
TURBULENT TRANSPORT OF MOMENTUM AND HEAT 

Turbulence consists of random velocity fluctuations, so t h a t  it must be 
treated with statistical methods. The statistical analysis does not need to be 
sophisticated a t  this stage; a simple decomposition of a l l  quantities into mean 
values and fluctuations with zero mean will suffice for the next few chapters. 
We shall find that turbulent velocity fluctuations can generate large momen- 
tum fluxes between different parts of a flow. A momentum flux can be 
thought of as a stress; turbulent momentum fluxes are commonly called 
Reynolds stresses. The momentum exchange mechanism superficially resem- 
bles molecular transport of momentum. The latter gives rise to  the viscosity 
of a fluid; by analogy, the turbulent momentum exchange i s  often repre- 
sented by an eddy viscosity. This analogy will be explored in great detail. 

2.1 
The Reynolds equations 
In turbulence, a description of the flow a t  all points in time and space is not 
feasible. Instead, following Reynolds (18951, we develop equations governing 
mean quantities, such as the mean velocity. The equations of motion of an 
incompressible fluid are 

aii. 

hi 

I- - 0. 

(2.1.1) 

(2.1.2) 

Here, Sii is the stress tensor. Repeated indices in any term indicate a summa- 
tion over a l l  three values of the index; a tilde denotes the instantaneous value 
a t  (xi, t )  of a variable on which no Reynolds decomposition into a mean value 
and fluctuations (see next section) has been performed. 

I f  the fluid is Newtonian, the stress tensor Zii is  given by 

In (2.1.3), 6ji is  the Kronecker delta, which is equal to one i f  i = j and zero 
otherwise; is the hydrodynamic pressure and p is the dynamic viscosity 
(which will be assumed to be constant). The rate ofstrain 5ji is defined by 

(2.1.4) 



28 Turbulent transport of momentum and heat 

If (2.1.3) is  substituted into (2.1 . I )  and i f  the continuity equation (2.1.2) is 
invoked, the Navier-Stokes equations are obtained: 

mi - aGi - I ap a2Gi 
at ax, p axi ax,ax, 

- + u . - - - - -  +v-. 

Here, v is the kinematic viscosity (v = p / p ) .  
.+ 

(2.1.5) 

The Reynolds decomposition 
flow Ui and velocity fluctuations ui, such that 

Gi = ui + ui . 
We interpret Ui as a time average, defined by 

The velocity Gi is decomposed into a mean 

(2.1.6) 

(2.1.7) 

Time averages (mean values) of fluctuations (which are denoted by lowercase 
letters) and of their derivatives, products, and other combinations are 
denoted by an overbar. The mean value of a fluctuating quantity itself is zero 
by definition; for example, 

(2.1 -8) 

The use of time averages corresponds to the typical laboratory situation, in 
which measurements are taken at  fixed locations in a statistically steady, but 
often inhomogeneous, flow field. In an inhomogeneous flow, a time average 
like Ui is a function of position, so that the use of a spatial average would be 
inappropriate for most purposes. For a time average to make sense, the 
integrals in (2.1.7) and (2.1.8) have to be independent of to .  In other words, 
the mean flow has to be steady: 

(2.1.9) 

Without th is  constraint (2.1.7) and (2.1.8) would be meaningless. The averag- 
ing time T needed to measure mean values depends on the accuracy desired; 
th is  problem is discussed in Section 6.4. 

The mean value of a spatial derivative of a variable is equal to the corre- 
sponding spatial derivative of the mean value of that variable; for example, 
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- 
@-aui aui - a - 
ax, ax,' ax,. ax,. 

ui =o. (2.1 .lo) 

These operations can be performed because averaging is carried out by 
integrating over a long period of time, which commutes with differentiation 
with respect to another independent variable. 

