suggests that  there should be very little direct 
interaction between the strain-rate fluctuations and the mean flow if the 
Reynolds number is large. In other words, So andsii do not interact strongly, 
because they are not tuned to the same frequency band. Therefore, the 
small-scale structure of turbulence tends to be independent of any orientation 
effects introduced by the mean shear, so that all averages relating to the small 
eddies do not change under rotations or reflections of the coordinate system. 
If this is the case, the small-scale structure is called isorropic (Figure 3.2). 
Isotropy at  small scales is called local isotropy (see Chapter 8) .  

Taylor microscale The preceding considerations suggest that any length scale 
involved in estimates of sij must be verv much smaller than 4 if a balance 
between production and dissipation is to be obtained. The situation is similar 
to the one in laminar boundary-layer theory (Section 1.5). In laminar 
boundary layers, we had to select the thickness 6 in such a way that the 
essential viscous term in the equation of motion could be retained; this 
yielded 6/L - R-"' (1.5.3). Here, we should be able to proceed in a similar - 
way. The dissipation of energy is proportional to sii sii; this consists of several 
terms like (ilui/axi)', most of which cannot be measured conveniently. . .  
However, as we mentioned, the small-scale structure of turbulence tends to be 
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(a) 

Figure 3.2. The shading pattern used in this book: (a) 

(C) 

was selected because it is an 
isotropic random field, like the smallscale structure of turbulence. The other patterns, 
(b) and (c), have preferred directions; they are not isotropic. 

isotropic. In isotropic turbulence, the dissipation rate is  equal to 

E = ~ V S ~ S ~  = I ~ V  (auliaxl)2. (3.2.9) 

The derivation of (3.2.9) is  not given here; it involves bookkeeping with terms 
like (aul/ax, l2 that contribute t o m ( H i n z e ,  1959). The coefficient 15 in 
(3.2.9) is considerably larger than one because so many components are 
involved. In many flows, (aul/axl 1' can be measured relatively easily. 

- 

Let us define a new length scale A by 

(aul/axl)z = ZIA' =u2ix2. (3.2.1 0)  

The length scale h i s  called the Taylor microscale in honor of G. I. Taylor 
who first defined (3.2.10). The Taylor microscale is also aqociated with the 
curvature of spatial velocity autocorrelations; this is discussed in Section 6.4. 
The substitution 3 =&'can be made because in isotropic turbulence u: = u; 
= u:, so that u', which was defined as f u z ,  is equal to 3. Since the 
small-scale structure of turbulence a t  large Reynolds numbers is  always 
approximately isotropic (see Section 8.3), we use 

- -  
- 
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E = 1 5 V 2 / h 2 ,  (3.2.1 1) 

with 

budget (3.2.3). If Sii is  of orderdand if + x i s  of order uZ, we obtain 

defined by (3.2.101, as a convenient estimate of E .  

A relation between h and /can be obtained from the simplified energy 

Au3//= 15vu2/h2. (3.2.12) 

The ratio ?&'is then given by 

(3.2.13) 

In (3.2.12, 3.2.131, A is an undetermined constant, which i s  presumably of 
order one. Because in all turbulent flows Rd >> 1, the Taylor microscale h is  
always much smaller than the integral scale e. Again we see that  dissipation of 
energy is due to the small eddies of turbulence. 

Scale relations The Taylor microscale A is  not the smallest length scale 
occurring in turbulence. The smallest scale i s  the Kolmogorov microscale q, 
which was introduced in Chapter 1: 

q = (Y3/€)114* (3.2.1 4) 

The difference between X and 7) can be understood if we return to the 
definition (3.2.7) and the estimate (3.2.11) of the dissipation rate E .  The 
strain-rate fluctuations sii have the dimension of a frequency (sec-' 1; the 
definition of E thus defines a time scale associated with the dissipative 
structure of turbulence. Calling this time scale 7, we find that 

7 = ( V / E )  lI2. (3.2.1 5) 

This time scale is identical to the one discovered by elementary considera- 
tions in Chapter 1. This is no coincidence. The dimensions of sii are such that 
the length scale X was found by taking u as a velocity scale. There is no 
physical reason a t  all for this choice of characteristic velocity; the only scale 
that can be determined unambiguously is the time scale 7. The Taylor 
microscale should thus be used only in the combination (3.2.1 1): 

u h  = 0.26 7-l = 0.26 (E/v)~~'. (3.2.1 6) 
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The Taylor microscale i s  thus not a characteristic length of the strain-rate 
field and does not represent any group of eddy sizes in which dissipative 
effects are strong. It is not a dissipation scale, because it is defined with the 
assistance of a velocity scale which is not relevant for the dissipative eddies. 
Even so, X i s  used frequently because the estimate sii-u/X is often 
convenient. For future use, expressions relating G, A, and 77 are given: 

(3.2.17) 

(3.2.1 8) 

The undetermined constant A is the same as the one used in (3.2.12) and 
(3.2.13). The parameter R, is the microscale Reynolds number, which is 
defined by 

R, u h l ~ .  (3.2.19) 

This Reynolds number may be interpreted as the ratio of the large-eddy time 
scale t/u (which i s  proportional to X 2 / v  by virtue of (3.2.13)) and the time 
scale A/u of the strain-rate fluctuations (Corrsin, 1959). 

Spectral energy transfer The energy exchange between the mean flow and 
the turbulence is governed by the dynamics of the  large eddies. This is clear 
from (3.2.7): large eddies contribute most to the turbulence production 9 
because 9 increases with eddy size. The energy extracted by the turbulence 
from the mean flow thus enters the turbulence mainly a t  scales comparable to 
the integral scale t. 

The viscous dissipation of turbulent energy, on the other hand, occurs 
mainly a t  scales comparable to the  Kolmogorov microscale 77. As we found in 
Chapter 1, this implies that the internal dynamics of turbulence must transfer 
energy from large scales to small scales. All of the available experimental 
evidence suggests that this spectral energy transfer proceeds a t  a rate dictated 
by the energy of the large eddies (which is of order a') and their time scale 
(which is of order Uu). Thus, the  dissipation rate may always be estimated as 

E = A  u 3 ~ ~ ,  (3.2.20) 

provided there exists only one characteristic length t (Taylor, 1935). The 
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estimate (3.2.20) is independent of the presence of turbulence production; 
(3.2.1 2) i s  thus a valid statement about the dissipation rate even if production 
and dissipation do not balance. 

Of course, turbulence can maintain itself only if it receives a continuous 
supply of energy. If - u x S j j  is  the only production term and if E is estimated 
with (3.2.20), the approximate balance between B and E which occurs in 
many turbulent shear flows may be written as 

(3.2.21) 

This equation needs careful interpretation. It states that 8 must be of order 
u3/{ i f  8= E and if E i s  estimated by (3.2.20). This is distinct from the 
original interpretation of (3.2.121, which stated that Bmust be of order a3/t 
because -G is of order and Sii is of order u/?, so that E must be of order 
4// if 8= E. This discrepancy arises because the estimate -%- a2 was 
introduced in Chapter 2 as an empirical statement without theoretical 
justification. This estimate now receives support from (3.2.21). With E of 
order a3// because spectral energy transfer is of that order and with Sji of 
order a/{ because the vorticity of the large eddies is maintained by the vor- 
ticity and the strain rate of the mean flow, we conclude from (3.2.21) that -w has to be of order u2 if a balance between B and E, however approx- 
imate, is to be obtained. Conversely, (3.2.21) states that a good correlation 
between ui and uj can be obtained only if Sji and a/{occur in the same range 
of frequencies. 

Further estimates The orders of magnitude of the other terms of the original 
energy budget (3.2.1 need to be established. We shall use sij -u/A and A/{- 
R I 1 I 2  wherever needed, 

The pressure-work term in (3.2.1 ) is estimated as 

(3.2.22) 

because the pressure fluctuations p should be of order paz and because the 
local length scale of the flow, which determines the gradients of averaged 
quantities, should be of the same order as the large-eddy size L 

Mean transport of turbulent energy by turbulent motion is estimated as 

(3.2.23) 
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It i s  tempting to estimate transport by viscous stresses in the following way: 
2 3  a -  vu 2v - (uis,) - x - 5 Ri l l2 .  

ax, (3.2.24) 

This estimate, however, is too large because it assumes t h a t  ui and sii are well 
correlated. This i s  not likely because the time scale of the eddies contributing 
most to sij is much smaller than the time scale of the eddies contributing 
most to ui. The problem can easily be resolved by substituting the definition 
(3.2.2) of sii into (3.2.24) and employing aui/axi = 0: 

a -  a2 , - a2 - 
ax, I axjaxi I I axiaxj 

2v - (U.S..) = v - (- U.U.)  + v - up,. (3.2.25) 

Both terms on the right-hand side of (3.2.25) are of order vuz/Gz, so that the 
correct estimate for the viscous transport term i s  

(3.2.26) 

Comparing (3.2.24) and (3.2.261, we see tha t  the correlation coefficient 
between ui and sii must be of order R i l l 2 .  The time scale of the large eddies 
is of orderd/u and the time scale of the dissipative eddies i s  of order Vu. The 
ratio of these time scales i s  which is of order R i l l 2  by virtue of (3.2.17). 
The correlation coewcient thus scales with the ratio of the time scales 
involved. One might say that ui and sii cannot interact strongly a t  large 
Reynolds numbers because they are not tuned to the same frequency range. 