The pressure p" and the stress Cij are also decomposed into mean and 
fluctuating components. Again, capital letters are used for mean values and 
lowercase letters for fluctuations with zero mean. Specifically, 

p"= P t p ,  p=o, (2.1 .I 1) 

(2.1 .I21 

Like Ui, P and Xi, are independent of time. The mean stress tensor Xi, is 
given by 

zjj = -P6 ij t 2psp (2.1 . I  3) 

and the stress fluctuations uii are given by 

u- = -p6 .. t 2p sij . (2.1 .I41 

Here, the mean strain rate Si,. and the strain-rate fluctuations sii are defined 
bY 

rl ,I 

(2.1 .I 5) 

The commutation between averaging and spatial differentiation involved here 
is based on (2.1.10). 

Correlated variables 
way : 

Averages of products are computed in the following 

(21.16) 

The terms consisting of a product of a mean value and a fluctuation vanish if 
they are averaged, because the mean value is a mere coefficient as far as the 
averaging is concerned, and the average of a fluctuating quantity is zero. 
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If -+ 0, ui and ui are said to be correlated; if w= 0, the two are 
uncorrelated. Figure 2.1 illustrates the concept of correlated fluctuating 
variables. A measure for the degree of correlation between the two variables 
ui and u.  is obtained by dividing w b y  the square root of the product of the 
variances u; and u,?; this gives a correlation coefficient cii, which is defined 

I -  - 

(2.1.17) 

with the understanding that the summation convention does not apply in this 
case. If cii = +I, the correlation is said to beperfect. Each variable, of course, 
is perfectly correlated with itself (core = 1 i f  i = j  = a). 

The square root of a variance is called a standard deviation or root-mean- 
square (rms) amplitude; it is denoted by a prime (for example, u i  = (3 ) ' I2  1. 
A characteristic velocity, or "velocity scale," of turbulence a t  some down- 
stream position in a boundary layer might be defined as the mean rms 
velocity taken across the boundary layer a t  that position; in this way velocity 
scales used in dimensional analysis could be given a precise definition when- 
ever desired. 

Equations for the mean flow 
the continuity equation (2.1.21, we obtain 

I f  we apply the decomposition rule (2.1.6) to 

(2.1 .I81 

If the average of all terms in this equation is taken, the last term vanishes 
because of (2.1.8,2.1.10). Hence, the  mean flow is incompressible: 

au, (ax, = 0. (2.1 .I91 

Subtracting (2.1.19) from (2.1 .lW, we find that the turbulent velocity fluctu- 
ations are also incompressible: 

au,iax, = 0. (2.1.20) 

The equations of motion for the mean flow Ui are obtained by substitut- 
ing (2.1.6) and (2.1.12) into (2.1.1) and taking the average of all terms in the 
resulting equation. This yields, if all rules on averaging are observed (in partic- 
ular, recall that  aU,lat = 01, 
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b 

c 

Figure 2.1. Correlated and uncorrelated fluctuations. Thezuctuating variable a has the 
same sign as the variable b for most c)f the time; this makes ab > 0. The variable c, on the 
other hand, is uncorrelated with a and 6, so that = 0 (note that a f 0, 
% # 0 does not necessarily imply that ti # 0). 

= 0 and 
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(2.1.2 1 ) 

With us? of the continuity equation (2.1.20) for the turbulent velocity 
fluctuations, we may write 
L 

au; a - 
(2.1.22) 

This term is analogous to the convection term Ui aUilaxj; it represents the 
mean transport of fluctuating momentum by turbulent velocity fluctuations. 
If ui and u, were uncorrelated, there would be no turbulent momentum 
transfer. Experience shows t h a t  momentum transfer is a key feature of turbu- 
lent motion; the term (2.1.22) of (2.1.21) is not likely to be zero. Mean 
transport of fluctuating momentum may change the momentum of the mean 
flow, as (2.1.21) shows. The term (2.1.22) thus exchanges momentum 
between the turbulence and the mean flow, even though the mean momen- 
tum of the turbulent velocity fluctuations is zero ( p q  = 0). 

Because momentum flux is related to a force by Newton's second law, the 
turbulent transport term (2.1.22) may be thought of as the "divergence" of a 
stress. Because of the Reynolds decomposition, the turbulent motion can be 
perceived as an agency that produces stresses in the mean flow. For this 
reason, (2.1.21, 2.1.22) are rearranged, so that  all stresses can be put to- 
gether. This yields the Reynolds momentum equation: 

(2.1.23) 

If we recall that Zij is given by (2.1.131, the total mean stress Ti/ in a 
turbulent flow may be written as 

The Reynolds stress 
stress tensor is designated by the symbol rij: 

The contribution of the turbulent motion to the mean 

(2.1.25) 

In honor of the original developer of this part of the theory, rii is called the 
Reynolds stress tensor. The Reynolds stress is symmetric: rii = rii, as can be 
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seen by inspection of (2.1.25). The diagonal components of T i j  are normal 
stresses (pressures); their values are p u f ,  pu:, and p 3 .  In many flows, these 
normal stresses contribute l i t t le  to the transport of mean momentum. The 
offdiagonal components of rjj are shear stresses; they play a dominant role in 
the theory of mean momentum transfer by turbulent motion. 

The decomposition of the flow into a mean flow and turbulent velocity 
fluctuations has isolated the effects of fluctuations on the mean flow. How 
ever, the equations for the mean flow (2.1.23, 2.1.24) contain the nine 
components of T~~ (of which only six are independent of each other) as 
unknowns additional to P and the three components of Ui. This illustrates the 
closure problem of turbulence. Indeed, if one obtains additional equations for 
rji from the original Navier-Stokes equations, unknowns like are gen- 
erated by the nonlinear inertia terms. This problem is characteristic of al l  
nonlinear stochastic systems. 

This is a frustrating prospect. Therefore, many investigators have attemp- 
ted to guess a t  a relation between rji and Sji. This is a tempting approach 
because the function of the Reynolds stress in the equations of motion seems 
to be similar to that of the viscous stress 2pSjj. We investigate the nature of 
possible relations between rii and Sii in Section 2.3; before this i s  done, some 
background material on the viscous stress is given in Section 2.2. 

- -  

Turbulent transport of heat Turbulence transports passive contaminants 
such as heat, chemical species, and particles in much the same way as momen- 
tum. For later use, we develop the equation governing heat transfer in turbu- 
lent flow of a constant-density fluid. The density is approximately constant if 
temperature differences remain relatively small, i f gravity-induced density 
stratification may be neglected, and if the Mach number of the flow is  small. 

The starting point is the diffusion equation for heat in a flow: 

(2.1.26) 

The thermal diffusivity 7 is assumed to be constant; i t s  dimensions are 
m'sec-' . The ratio v/y is called the Prandtl number. 

The temperature 8 a t  (xi, t )  is  decomposed in a mean value @ and tem- 
perature fluctuations 8 ,  such that 

8=o+e, (2.1.27) 
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(2.1.28) 

G -  0, aoiat = 0. (2.1.29) 
The last condition has been imposed because time averages would not make 
Sense in an unsteady situation. 

Substituting (2.1.27) into (2.1.26) and taking the average of all terms in 
the resulting equation, we obtain 

(2.1.30) 

The mean heat flux (2,. per unit area and unit time in a turbulent flow then 
becomes (c,, is  the specific heat a t  constant pressure) 

Qj = cp p(eui - y a@laxi). (2.1.31) 

The heat flux is thus a sum of the contributions of the molecular motion and 
of the turbulent motion. The analogy between (2.1.24) and (2.1.31) is strik- 
ing; it is the analytical foundation for the belief that turbulence may trans- 
port heat in much the same way as momentum. 

- 

2.2 
Elements of the kinetic theory of gases 
In this section we discuss the molecular background of the viscosity and 
other molecular transport coefficients in dilute perfect gases (Jeans, 1940). 
For gases, the rudiments of kinetic theory are straightforward, but the kinetic 
theory of liquids is not nearly as well developed. 