The estimates (3.2.22) through (3.2.26) show that only the viscous 
transpart of turbulent energy can be neglected if the Reynolds number is 
large. The other transport terms are of the same order of magnitude as the 
production and dissipation rates, so that they need to be retained in most 
flows. The pressure-work term is sometimes neglected, partly because it 
cannot be measured and partly becausep tends to be rather poorly correlated 
with ui, except near a wall (Townsend, 1956). A possible explanation is that 
the pressure is a weighted integral of uiui, so t h a t  i t s  fluctuations tend to have 
scales that are larger than those of the velocity fluctuations. 

Wind-tunnel turbulence As an application of the equations and estimates 
developed here, we discuss the decay of nearly homogeneous turbulence in a 
low-speed wind tunnel. Wind-tunnel turbulence is commonly generated by a 
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grid or screen in a uniform flow without shear. The flow geometry is illus- 
trated in Figure 3.3. If Sii is  zero, there is no turbulence production. The 
turbulence should then decay tnrough viscous dissipation. This serves as a 
reminder that the approximation 9- E is  not always relevant. 

If the frame of reference i s  chosen such that  U1 (a constant) is the only 
nonzero component of the mean velocity, the energy budget (3.2.1 ) becomes 

i XI 

u1 (3.2.27) 

It has been assumed t h a t  the Reynolds number Rl is  so large that the viscous 
transport term can be neglected. The orders of magnitude of the various 
terms in (3.2.27) may be estimated as follows: 

(3.2.28) 

grid 

Figure 3.3. Geometry of wind-tunnel turbulence. The mean flow velocity U, i s  
independent of x ,  ,but u* decreases downstream because of viscous dissipation. 
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€ = i 0 ($) . 
(3.2.29) 

(3.2.30) 

The distance x1 is measured from a virtual origin which is presumably in the 
immediate vicinity of the tu rbulence-producing grid. The downstream dis- 
tance x 1  i s  the appropriate length scale in the estimate of the downstream 
decay of 1 u T  and u1 (p/p + 1 u,ui): the integral scale t is not a measure for 

2 ' 4  2 
the downstream inhomogeneity of the turbulence and no characteristic length 
in the downstream direction is  imposed, so that a/ax l  can scale only with x1 
itself. More specifically, if u2 - x ?  then au2/dx1 - a u 2 / x 1 ,  so that 

In grid turbulence, the velocity fluctuations are small: u << U. The 
turbulent transport terms in (3.2.27) then should be negligible compared to 
the transport by the mean flow, so that the energy equation reduces to  

a/axl  p x ; l .  

(3.2.31) a 1- 
u1 - (3 u p i )  = -€. 

ax 1 

The dimensional estimates (3.2.28) and (3.2.30) suggest that 

UllXl =CuI& (3.2.32) 

which states that  the time scale of the flow (in this case the "age"xl/U1 of 
the mean flow, which is equal to the running time on the clock of an observer 
moving with the mean flow) is of the same order as the time scale of the 
turbulence. 

We would like to determine how t and u change downstream. Equation 
(3.2.32) gives only one relation between [and u in terms of x1 and U 1 ,  so 
that another relation i s  needed to solve this problem. Such a relation can be 
obtained as follows. The time scale of energy transfer from the large eddies to 
the small eddies is 7 -qu. The time scale associated with the decay of the 
large eddies themselves is T-t2 /v  (based on a simple diffusion estimate like 
those used in Chapter 1) .  The ratio of these time scales is 

TIT b l v ,  (3.2.33) 

which suggests that a t  large values of R, =&/v the large eddies are affected 
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very l i t t le by direct dissipation. We now assume that these time scales, to- 
gether with the running timexl/U1, are the only independent variables of the 
problem. This is a fair assumption, since this flow has no time scales imposed 
from outside. A relation between the independent and dependent variables 
should exist; in nondimensional form it may be written as 

Since T/r is  proportional to d / v ,  this can be rewritten 

(3.2.34) 

(3.2.35) 

Now, the only way in which d c a n  be a function of &‘is by requiring thatg 
be a constant. This is supported by the fact that the argument of g should be 
a constant, as predicted by (3.2.32). Hence, wind-tunnel turbulence in its 
initial period of decay (where Re>> 1 ) should have an approximately con- 
stant Reynolds number. Keeping in mind that Rl should be independent of 
xl, we find from (3.2.32) 

112 

{= %(z) (Rev)”*.  

(3.2.36) 

(3.2.37) 

The constants % are undetermined. Because R, is  a constant, the ratiosdlh 
and 8/q are constant by virtue of (3.2.17, 3.2.18). Hence h and q also are 
proportional to x1 ‘1 ’ .  

We conclude that the turbulent energy decays as xl-’, while al l  length 
scales grow as x1 ‘ I 2 .  These results are expected to be rather crude approxi- 
mations, because they are based on the assumption that only a small number 
of nondimensional groups is relevant. Experimental evidence indicates that 
the predicted exponents are within 30% of the observed values (Comte-Bellot 
and Corrsin, 1965). More realistic results can be obtained by spectral analysis 
(Problem 8.3). 

At large distances from the grid, the turbulence decays much faster than 
indicated in the preceding analysis. The final period of decay, as this is called, 
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cannot be understood with simple dimensional estimates, since the asymp- 
totic behavior of the largest eddies (much larger thane, but with l i t t le energy) 
i s  very complicated. The largest eddies are the ones that survive in the end; 
spectral analysis (Problem 8.4) i s  needed to resolve their decay. 

Pure shear flow The energy budget of steady pure shear flow is also of 
interest if only because it relates to the situation discussed in Chapter 2. We 
adopt the notation used in that chapter: U1 = U1 (XZ), UZ =U3 = O ,  
Uj alaxj = 0, a/axl = a/ax3 = 0. In this flow, the only nonzero component 
of aUi/axj i s  aU, lax2, so that the only nonzero components of Sij are S1 
and S2 ,, both of which are equal to f aU, /ax,. The turbulence production 
then i s  -- S12 -u2u1 Sz , = -uluz aUl/axz. If  the Reynolds number 
i s  large, the energy budget (3.2.1 1 reads 

- - 

(3.2.38) 

All of these terms are of order u3 lt; the viscous-transport term, which is much 
smaller (3.2.26), has been neglected. 

The main features of the energy budget have already been discussed. In 
this simple geometry, it is worthwhile to compare (3.2.38) with the equations 
for the kinetic energy of the three velocity components individually. These 
equations are obtained in the same way as the equation for f G; i f  viscous 
transport is neglected and if the Reynolds number is so large that - -  the dis- 
sipative structure can be assumed to be isotropic, the equations for uf , ;u:, 
and 1-i- u3 are, respectively, 

- 
-au, I aUl a - 1 0 = -u1u,- + - p  --- (; u:u2)  

ax2 P ax, axz 
- 3  E, 

I au2 a 1 O =  0 + - p - - - ( p l p + ; u : ) u 2  - 3 E ,  
P axz axz 

(3.2.39) 

(3.2.40) 

(3.2.4 1 ) 

The sum of these three equations equals (3.2.38), as it should. Note that 
because of incompressibility 

(3.2.42) 



75 3.3 Vorticity dynamics 

Comparing (3.2.38) with (3.2.39-3.2.411, we see that the entire produc- 
tion of kinetic energy occurs in the equation for $3 (3.2.39) and that  the 
equations for 5uz  and 2u3 have no production terms. The uz and u3 com- 
ponents must thus receive their energy from the pressure interaction terms 
listed in (3.2.42). The transport terms in (3.2.39-3.2.41) could import 
energy from elsewhere, but that would not explain how the uz and u3 com- 
ponents can have energy at all: 2 and $ ug have to be generated somehow. 
Because the sum of the pressure terms is equal to zero, by (3.2.421, the 
pressure terms exchange energy between components, without changing the 
total amount of energy. Also, if iz and iz are to maintain themselves, 
notwithstanding dissipative losses, p au2/dx2 and p au3/dx3 must be posi- 
tive, so that p au,/axl must be negative. This, of course, can occur only if 
the turbulence is not isotropic. Indeed, in most shear flows fz  is  roughly 
twice as large as 5u2 and 5u3. In summary: the u 1  component has more 
energy than the other components because it receives all of the production of 
kinetic energy; the transfer of energy to the other components is performed 
by nonlinear pressure-velocity interactions. 

1 3  1 1  

- 

l i  1 2  

3.3 
Vorticity dynamics 
All turbulent flows are characterized by high levels of fluctuating vorticity. 
This is the feature that distinguishes turbulence from other random fluid 
motions like ocean waves and atmospheric gravity waves. Therefore, we have 
to make a careful study of the role of vorticity fluctuations in the dynamics 
of turbulence. 

Recalling from Section 2.3 That Reynolds stresses may be associated 
with eddies whose vorticity is roughly aligned with the mean strain rate, we 
first show that the turbulence terms in the equations for the mean flow are 
associated with transport and stretching of vorticity. We then turn to a study 
of the vorticity equation. We shall find that vorticity can indeed be ampli- 
fied by line stretching due to the strain rate. The equation for the mean 
vorticity in a turbulent shear flow also will be explored; the interactions 
between velocity and vorticity fluctuations again include both transport and 
stretching. 

Because the scale of eddies that are stretched by a strain rate decreases, the 
energy transfer from large eddies to small eddies may be considered in terms 
of vortex stretching. We shall study the mean-square vorticity fluctuations 
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in detail. The ultimate energy transfer, the dissipation of kinetic energy 
into heat, will turn out to be approximately equal to v wiwi i f  the Reynolds 
number i s  large. In summary, this section attempts to explain what we mean 
when we say that turbulence is rotational and dissipative. 

- 

Vorticity vector and rotation tensor The vorticity is the curl of the velocity 
vector: 

(3.3.1) 

This relation shows that Gi is  related to the deformation rate aGilaxi. The 
deformation rate can be split up into a symmetric and a skew-symmetric part: 

(3.3.2) 

The strain rate Gi has been introduced before. The skew-symmetric tensor ci 
is called the rotation tensor; it is defined by 

(3.3.3) 

Since the alternating tensor Eiik in the definition of 6, is  a skew-symmetric 
tensor (it is +I  if i, j, k are in cyclic order, -1 if i, j, k are in anticyclic order, 
0 if any two of i , j ,  k are equal), the vorticity vector i s  related only to the 
skew-symmetric part of aGi/axi: 

Conversely, with some tensor algebra it is found that 

(3.3.4) 

(3.3.5) 

The oneto-one relation between the vorticity vector and the rotation tensor 
is due to the fact that qj has only three independent components which, if so 
desired, may be represented as the components of the axial vector Gi. 

Vortex terms in the equations of motion The vorticity equation is obtained 
by taking the curl of the Navier-Stokes equations. Before we perform this 
operation, we want to look a t  the way in which vorticity appears in the 
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Navier-Stokes equations themselves. I f  we treat the inertia term Gi aGi/i/axi as 
a gradient of a stress, we may write 

(3.3.6) 

Here, the continuity equation aGiilaxi = 0 has been used. This particular way 
of writing the Navier-Stokes equations serves as a reminder that the Reynolds 
stress is the contribution of the velocity fluctuations to the convective terms 
in the equation of motion. 

The convective stress term may be decomposed as follows: 

The viscous term may be expressed in terms of vorticity by putting 

(3.3.7) 

(3.3.8) 

The continuity equation auilaxi = 0 was used to remove the second term. 
If (3.3.7) and (3.3.8) are substituted into (3.3.61, there results 

(3.3.9) 

In irrotational flow, b k  = 0 by definition, so that the viscous term and the 
vorticity part of the inertia term vanish. The inertia term then reduces to the 
gradient of the dynamic pressure $ p  uZi% and (3.3.9) reduces to the Bernoulli 
equation. In turbulent flow, of course, neither of these conditions is satisfied. 
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Figure 3.4. The vorticity-velocity cross product generates the body forces (per unit 
mass) f ,  and f z .  

The cross-product term Eijk Gj &k is  crucial to turbulence theory. It is 
analogous to the Coriolis force 2 Ejjk f i j  that would appear in the equation 
of motion if the coordinate system were rotating with an angular velocity 5, 
(the factor 2 is absent from the vorticity term because i& is  twice the angular 
velocity of a small fluid element). The vortex term is also related to the lift 
force (Magnus effect) experienced by a vortex line exposed to a velocity Gj. A 
graphical interpretation of the "vortex force" may be helpful. In the equation 
for GI, the term Eqk i i j  6, becomes Gz G3 -G3 Gz. Figure 3.4 illustrates 
the geometry involved. 

Reynolds stress and vorticity In turbulent flow, cross-product forces arise 
both from Uj aUilaxj and from a(q)laxj. The instantaneous vorticity Gi is 
decomposed into a mean vorticity 51, and vorticity fluctuations oi: 

Gi = sli + Oj, wi = 0. (3.3.10) 

If we assume that the flow is  steady in the mean, so that we can use time 
averages, the equation for the mean velocity Ui may be written as 

- 

Clearly, Reynolds-stress gradients contain both a dynamic-pressure gradient 
and an interaction term between the vorticity fluctuations and the velocity 
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fluctuations. In many turbulent flows the contribution of the turbulence to 
the dynamic pressure is insignificant because iw<< iUiUj. The dynamic 
significance of the Reynolds stress is then associated mainly with the inter- 
action between velocity and vorticity. For a closer look a t  this interaction, let 
us consider a two-dimensional mean flow in which U1 >> U Z ,  U3 = 0, and in 
which downstream derivatives of mean quantities are small compared to 
cross-stream derivatives @laxl << Wax2 1. This corresponds to most 
boundary-layer and wake flows (see Chapters 4 and 5). Under these condi- 
tions, the only nonzero component of CLi i s  CL3 = aUz/ax, - aUl/ax2. 
Because U2 <<U1 and ahx, << alax,. the vorticity component CL3 is  
approximately equal to -aul laxz. 

In the equation for U1 the vorticity cross-product terms associated with the 
mean flow are U2S23 and --U3S&. The first of these i s  equal to 
-U2 aUllax2 +- U2 aUzlaxl, the second is zero because U3 = 0. CL2 = 0. 
AISO, -a(fujui)iaxl is equal to -ul auliaxl - u2 au2iaxl in this flow; 
the small term U2 aUzlaxl cancels the same term generated by UzSZ3. If we 
neglect the viscous term and the contribution of the turbulence to the 
dynamic pressure, the equation for U1 may be written as 

(3.3.1 2) 

Comparing (2.1.23) and (3.3.12) and observing that a2/axl 
<< a ( ~ ) f a x z ,  we find that the vortex terms represent the cross-stream 
derivative of the Reynolds shear stress 4 i j :  

(3.3.1 3) 

This result can be obtained also by substituting w3 = auz/axl - aul/axz and 
w2 = aUl/axJ - aU3/aXl  into u 2 0 3  - ~ 3 ~ 2  and neglecting all terms that 
can be written as gradients of dynamic pressures. 

Some understanding of the turbulent vorticity terms in (3.3.13) may be 
obtained by employing the estimate 

-uIu2 - IIeaul~ax2. (3.3.14) 

-- 

- 

If II i s  approximately independent of x2 (this is true for many turbulent shear 
flows), the Reynolds-stress gradient becomes 
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a -  a2u, ae au, 
- (-ulu2) - &e- + cl- - 
2x2 ax$ ax2 ax2 

(3.3.15) 

Of course, (3.3.15) needs to be viewed with considerable reservation because 
(3.3.14) is a scaling law, not an equation. Because a U l l a x 2  = -a3 approx- 
imately, (3.3.1 5) may be written as 

(3.3.16) 

- 
Let us now consider ~ 2 0 3  and u z .  In the flow treated here, the only 
nonzero component of CLj is a3. If vorticity can be transported in the x2  
direction by u2 in the same way as momentum is transported, we should be 
able to write 

u2Wg--ueas123~ax2. (3.3.17) 

The adoption of this expression constitutes a mixing-length theory of vor- 
ticity transfer (Taylor, 1932). Of course, (3.3.17) does not need to be the 
same as the first term on the right-hand side of (3.3.161, because the numer- 
ical coefficients involved, which have been omitted from (3.3.16) and 
(3.3.17), are not necessarily equal. However, it is clear that the other term, 
u i 7 ,  cannot be represented by an expression like (3.3.17) because s12 = 0. 
From a comparison of (3.3.13) and (3.3.16) we conclude that the nature of 
u 5  is associated with a change-of-scale effect: 

(3.3.1 8) 

- 
The term ~ 3 ~ 2  may be called a vortex-stretching force, since it is associated 
with the change of size of eddies with vorticity of order Q3 (see also the 
discussion following (3.3.35)). 