Pure shear flow Let us take a steady pure shear flow, homogeneous in the 
xl, x 3  plane. The only nonvanishing velocity component is taken to be U1 ; it 
is a function of x 2  only. I f  the flow is laminar, the only nonvanishing com- 
ponents of the viscous shear stress are 

u12 = u2 = p auliaxz. (2.2.1 

The flow situation corresponding to (2.2.1 ) is  sketched in Figure 2.2. 
The shear stress u1 must result from molecular transport of momentum 

in the x 2  direction. Let v1 and v2 be the x1 and x2 components of the 
instantaneous velocity of a molecule relative to the mean flow. The x1 
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Figure 2.2. Pure shear flow. U, = U, = 0 and all derivatives with respect to x ,  and x j  
vanish. 

momentum mvl of a molecule with mass m is transported in the x2 direction 
if v2 is correlated with v l .  The momentum transport per molecule is propor- 
tional to m v1 v2.  If there are N molecules per unit volume, the transport of 
x 1  momentum in the x2 direction is Nm per unit time and area. Here, 
the overbar represents an average taken over a large number of molecules. 
Now, Nm is the mass per unit volume, which is the density p, and momentum 
flux per unit area and time may be equated with a stress. Hence, 
- 

012  = - p v , v z .  (2.2.2) 

The minus sign in (2.2.2) is needed because positive values of v2 should carry 
momentum deficit in a flow with positive u12 and aU,/ax2. The analogy 
between (2.2.2) and the definition of the Reynolds stress given in (2.1.25) is 
intentional: a stress that is generated as a momentum flux can always be 
written as (2.2.21, no matter what mechanism causes the momentum flux. 

Molecular collisions Kinetic theory of transport coefficients in gases esti- 
mates the right-hand side of (2.2.2) as follows. Suppose the mean free path 
(the average distance between collisions of molecules) i s  t .  The unusual 
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notation is selected because h has to be reserved for one of the length scales 
occurring in turbulence. On the average, a molecule coming from x2 = -t 
collides with another molecule a t  the reference level (x2 = 0). This process is 
illustrated in Figure 2.3. If we assume that because of this collision the 
molecule coming from below adjusts i t s  momentum in thex, direction to 
that of i t s  new environment, it has to absorb an amount of momentum equal to 

The quantity M is equal to the amount of momentum lost by the environ- 
ment a t  x2 = 0, because the upward-traveling molecule carries a momentum 
deficit with respect to the mean momentum x2 = 0. 

The right-hand side of (2.2.3) may be expanded in a Taylor series. This 
yields 

The second and higher terms in the expansion may be neglected if 

au, ., a2u, 
- >>zt-. 
ax2 ax; 

(2.2.4) 

(2.2.5) 

Figure 2.3. Molecular motion in a shear flow. 
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A local length scale eof the flow U1 (x2 ) is defined as 

Hence, (2.2.5) may be written as 

(2.2.6) 

(2.2.7) 

For air a t  room temperature and density, ,$ = 7 x cm, so that for almost 
all flows the condition (2.2.7) is indeed satisfied. This implies that  (2.2.4) 
may be approximated by 

M = rnt au, lax2. (2.2.8) 

aUl/ax2 is the part of v1 that is 
correlated with v 2 ,  apart from a minus sign needed due to the sign convention 
for u1 2 .  The number of collisions occurring a t  the reference level x2 = 0 per 
unit area and time may be estimated as Na, where N again is the number of 
molecules per unit volume and a is the speed of sound (which is a good 
representative for the rms molecular velocity). If the momentum transfer per 
collision is M, the momentum transfer per unit area and time must be propor- 
tional to MNa. Using (2.2.8), we thus can write 

u1 = &Na = Wmak aU, laxz. (2.2.9) 

Here, 01 is an unknown coefficient, which should be of order one. In air at 
ordinary temperatures and pressure, a is approximately 5; we shall use this 
value for convenience. 

In th i s  simplified model, the quantity 

Because Mm = p ,  (2.2.10) becomes 

2 
0 1  2 = p t  au, laxz. 
If we compare this with (2.2.1 ) and use p = pv, we obtain 

2 v = sat. 

The Reynolds number formed with these variables is 

aE 3 
v 2 '  
-= - 

(2.2.10) 

(2.2.1 1) 

(2.2.12) 

That this Reynolds number turns out to be of the order one is no accident, 
because the viscosity is defined on the basis of molecular motion with 
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velocity scalea and length scale t .  The Reynolds number (2.2.121, however, is 
not a dynamically significant number because a t  length scales of order E the 
gas is not a continuum. For air at room temperature and pressure, = 

7 x lo-' m, a = 3.4 x lo2 m/sec, so that  v = 15 x mZ/sec. It should be 
noted that elementary kinetic theory as given here cannot predict ratios of 
diffusivities (such as Prandtl number vly). 

Characteristic times and lengths The ratio of 
the flow is called the Knudsen number K. With (2.2.121, we obtain 

to the local length scale l o f  

(2.2.1 3) 

The Knudsen number is thus proportional to the ratio of the Mach number M 
and the Reynolds number R. In most flows M << R,  so that  the condition 
(2.2.7) is  easily satisfied. 

The Knudsen number is a ratio of length scales. The time scales involved in 
molecular transport of momentum are of interest, too. The molecular time 
scale is the time interval Ela between collisions; th i s  is typically of the order 
of lo-" sec. The time scale of the flow is the reciprocal of the velocity 
gradient aUllaxz. If the velocity gradient is lo4 sec-', corresponding to 
quite rapid shearing, the time scale of the flow is sec. It is seen that 
changes in the flow are slow compared to the time scale representing molec- 
ular motion. This suggests that the thermal motion of the molecules should 
not be disturbed very much by the flow: molecules collide many thousands 
of times before the flow has advanced appreciably. 

The correlation between v1 and v2 For future reference, it i s  useful to 
obtain some idea of how well the molecular velocity components v1 and v2 

are correlated. The part of v1 correlated with v2 is proportional to 
t aU,/ax2, as shown by (2.2.8). Taking representative values for a rapid 
shearing flow in air (t = 7 x m, aUl/ax2 = lo4 sec-'1, we find that 
E aUl laxz = 7 x m/sec. A correlation coefficient c between v1 and v2 
may be defined as - 

(2.2.1 4) 

Here, v2' is  the rms value of thex2 component of the molecular velocity. As 
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a comparison of (2.2.14) and (2.1.17) shows, we have used vl' = v2' .  I f  we 
use the results previously given, we may estimate that 

(2.2.1 5) 

Since v2' is of the same order of magnitude as the speed of sound a, which is 
3.4 x lo2 mlsec for air a t  room conditions, we find that c is approximately 
2 x indicating that v1 and v2 are very poorly correlated. I f  aUllax2 is 
estimated as lJI4 we find that the correlation coefficient is of the order of 
M*/R, a parameter which indeed tends to be extremely small in most flows. 
We may conclude that  the state of the gas is hardly disturbed by molecular 
momentum transfer. In other words, the dynamical equilibrium of the 
thermal motion of the molecules in shear flow of gases is, to a very close 
approximation, the same as the equilibrium state in a gas a t  rest. This implies 
tha t  shear flow is not likely to upset the equation of state of the gas, unless 
M2 l R  is large. 

In anticipation of results that  are obtained in Section 2.3, we note that the 
correlation coefficient of turbulent velocity fluctuations, defined in a manner 
similar to (2.2.141, is not small in turbulent shear flow. Consequently, the 
"state" of the turbulence is not independent of the mean flow field; on the 
contrary, the interaction between the mean flow and the turbulence tends to 
be quite strong. 