The relative contributions of u2w3 and u- to a ( - ~ ) l a x 2  appar- 
ently depend on the kind of flow considered. If the length scale e i s  approx- 
imately constant across the flow, the vortex-stretching force (3.3.18) should 
be negligible; the Reynolds-stress gradient may then be interpreted as vor- 
ticity transport, which should scale according to  (3.3.17). This may explain 
why vorticity transport theory has had some success in the description of 
turbulent wakes and jets: in those flows, the length scale is roughly constant 
in the cross-stream direction. 
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If the length scale I!' changes in thex2 direction, vorticity transport theory 
is inadequate. A case in point i s  the surface layer with constant stress ( - u x  
=u,'). In this flow, 

so that 

(3.3.19) 

(3.3.20) 

According to  (3.3.19), auliaxz = U,/KX~, so that a2u1ta~, < 0. The 
vorticity-transport term KX~U,  a2u,iax; = -KX~U, aa3iax2 thus is a 
deceleration. The deceleration of this flow is avoided because the vortex- 
stretching force KU,  aU1 /ax2 = - K U , ~ ~  balances the vorticity-transport force. 

One final observation needs to  be made. I f  the local length scale of the 
mean-flow field is comparable to the eddy size 4, the order of magnitude of 
u2c33 and u3w2 is  tr2/4. Now, as we see later in this section, wi is of order 
ufi, so that the correlation coefficient between wi and uj is of order hit. This 
is similar to the correlation between ui and sij which was discussed earlier; the 
correlation i s  poor because most contributions to mi are made a t  high fre- 
quencies while most of Uj  is associated with low frequencies. 

The vorticity equation Let us return to the vorticity equation. This equation 
is obtained by applying the operator "curl" (epqi alax,) to the Navier-Stokes 
equation (3.3.9): 

(3.3.21) 

Here, the tensor identity epqieijk = 6,,6,, - 6?k?iqj has been used. The pres- 
sure term in (3.3.21) is zero because it involves the product of the 
skew-symmetric tensor epqi and the symmetric tensor operator a2/axiaxq. 
Accounting for all of the Kronecker deltas in (3.3.211, we obtain 
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(3.3.22) 

The first of the viscous terms in (3.3.22) is zero because vorticity has zero 
divergence (the divergence of the curl of a vector is zero): 

(3.3.23) 

The final form of the vorticity equation is (changing p to iand the dummy 
index k t o j  for convenience) 

(3.3.24) 

In keeping with the form of the Navier-Stokes equations introduced in 
Chapter 2, (3.3.24) i s  valid for an incompressible constant-property fluid. 
Before we interpret the first term on the right-hand side of (3.3.241, we want 
to show that  the skew-symmetric part cj of aGi/axj does not contribute to it. 
For this purpose, aqaxj is split up into 5, and Fik such that 

(3.3.25) 

Because of the definition of c,, the second term in (3.3.25) becomes 

(3.3.26) - -  1 w.r. - - - E .  
j 4 -  2 rjk'j'k. 

Since j and k are dummy indices they may be interchanged to yield 

(3.3.27) 

Again interchanging the indices j and k in Eiki, we obtain a change in sign 
because Eijk i s  skew-symmetric. Hence, we find 

- -  1 - -  _ -  Eijk U j W k  = - 3 Eikj w j w k .  

(3.3.28) 

This can be true only if this term is zero. Consequently, only the term in qi 
survives in (3.3.25). The vorticity equation then may be written as 

1 - 2 Eijk z J Z k  = $ Eijk &jjii"k. 

(3.3.29) 



83 3.3 Vorticity dynamics 

The term Gi.Fji represents amplification and rotation of the vorticity vector 
by the strain rate. In the context of this section, the turning of vortex axes by 
the strain rate is of minor importance; we shall concentrate on the com- 
ponents of Giqi that represent vortex stretching. 

Vorticity apparently can be amplified by stretching of present vorticity by 
the strain rate sl;i. On the other hand, vorticity is decreased in an environment 
where squeezing (Ci < 0) occurs. 

This "source" or "sink" for vorticity is the most interesting term of the 
vorticity equation. It is essential to recognize that the term does not occur in 
two-dimensional flow. Suppose a flow is  entirely in the xl, x2 plane. Then 
61 and 62 are zero, so that the only nonzero vorticity component is G3. 
The. vortex-stretching term then becomes G3gj3. However, in a two-dimen- 
sional flow only Sl (=Z2 1, Z1 1 ,  and S2 2 can be different from zero. A two- 
dimensional flow cannot turn or stretch the vorticity vector. 

A simple illustration of vortex stretching is  the accelerated flow in a wind- 
tunnel contraction. Here (Figure 3.5) Sl is positive, so that Zz2 and g33 

must be negative to satisfy the continuity equation (qi = 0). In this kind of 
flow, is increased by vortex stretching, while G2 and G3 are attenuated. 

The change of vorticity by vortex stretching is a consequence of the con- 
servation of angular mbmentum. The angular momentum of a material 

Figure 3.5. Vortex stretching in a wind-tunnel contraction. As the flow speeds up from 
left to right, the vorticity component w1 is amplified because angular momentum has to 
be conserved. 
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volume element would remain constant if viscous effects were absent; if the 
fluid element is stretched so that i ts cross-sectional area and moment of 
inertia become smaller, the component of the angular velocity in the direc- 
tion of the stretching must increase in order to conserve angular momentum. 
Vortex stretching always involves a change of length scale, as Figure 3.5 
illustrates. For a full account of vorticity kinematics, readers should consult 
general texts in fluid dynamics (for example, Batchelor, 1967). 

Vorticity in turbulent flows In turbulent flow, the vorticity is decomposed 
into a mean vorticity CZi and vorticity fluctuations wi according to (3.3.10). 
After substituting (3.3.10) and the corresponding Reynolds decompositions 
for Ci and Fi, into (3.3.29) and taking the average of all terms in the equation, 
we obtain 

(3.3.30) 

The mean flow has been assumed to be steady. 

the fluctuating vorticity are solenoidal (that is, divergenceless): 
From (3.3.10) and (3.3.23) we conclude that both the mean vorticity and 

mi aai  
axi axi - 0 ,  -- - 0. -- (3.3.31) 

With the second equation in (3.3.31) and the continuity equation aui/axi = 0, 
the turbulence terms in (3.3.30) can be rearranged as follows: 

(3.3.32) 

(3.3.33) 

The term given in (3.3.32) is clearly analogous to the Reynolds-stress term 
in the equation for Ui; it is due to mean transport of wi through i t s  inter- 
action with fluctuating velocities u, in the direction of the gradients alax,. 
This term, of course, changes the mean vorticity only if ujwi changes in the xi 
direction. Properly speaking, (3.3.32) is a transport "divergence." 

- 
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The term given in (3.3.33) i s  the gain (or loss) of mean vorticity caused by 
the stretching and rotation of fluctuating vorticity components by fluctuating 
strain rates. 

Two-dimensional mean flow In a flow with U3 = 0, R,  = 0, = 0, Wax3 = 0, 
and alax ,  <<alax2 (whose equation of motion was discussed earlier), the 
major turbulence terms in the equation for R3 are 

(3.3.34) 

- a -  
a.s3 =- (u3a2) .  (3.3.35) 

I i -ax, 

- - 
The products u203 and u3w2 are related to the Reynolds-stress gradient by 
(3.3.1 3); was interpreted as a body force arising from transport of w 3  
by u2 in a field with a mean gradient aR3/ax2, whereas= was interpre- 
ted as a body force associated with the change of size of eddies in a flow field 
with a varying length scale. The vortex-stretching nature of u x  is con- 
firmed by (3.3.35). The cross-stream gradients of these body forces are 
sources or sinks for mean vorticity. In a surface layer with constant stress, the 
mean vorticity is constant along streamlines; from (3.3.17, 3.3.34) and 
(3.3.18, 3.3.35) we may conclude that S13 is maintained because the gain of 
mean vorticity due to  a net transport surplus is balanced by the loss of mean 
vorticity due to the transfer of vorticity to the turbulence by vortex stretch- 
ing. A more comprehensive interpretation of (3.3.34) and (3.3.35) becomes 
extremely involved. Even if (3.3.17) and (3.3.18) are adopted as crude 
models of u2 w3 and ~ 3 ~ 2 ,  respectively, it would be presumptuous to dif- 
ferentiate these equations in order to obtain models for (3.3.34, 3.3.351, 
because that would amount to differentiating the Reynolds-stress scaling law 
(3.3.14) twice. In vorticity-transfer theory, of course, the term is ig- 
nored and the transport term (3.3.34) i s  scaled on basis of (3.3.17). 

In the discussion following (3.3.20) we found that and both 
are of order u2 /L The cross-stream gradients (Mx, ) should scale with the 
local length scale of the mean flow, which is comparable to 4 in flows without 
multiple scales. Therefore, (3.3.34) and (3.3.35) are of order u2/e2. 

- - 
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The dynamics of QiRi An equation for the square of the mean vorticity is 
needed because the interaction between mean and fluctuating vorticities can 
be studied only in terms of ajRi  and w 3 .  Multiplying (3.3.30) by Qi and 
rearranging terms, we find 

anj ani 
J IJ axiaxi ax, axi 

(; RjQj) - v - -. (3.3.36) 
a2 + aj W.S.. + v - 

The first term on the right-hand side of (3.3.36) i s  the transport of QiRi 
by turbulent vorticity-velocity interactions. This term is equivalent to the 
turbulent transport term of UjUj.. The second term on the right-hand side of 
(3.3.36) is like the turbulence-production term in the energy equation. We 
may call it gradient production of wiwi, in anticipation of the occurrence of 
the same term (with opposite sign) in the equation for w-. The third term 
i s  stretching or shrinking of mean vorticity by the mean strain rate. The 
fourth term is amplification or attenuation of QjQi caused by the stretching 
of fluctuating vorticity components by fluctuating strain rates. The fifth term 
is viscous transport of Qjaj, and the sixth is viscous dissipation of QjQi. 

The mean vorticity Rj i s  of order el8 Because oiui"u2// and 
oisii  -u2/ t2,  the viscous terms in (3.3.36) are of order (a3/t3) (vhe), and al l  
the other terms are of order a3/t3. Generally speaking, therefore, only the 
viscous terms can be neglected. In a two-dimensional flow in thexl ,x2 plane 
the only nonzero component of Qi is a3. At large Reynolds numbers, 
(3.3.36) may then be approximated by 

- 

- 
- 

The stretching term ajQJSii is zero in two-dimensional flow. I f  the flow 
involves no change of length scale, the last term of (3.3.37) may be neglected 
(see the discussion following (3.3.35)). 

- 
The equation for wiwi The equation of the mean-square vorticity fluctua- 
tions is obtained by a procedure exactly similar to the one followed for the 
equation of the turbulent kinetic energy. We leave the algebra as an exercise 
for the reader; the final result is, if the flow is steady in the mean, 



87 3.3 Vorticity dynamics 

The first term on the right-hand side of (3.3.38) is the gradient production 
of w. This term exchanges vorticity between WiWi and ajRj in the same 
way as turbulent energy production (4- Sjj) exchanges energy between 
UjUi and u z .  

The second term is the transport of mean-square turbulent vorticity by 
turbulent velocity fluctuations. This term is analogous to the transport term 
a ( u 3 ) / a x i  in the equation for u i i .  

The third term is the production of mean-square turbulent vorticity by 
turbulent stretching of turbulent vorticity. We shall soon see that this is one 
of the dominant terms in the equation for +. 

The fourth term is the production (or removal, as the case may be) of 
turbulent vorticity caused by the stretching (or squeezing) of vorticity fluc- 
tuations by the mean rate of strain Sji. 

The fifth term is a mixed production term. It occurs in the equation for 
Riaj  with the same sign. Evidently, the stretching of fluctuating vorticity by 
strain-rate fluctuations produces Rjnj and 03 a t  the same rate. 

The sixth and seventh terms on the right-hand side of (3.3.38) are viscous 
transport and dissipation of K, respectively. 

Turbulence is  rotational The equation for o x  looks nearly intractable. 
However, if the Reynolds number is large, a very simple approximate form of 
(3.3.38) can be obtained, because strain-rate fluctuations are much larger 
than the mean strain rate and vorticity fluctuations are much larger than the 
mean vorticity: 

(3.3.39) 

- 
U j W j  = 0 (ah)*, njaj = 0 (&/&J2. (3.3.40) 

As before, 0 stands for "order of magnitude." The estimates for sji,  Sji, and 
aj were obtained earlier; we have to prove that the first of (3.3.40) is a valid 
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statement before we can proceed. Some tensor algebra applied to the defini- 
tions of sii, rii, and ui yields 
- -  
upi = 2 riirip (3.3.41) 

sipii - r..r.. = a2(uiuj) iaxiaxi. (3.3.42) 

Now, is of order t12/h2, but the right-hand side of (3.3.42) is  of order 
u2/e2. Consequently, at large Reynolds numbers (3.3.42) is approximated by 

- -  - 
IJ IJ 

- -  sijsii Q r..r.-. 

Substituting this into (3.3.41 ), we find 

u.0. * 2 s..s. 

IJ 11 

- -  
I I - 11 i j ’  

(3.3.43) 

(3.3.44) 

From this we conclude that oi is  of order ulx, just like sij.  This proves that 
the first of (3.3.40) is  a valid statement if the Reynolds number is large 
enough, Turbulence indeed is rotational, with large vorticity fluctuations. 

The strain-rate fluctuations are associated with viscous dissipation of tur- 
bulent energy. We recall that the dissipation rate e i s  defined by 
- 

f = 2v SiiSij. 

Because of (3.3.44), this may be rewritten as 

(3.3.45) 

f s v wioi.  (3.3.46) 

This relation shows that dissipation of energy is also associated with vorticity 
fluctuations. This is a useful result, but it should be kept in mind that a causal 
relation exists only between the strain-rate fluctuations and the dissipation 
rate. Indeed, (3.3.44) states merely that in flows with high Reynolds numbers 
the symmetric and skew-symmetric parts of the deformation-rate tensor have 
about the same mean-square value. 

An approximate vorticity budget The estimates (3.3.39) and (3.3.40) should 
enable us to simplify the vorticity budget (3.3.38) appreciably. However, 
many of the terms in (3.3.38) contain mixed products like upj and u p ~ ,  
which have to be estimated with care because they are nonzero due to the 
distorting effect of the mean strain rate Sii. From (3.3.13) we concluded 
before that 

- -  



89 3.3 Vorticity dynamics 

- 
uiwj = 0(u2/e); (3.3.47) 

from (3.3.13) and (3.3.33) we concluded that 
- 
wjsij = 0(u2/ tZ) .  (3.3.48) 

We also need the orders of magnitude of 0- and of m. The diagonal 
components of m a r e  of order u2 /A2, but the off-diagonal components are 
different from zero only in response to a mean strain rate. The mean strain 
rate Sij is of order u/t so that it can only weakly affect the vorticity structure 
whose characteristic frequency is u/X. Therefore, we expect that the effect of 
Sij should be proportional to the time-scale ratio (X/u)/(tPu) = X/k 

(3.3.49) 

The coefficients a and bii should be of order one. The discount for the 
time-scale ratio Xlt applied here is analogous to the discount needed in w. 
The term wSij in (3.3.38) becomes 

(3.3.50) 

Because Sii = 0 as a result of incompressibility, and bij Si j -u/t ,  we find that 

(3.3.51 
- 

I J s.. IJ = O( 3 1 ~ ~  1. 

The transport term a(ujwiwi)/axj may be written as 

(3.3.52) 

This term does not depend on the mean strain rate but on inhomogeneity in 
the distribution of mean square vorticity. If we assume that turbulent motion 
is an effective "mixer" of vorticity, uj should be well correlated with the 
gradients of Wc so that 

(3.3.53) 

With the results obtained above, most of the terms of (3.3.38) can be 
estimated. We obtain 
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(3.3.54) 

(3.3.55) 

(3.3.56) 

(3.3.57) 

(3.3.58) 

(3.3.59) 

(3.3.60) 

(3.3.61 

In the stretching term (3.3.601, no prorating with xldis necessary, because wi 
operates on the same time scale as sii. The viscous dissipation term (3.3.61) 
has been left  undecided, since we expect dissipation of vorticity to occur 
mainly at length scales smaller than A. In the viscous diffusion term (3.3.56). 
the relation tz/Az -ud/v has been used. In the transport term (3.3.591, the 
operator Uialaxj has been estimated as u/l; that choice is consistent with the 
estimates used in the equations for the mean flow and the turbulent kinetic 
energy (see 3.2.28,3.2.31,3.2.32). 