Thermal diffusivity Molecular transport of scalar quantities is similar to the 
transport of momentum. The heat transfer rate is given by the second term of 
(2.1.31 1; in the model flow used here, the only nonvanishing component is 

o2 = - pcpr aoiaX2.  
In terms of molecular parameters, this is 

o2 = - o.93cppa~ w a x 2 .  (2.2.17) 

In th is  equation we have used (2.2.1 1) and vl'y = 0.73 (air a t  room condi- 
tions). The thermal diffusivity is larger than the diffusivity for momentum 
because molecules that travel faster than average carry more thermal energy 
with them and make more collisions per unit time. Energetic molecules thus 
do more than a proportional share in transporting heat. 

(2.2.16) 
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2.3 
Estimates of the Reynolds stress 
We have seen that molecular transport can be interpreted fairly easily in terms 
of the parameters of molecular motion. It is very tempting to apply a similar 
heuristic treatment to  turbulent transport. We again use a pure shear flow as a 
basis for our discussion. This flow is illustrated in Figure 2.4. Using (2.1.25) 
and (2.1.311, we find the rates of turbulent momentum transfer and heat 
transfer to be 

7 1 2  = -PU1U2, (2.3.1) 
- 

Hz = pCp9uz. (2.3.2) 

The symbol Hz is  used to  avoid confusion with the total rate of heat transfer 
Q z .  

Reynolds stress and vortex stretching Let us consider the Reynolds stress 
only. The existence of a Reynolds stress requires that the velocity fluctua- 
tions u1 and uz be correlated. In a shear flow with aUl laxz  > 0, negative 
values of u 1  should occur more frequently than positive ones when uz is 
positive, and vice versa. This is a rather intricate problem: the energy of the 
eddies has to be maintained by the shear flow, because they are continuously 
losing energy to smaller eddies. Molecules do not depend on the flow for their 
energy because the collisions between molecules are elastic. Eddies, on the 

Figure 2.4. Turbulent pure shear flow. The mean velocity is steady: U, = U, = 0 and 
U, =U, ( x , ) .  The instantaneous streamline pattern sketched refers to a coordinate 
system that moves with a velocity U, (0 ) .  
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other hand, need shear to maintain their energy; the most powerful eddies 
thus are those that  can absorb energy from the shear flow more effectively 
than others. Evidence (for example, Townsend, 1956, Bakewell and Lumley, 
1967) suggests that the eddies that are more effective than most in maintain- 
ing the desired correlation between u1 and u2 and in extracting energy from 
the mean flow are vortices whose principal axis is roughly aligned with that of 
the mean strain rate. Such eddies are illustrated in Figure 2.5. The energy 
transfer mechanism for eddies of this kind is believed to be associated with 
vortex stretching: as the eddies in Figure 2.5 are being strained by the shear, 
conservation of angular momentum tends to maintain the good correlation 
between u1 and u 2 ,  thus allowing (as we discuss in more detail in Chapter 3) 
efficient energy transfer. 

The interaction between eddies and the mean flow described here is essen- 
tially three dimensional. Twodimensional eddies (velocity fluctuations with- 
out a component normal to the xl, x 2  plane) may on occasion have appre- 
ciable Reynolds stress, but the mean shear tends to rotate and strain them in 
such a way that they would lose their capacity for extracting energy from the 
mean flow rather quickly. 

These considerations suggest that a simple transport theory patterned after 
kinetic theory of gases is a t  best a very crude representation of reality. The 
dynamic interaction between the mean flow and the turbulence is too strong 

Figure 2.5. Threedimensional eddies (vortices with vorticity w)  being stretched by the 
rate of strain S. The fluctuating velocity has strong components in the plane normal to 
the vorticity vector. Note that the shape of these eddies may differ widely from flow to 
flow. 
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to allow for a simple transport model. Also, a more detailed analysis of the 
energy and vorticity dynamics of the eddies (Chapter 3) is essential to the 
understanding of turbulence. 