The expressions (3.3.54) through (3.3.60) have been arranged in increasina 
order of magnitude. If the Reynolds number is large, all of the terms (3.3.54) 
through (3.3.59) are smaller than the turbulent stretching term (3.3.60) by a t  
least a factor of h/t, which is of order R i m .  Therefore, at sufficiently high 
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Reynolds numbers the turbulent vorticity budget (3.3.38) may be approxi- 
mated as (Taylor, 1938) 

awi awi 
1 J 11 axi axi 

W.W.S.. = y - - . (3.3.62) 

The budget of mean-square vorticity fluctuations is thus approximately 
independent of the structure of the mean flow. Turbulent vorticity fluctua- 
tions, unlike turbulent velocity fluctuations, do not need the continued pres- 
ence of a source term associated with the mean flow field. Of course, in the 
absence of a source of energy, turbulent vorticity fluctuations will decay, too. 
Also, the rate of change of g, as represented by (3.3.591, is small com- 
pared to the rate a t  which turbulent vortex stretching occurs. In Chapter 8 
it will be shown that these conclusions lead to the concept of an equilibrium 
spectrum of turbulence a t  small scales. 

The right-hand side of (3.3.62) i s  quadratic in aw,lax,, so that it is always 
positive. Hence, the left-hand side is  positive, too. This implies that, on the 
average, there is more turbulent vortex stretching than vortex squeezing: 
vortex stretching transfers turbulent vorticity (and the energy associated with 
it) from large-scale fluctuations to small-scale fluctuations. In this way turbu- 
lence obtains the broad energy spectrum that is observed experimentally, and 
in this way the very smallest eddies (which suffer rapid viscous decay) are 
continually being supplied with new energy. The approximate vorticity 
budget (3.3.62) i s  just as essential to understanding turbulence dynamics as 
the approximate energy budget (3.2.6). The relationship between these two 
budgets, incidentally, is a close one: viscous dissipation of vorticity prevents 
vorticity production ( W s ; )  from increasing W.W.  without limit, while vis- 
cous dissipation of energy (which is proportional to oiwi) prevents the ener- 
gy production (-Wqj) from increasing without limit. Vortex stretching 
makes oiwi as large as viscosity will permit; a t  large Reynolds numbers the 
mean-square strain-rate fluctuations keep pace, so that the turbulent energy is 
subject to rapid dissipation. 

Two points need to be emphasized. First, in two-dimensional "turbulence" 
there is no vortex stretching, so that the vorticity budget (3.3.62) is irrelevant 
in that case. This implies that the spectral energy-transfer concepts developed 
here do not apply to two-dimensional stochastic flow fields. 

- 
1- 

- 
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Second, vorticity amplification i s  a result of the kinematics of turbulence. 
As an example, take a situation in which the principal axes of the instanta- 
neous strain rate are aligned with the coordinate system, so that sij has only 
diagonal components (sl 1, s2 2 ,  and s3 1. Let us assume for simplicity that 
s2 2 = s3 3 ,  so that, by virtue of continuity, s1 = -a2 2 .  The term wioi~ii  
becomes, if we also assume that 0; = w:, 

o:s11+o~s22+w:s33=s11(w:-o~). (3.3.63) 

I f  s1 >0, 0: is amplified (see Figure 3.4), but a: and w: are attenuated 
because s2 and s3 are negative. Thus, o: -0: tends to become positive if 
s1 i s  positive. Again, if s1 < 0, w: decreases, but w$ and 0: increase, so 
that w: -0; < 0, making the stretching term positive again. 

Multiple length scales If the vorticity gradients aw/ax, in (3.3.62) were 
estimated as &/A2, the dissipation term would be smaller than the stretching 
term. However, h is  not the proper length scale for estimates of wi and e is  
not the proper velocity scale; all we know is that the ratio ulh is  the order of 
magnitude of wi. Clearly, we need a new length scale. Calling it 6 ,  using 
(3.3.601, and requiring that the two sides of (3.3.62) have the same order of 
magnitude, we obtain 

2 v-= c1 o($) * 

h2h2 
(3.3.64) 

The ratio 6/h becomes 

&/-A= o(vl&h)'n = o(R,'n). (3.3.65) 

Comparing this with (3.2.181, we see that 6 i s  proportional to the Kolmo- 
gorov microscale Q. The Kolmogorov microscale thus has a role in the turbu- 
lent vorticity budget which is comparable to the role of the Taylor microscale 
in the turbulent energy budget. Since vortex stretching is the only known 
spectral energy-transfer mechanism, Q is the smallest length scale possible: the 
dynamics of (dwj/axj)' would not lead to a length scale smaller than Q. 

Since the vorticity budget is approximately independent of the structure 
of the mean flow, vorticity dynamics can be studied more easily in the 
wave-number (spectral) domain than in the spatial domain. This subject, 
therefore, is taken up again in Chapter 8. 
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Stretching of magnetic field lines The dynamics of the fluctuating vorticity 
is representative of the dynamics of other axial vector fields in turbulent 
flow. For example, magnetic field lines in a conducting fluid are stretched by 
fluctuating strain rates much like vortex lines. In incompressible fluids with 
constant properties, charge equilibrium, negligible displacement currents and 
radiation, the equation for the magnetic field i s  the same as the equation for 
vorticity. If the magnetic energy is small compared to the kinetic energy, the 
magnetic field is a passive contaminant which does not change the velocity 
field appreciably. In that case magnetic-field fluctuations are intensified only 
by fluctuating strain rates, and an approximate equation for the fluctuations 
hi of the magnetic field reads, in analogy with (3.3.62) (Saffman, 1963), 

(3.3.66) 

5 This equation states that the amplification of hihi by strain-rate fluctuations 
i s  kept in balance by ohmic dissipation o f m  (the right-hand side of (3.3.66) 
i s  proportional to j 2 / o ,  where j is the current density and (3 i s  the electrical 
conductivity). 

If the magnetic diffusivity ym differs from v, the dissipative length 
scale of the magnetic-field fluctuations is different from the Kolmogorov 
microscale 17. I f  the dissipative length scale for hi is  called vrn and if the rms 
value of hi is  called A, we may estimate (3.3.66) by 

R2 cl/h - ym 4*/q; . 

t 

(3.3.67) 

Because the magnetic-field fluctuations are generated by fluctuating strain 
rates, the correlation coefficient between hihj and sii should be of order one. 
Because we are interested only in estimates for scales, we ignore al l  numerical 
factors that are of order one. Using the scale relation &/A- ( ~ / v ) ' / ~  and the 
definition of 9 (a = ( v3 /e )  lI4 ), and absorbing numerical coefficients in the 
definition of qrn, we obtain 

Vm/V = (Ym/V)ln- (3.3.68) 

If the fluid is a very good conductor of electricity so that ym/v<< 1, this 
implies that the spectrum of hi hi extends to scales much smaller than 17. The 
possibility of achieving scales smaller than q, even though hi is  a passive 

- 



94 The dynamics of turbulence 

contaminant, arises because the strain rate stretches the magnetic field into 
thin filaments if the magnetic diffusivity i s  small. The scale-reducing effect of 
the strain rate proceeds until it is checked by the magnetic diffusivity (see 
Figure 3.6). This effect is similar to that observed in mixing paint of different 
colors. The diffusivity of pigment is quite small relative to the kinematic 
viscosity of paint; it takes long, patient stirring before the filaments of dif- 
ferent color have become so thin and so close together that the molecular 
diffusivity of pigment can homogenize the mixture. 

In interstellar gas clouds consisting mainly of ionized hydrogen, ym/v may 
be as small as so that the smallest magnetic eddies are quite small 
compared to q. In liquid metals and electrolytes, on the other hand, ym/v >> 
1, so that the smallest magnetic eddies are large compared to q. If this is the 
case, the estimate sii - (E/Y)’/’ has to be revised, because the strain rate a t  
scales comparable to the magnetic microscale qm is smaller than ( E I v )  ‘I2 if 
qm >> q.  In other words, the viscosity cannot be used as a scaling parameter 
a t  scales large compared to q. The only alternative i s  to construct a strain rate 
from E and qm; this yields sij - r)m-2‘3 (see also Section 8.6). If we use 
this instead of UA in (3.3.671, we obtain 

r), = (?;/El ‘ I4, qm /q = (ym /v) 3’4. (3.3.69) 

A note of warning is in order, because there may be no magnetic eddies at  all 
if r m / v  is large enough. In mercury, = 7 x lo6,  so that the magnetic 
Reynolds number R, =clt/ym is  less than one if R =&/v < 7 x lo6.  I f  R, < 
1, the generation of magnetic-field fluctuations is prevented by the magnetic 
diffusivity, much as turbulent motion cannot exist if R < 1, In that case, 

(a) 
Figure 3.6. A magnetic eddy (a) of scale 11 is stretched by the strain rate into a thin 
filament (b). If Yrn << v,  the gradients in magnetic field intensity can become quite 
steep (the dashed lines represent surfaces of constant h) .  
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there can be only a mean magnetic field, which affects the velocity turbu- 
lence if it is strong enough. 

3.4 
The dynamics of temperature fluctuations 
The equations governing turbulent fluctuations of vectors (such as vorticity) 
are complicated because vectors interact with a flow field in a variety of 
ways. However, scalar contaminants (such as temperature) are governed by 
fairly simple equations, as we have seen in Chapter 2. We shall discuss the 
dynamics of temperature fluctuations in an incompressible turbulent flow as 
an example of the dynamics of all other passive scalar contaminants. 

in a steady flow is obtained in 
exactly the same way as the equations for ux and q. The result is  

The equation governing the dynamics of 

The rate of change of @ is thus controlled by turbulent and molecular 
transport of 3 (the first two terms on the right-hand side of the equation), 
by gradient production (which is like the production term of turbulent 
kinetic energy), and by molecular dissipation (7 is the thermal diffusivity). In 
a steady homogeneous shear flow, (3.4.1) reduces to 

(3.4.2) 

which states that gradient production of is balanced by the molecular 
"smearing" of temperature fluctuations. 

is of order 
O't l  and a@/axj is of order 0 ' k  (0' is  the rms temperature fluctuation). The 
left-hand side of (3.4.2) is then of order $,zld, which i s  consistent with the 
idea that spectral transfer of temperature fluctuations toward the dissipative 
range of eddy sizes should proceed at a rate dictated by the characteristic 
time of large eddies (tf/tl) and the amount of 

If there i s  only one temperature scale and one length scale, 

that is involved. 

Microscales in the temperature field The right-hand side of (3.4.2) requires 
the introduction of a Taylor microscale for the temperature fluctuations. Let 
us define 

(ae/ax,)* I 2 91 $ . (3.4.3) 
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The coefficient 2 in (3.4.3) is  a normalization factor, which brings (3.4.3) 
into agreement with the expressions used in the literature (see also Chapter 6). 
I f  the small-scale structure of the temperature field is isotropic, (aO/ax,)’ = 

(aB/axz 1’ = (aB/ax3 )’, so that the right-hand side of (3.4.2) becomes 

(3.4.4) 

An estimate for is obtained by requiring that both sides of (3.4.2) have the 
same order of magnitude. Recalling that -8~a@/axi - e 2 d 8 ( a s  discussed 
previously) and that WA) ’  - d v ,  we find 

A,/ A= c ( ~ / v ) ” ~ .  (3.4.5) 

The constant C is of order one (Corrsin, 1951). 
The Taylor microscale for temperature, A,, is  an artificial length scale, just 

like A. If we want to determine the dissipative eddy size of the temperature 
field, we have to consult the equation governing temperature gradients. In 
analogy with (3.3.62) and (3.3.661, the equation for (ae/axj)(ae/axj) may 
be approximated by (Corrsin, 1953) 

(3.4.6) 

If y < v. most of the dissipation of temperature-gradient fluctuations 
occurs at scales smaller than q, so that the temperature field is exposed to the 
entire spectrum of strain-rate fluctuations. Consequently, the proper estimate 
for sii is  ( E / V ) ” ~  in this case. In analogy with (3.3.681, the temperature 
microscale 77, is  then given by (Batchelor, 1959; see also Section 8.6) 

q, lq = ( y / v )  I” .  (3.4.7) 

If the thermal diffusivity y and the kinematic viscosity v are approximately 
equal (as in gases), temperature fluctuations extend to scales as small as q. In 
liquids, the microscales may be different. For water, the Prandtl number vly 
is about 7, so that temperature fluctuations extend to scales almost 3 times as 
small as q. The creation of very small temperature eddies in a fluid with a 
large Prandtl number is due to the straining effect illustrated in Figure 3.6. 

I f  y > v, so that the Prandtl number is smaller than one, Qe is larger than 
q. In this case, even the very smallest temperature eddies are not exposed to 
the entire spectrum of strain-rate fluctuations. If y >> v, the effective value 
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of the strain rate must be independent of v. This leads to sij - q i 2 l 3 ;  in 
analogy with (3.3.691, the temperature microscale becomes (Oboukhov, 
1949; Corrsin, 1951; see also Section 8.6) 

q, = ( T ~ / E ) " ~ ,  qe/q = (T/v)~'~. (3.4.8) 

This estimate applies to liquid metals and electrolytes, in which the Prandtl 
number is small (for mercury, vly = 0.028). 

Buoyant convection One interesting group of problems arises when tempera- 
ture is not a passive but an active contaminant which can contribute to the 
generation of velocity fluctuations. The case we have in mind is thermal 
convection in gases exposed to a gravity field. Temperature fluctuations cause 
density fluctuations in a gas at essentially constant pressure (that is, very low 
Mach number). The density fluctuations cause a fluctuating body forcegjp'/F 
(gj  is the vector acceleration of gravity, p' is the density fluctuation, and p is 
the mean density). In the Boussinesq approximation, the fluctuating body 
force is written as -gj19/Oo, where Oo is the mean temperature of an 
adiabatic atmosphere and I9 is the difference between the actual temperature 
and Oo. The adiabatic temperature Oo changes in the direction of the gravity 
vector in response to the gravity-induced pressure gradient, but the length 
scale involved is large, so that Oo may be treated as a constant in many 
problems (Lumley and Panofsky, 1964). 

The temperature difference I9 is  decomposed into a mean value 9 and 
fluctuations O(e = 0). If U j  = 0, the fluctuating body force performs work a t  a 
mean rate -gj q / O 0 .  This work, called buoyantproduction, must be added 
as a source term in the budget of turbulent kinetic energy. The heat flux 
cppOx then assumes - a dual role, because it occurs in production terms for 
both f u ?  and 0 2 .  

In a flow that is steady and homogeneous in thexl , x2 plane and in which 
the only nonzero components of Ui and g j  are U 1  = U1 ( x 3 )  and g3 = -g (it is 
consistent with geophysical practice to take the x 3  direction vertically 
upwards), the heat and momentum fluxes pcp and P U ~ U ~  are constant if 
molecular transport of 3 and U1 in the x 3  direction can be neglected. The 
equations for i u x a n d  reduce to 

- 
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(3.4.1 0) 

In these equations the terms representing transport of kinetic energy and 
temperature variance by molecular motion have been neglected because they 
are ordinarily very small. The mean temperature gradient a%'ax3 is equal to 
the actual temperature gradient minus the gravity-induced temperature 
gradient aOo/ax3 = -g/cp which would exist in a flow without heat transfer 
(the set aOo/ax3 = -g/cp, (l/po) aPo/ax3 = -g, Po/po =ROO defines a 
perfect-gas atmosphere in which the entropy is  constant). 

The two equations (3.4.9, 3.4.10) are used in the study of atmospheric 
turbulence. The outstanding feature of these equations, of course, is the 
buoyant production of kinetic energy. Apparently, there exist situations in 
which turbulence need not be maintained by shear stresses because it can be 
maintained by fluctuating buoyancy forces. Turbulence driven by body 
forces is not nearly as well understood as turbulence driven by shear stresses; 
for example, no satisfactory theory of atmospheric turbulence in unstable 
conditions (as/ax, < 0) exists. 

Richardson numbers Some of the parameters governing (3.4.9,3.4.10) need 
to be introduced. The most obvious one is the ratio of buoyant production to 
stress production of turbulent kinetic energy. This parameter is called the flux 
Richardson number; it is defined as 

(3.4.1 1) 

If the heat transfer is upward (G > 01, the value of R, i s  negative because 
< 0 if  aUl /ax3 > 0. As (3.4.9) indicates, the production of turbulent 

kinetic energy is increased in this case. Upward heat flux generally corres- 
ponds to aa/ax3 < 0; this is  called an unstable atmosphere. I f  the heat trans- 
fer is downward (=< 0). R, > 0, and the buoyant-production term 
becomes negative, indicating that kinetic energy is lost.. Negative values of 
8 7 3  generally correspond to positive values of a&/3x3; this is called stable 
stratification. If a positive Rf becomes large enough, it leads to complete 
suppression of all turbulence. 
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If we define an eddy viscosity and an eddy conductivity by 

- 
--u , u3= vT au, /ax3, (3.4.1 2) 

-eu3 =yTas/aX3, (3.4.13) 
- - 

the flux Richardson number may be written as 

(3.4.14) 

Apart from the "exchange" coefficients vT and yT, this expression contains 
variables that can be measured with relative ease. This suggests that a dif- 
ferent parameter, the gradient Richardson number, should be useful: 

(3.4.1 5) 

If vT and yT are approximately the same (which may be a very unreliable 
assumption if the absolute value of Rf is not small), the parameters Rf and R, 
are approximately the same, too. Observations have shown that turbulence 
cannot be maintained if R, > 0.2 approximately. 

Buoyancy time scale The group (9Bo)a&ix, in (3.4.15) has dimensions 
sec-'. If a8/ax3 > 0 (stable conditions), we define 

@/o0)a9/ax3 E N ; ;  (3.4.16) 

i f  aS/ax3 < 0 (unstable conditions), we define 

-@/o,)aWa~, = ri2. (3.4.1 7) 

The parameter Nb is called the Brunt-Vaisala frequency; it is the frequency of 
gravity waves in a stable atmosphere. In an unstable atmosphere, gravity 
waves are unstable and break up into turbulence. Therefore, if a&3x3 < 0 we 
use the buoyancy time scale Tb. In sunny weather, Tb is typically of the 
order of a few minutes; more strongly unstable conditions correspond to 
smaller values of Tb. In a neutral atmosphere (a&ax3 =o), the time scale 
Tb + m, and the frequency Nb = 0. 

The mean wind gradient aUl/ax3 has the dimensions sec-I. If we define 

aul/ax3 = T ; ~ ,  (3.4.18) 
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we obtain 

We conclude that the gradient Richardson number is the square of a ratio of 
time scales. 

Monin-Oboukhov length In the surface layer of the atmosphere (which may 
extend up to several tens of meters above the surface), different parameters 
are important, so that the Richardson number is arranged in a different way. 
We assume that the wind profile is logarithmic: aU, /ax3 = U , / K X ~  ( s e e  
Section 2.3). The Reynolds stress -p u1u3 is constant; it i s  put equal to 
put (u, is  the friction velocity). The flux Richardson number then reads 

- 

The heat flux H = pcp 6; if we define a length L by 

LE-- = -  

we obtain 

3 0 0 ~ , 3  cppOou * 
KgK3 KgH ’ 

(3.4.27) 

(3.4.22) 

R, = x3/L. (3.4.23) 

The length L is  known as the Monin-Oboukhov length scale. Monin and 
Oboukhov have successfully used x3 /L  as the basic independent variable for 
the description of the surface layer, both in stable and unstable conditions. 
The absolute value of L is  seldom less than 10 m, so that the conditions in the 
lowest meter of the atmosphere are approximately neutral, except when the 
wind speed is very low. 

Convection in the atmospheric boundary layer As an illustration of the com- 
plexity of the problems caused by buoyant production of turbulence, let us 
consider atmospheric boundary layers in unstable conditions (@/ax3 < 0). 
In the surface layer of these boundary layers the absolute value of R, is small, 
but a t  heights above 50m, say, we may expect production by Reynolds 
stresses to be very small compared to buoyant production if the upward heat 
flux is appreciable (sunny afternoon weather). Also, the turbulence outside 
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the surface layer is thoroughly mixed by the thermal convection, so that 
transport terms in the energy budget (3.4.9) should be small. An approximate 
energy budget for the turbulence above the surface layer then reads 

9 -  aui aui - e u 3 r  v - -. 
0 0  ax, ax, 

(3.4.24) 

Let us assume that 8 and u3 are well correlated, so that 6 - tw if the rms 
values of 8 and u3  are represented by t and w. In turbulence with velocity 
scale w and length scale h, the dissipation rate is of order w3/h (h scales with 
the height of the atmospheric boundary layer). Substituting the estimates 
& - tw and E - w3/h  into (3.4.241, we obtain 

W’ - 9  thlOo. (3.4.25) 

This estimate states that a buoyant acceleration of order gt/Oo, acting over a 
distance h, produces kinetic energy of order gth/Oo. 

I f  the heat flux p c p G  throughout the boundary layer is of the same 
order as the heat flux in the surface layer, can be written in terms of the 
Monin-Oboukhov length L defined in (3.4.22) (note that the Monin- 
Oboukhov length is defined on basis of the surface heat flux). This yields 

eu3 - wr - -e0 u , ~  /gL. 

Substituting for r with (3.4.26) in (3.4.251, we obtain 

(w/u , )~  - (-h/L)2‘3. (3.4.27) 

As the heat flux increases, the value of -L (L  < O  if 6 >O) decreases. A 
value of -L representative of strong convection is - L  = 10 m; the height h is 
of the order of 1,000 m. We conclude from (3.4.27) that the kinetic energy 
fw2 of the turbutence above the surface layer becomes large compared to uz 
if the upward heat flux is large (in the absence of heat transfer, w %u*).  This 
implies that  the correlation between u 1  and u3 is  small under these condi- 
tions, because u1 - w, u3 - w, but F3 - uz. Turbulent eddies created by 
buoyancy forces apparently cause relatively l i t t le  momentum transfer. This 
undermines the foundation on which eddy-viscosity and mixing-length ex- 
pressions are based, so that they cannot be used in a complicated problem 
like this. 

In a flow with temperature fluctuations of order t and with a length scale 

- 
(3.4.26) 
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h, the mean temperature gradient @//ax, is at most of order r/h if the 
thermal convection keeps the temperature field mixed. Thus, the buoyancy 
time scale Tb defined in (3.4.1 7) may be estimated as 

Tb h, @f/@oh) - ' I2 .  (3.4.28) 

Substituting fo r t  with (3.4.26,3.4.27), we obtain 

(3.4.29) 

The height h of the boundary layer often is of order uJf, where f is  the 
Coriolis parameter (Blackadar and Tennekes, 1968). I f  this i s  the case, 
(3.4.29) becomes 

Tbf - (-L/h) ' I 3 .  (3.4.30) 

Clearly, the problem of buoyant convection is one with two time scales, that 
is, Tb and f- '  , which may differ by an order of magnitude if -L and h differ 
by a few orders of magnitude. As we have seen before, most problems in 
turbulence theory that involve more than one dynamically significant time or 
length scale are so complicated that no comprehensive solution is possible at 
the present state of the art. 

Buoyancy-generated eddies cause relatively little momentum transport, 
but they are quite effective in transporting heat. In other words, the ratio of 
the turbulent diffusivities for heat and momentum is much larger than one, so 
that  Reynolds' analogy (Section 2.4) does not apply. 

Problems 

3.1 Estimate the characteristic velocity of eddies whose size is equal to the 
Taylor microscale h (see Problem 1.3). Use this estimate to show that eddies 
of this size contribute very l i t t le  to the total dissipation rate. 

3.2 Experimental evidence suggests that the dissipation rate is not evenly 
distributed over the volume occupied by a turbulent flow. The disrribution of 
the dissipation rate appears to be intermittent, with large dissipation rates 
occupying a small volume fraction. Make a model of this phenomenon by 
assuming that all of the dissipation occurs in thin vortex tubes (diameter 71, 
characteristic velocity u = [ 5u,ujl 1- 112 1. What is the volume fraction occupied 
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by these tubes? Verify if the approximate vorticity budget (3.3.62) indeed 
holds for these vortex tubes. 

3.3 A qualitative estimate of the effect of a wind-tunnel contraction (Figure 
3.5) on turbulent motion can be obtained by assuming that the angular 
momentum of eddies does not change through the contraction. Let the con- 
traction ratio, which is equal to the ratio of the mean velocity behind the 
contraction to that in front of the contraction, be equal to c. Show that the 
velocity fluctuations associated with an "eddy" aligned with the mean flow 
(as in Figure 3.5) increase by a factor c1'2 and that those associated with an 
eddy perpendicular to the mean flow decrease by a factor c. Compute the 
effect of the contraction on the relative turbulence intensity u/U. Estimate 
the effect of the contraction on the rate of decay of velocity fluctuations. Is  
it feasible to design a contraction such that the evolution of turbulent velo- 
city fluctuations during the contraction can be ignored? 

3.4 A fully developed turbulent pipe flow of fluid with a Prandtl number 
equal to one is being cooled by the addition of a small volume of slightly 
cooler fluid over a cross section. Estimate the initial temperature fluctuation 
level. How many pipe diameters downstream are required before the tempera- 
ture fluctuations have decayed to 1% of the initial level? For the purpose of 
this calculation, it may be assumed that the mean velocity in the pipe is 
approximately independent of position. Also, an estimate for the dissipation 
rate E is needed; it can be obtained from momentum and energy integrals for 
pipe flow. For a prescribed decrease in mean temperature in the pipe, should 
one increase the volume flow of coolant and reduce the temperature differ- 
ence or vice versa in order to reduce the temperature fluctuations? 
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