It should be noted that  this discussion applies only to shear flows. If 
eddies receive energy in other ways (from buoyancy or a magnetic field, say), 
the picture may be entirely different. 

The mixing-length model An estimate for the turbulent momentum flux can 
be obtained by analyzing the random motion of moving points ("fluid 
particles") in a turbulent shear flow. A formal treatment of the statistics of 
the motion of wandering points is given in Chapter 7; the less rigorous 
analysis presented here is more than adequate for a first look a t  turbulent 
transport. 

Suppose a moving point starts from a level x2 = 0 (see Figure 2.6) a t  time 
r = 0. Its x 1  momentum per unit volume is pGl (0,O). where cl (0,O) stands 
for the instantaneous velocity a t  x2 = 0, t = 0. If we assume that the moving 
point does not lose i ts  momentum as it travels upward, it has a momentum 
deficit AM= pc1 (x2, t )  - pGl (0,O) when it passes an arbitrary level x2 a t  
time t .  Using the Reynolds decomposition of velocities, we can write the 
momentum deficit as 

(2.3.3) 

If the contribution of the turbulence to the momentum deficit can be 
neglected and if the difference U1 (x2) - U1 (0) may be approximated by 

Figure 2.6. Transport of momentum by turbulent motion. 
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x2 aUl lax2,  where the gradient is taken a t  x2 = 0, AM may be approximated 
bY 

AM = px2 au, iax2.  (2.3.4) 

The volume transported per unit area and unit time in the x2 direction is G2 of 
the moving point. Now, C2 = dx21dt, so that the average momentum flux a t  
x2 = 0 may be written as 

(2.3.5) 

The overbar here denotes an average over all moving points that start from 
x2 =o. 

The dispersion rate d g ) / d t  may be written as (see also Section 7.1 

d -  dx2 - - (x i ,  = 2 x2- = 2 X Z U 2 .  
dt dt  

(2.3.6) 

If the fluid a t  any point did not continually exchange momentum with its 
environment, u2 would remain constant for any given moving point, and 
xzu2 would continue to increase in time asx, increased. This is not realistic; 
instead, we expect that the correlation between u2 and x2 of a moving point 
decreases as the distance traveled increases. If we assume that u2 and x2 
become essentially uncorrelated a t  values of x2 comparable to some trans- 
verse length scale 4' (see Figure 2.61, we may estimate that x2u2 is of order 
u2'G. Here, u2' is the rrns velocity in the x2 direction; the dispersion length 
scale G is called the mixing length. Of course, this very estimate of XzUz 
implies that momentum is not conserved when the moving point travels in the 
x2 direction, so that  this estimate makes the expression for the momentum 
deficit AM given in (2.3.4) very dubious, to say the least. 

- 

- 

- 
With 2 xzuz = 2cl u2 'G, (2.3.5) becomes 

T , = c P U ~ '  au, /ax2. (2.3.7) 

The numerical coefficient c1 is unknown. 

momentum), in analogy with (2.2.11, by the equation 
We define the eddy viscosity vT (or turbulent exchange coefficient for 

r12 = p ~  au, iax2.  (2.3.8) 
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Comparing (2.3.7) and (2.3.8), we find that  the eddy viscosity is given by 

VT =c,u;ff .  (2.3.9) 

I f  the mixing length t' and the velocity u2' were known everywhere in the 
flow field and if the mixing-length model were accurate, the closure problem 
would be solved. The unknown Reynolds stress would be related to known 
variables and to the mean velocity gradient, making a solution of the equa- 
tions of motion possible. However, the situation is not quite that simple. 
Even if we were willing to accept (2.3.7) as a model, u2' and ta re  not 
properties of the fluid but properties of the flow. This implies that u2' and e 
may vary throughout the flow field, making the eddy viscosity variable, depen- 
dent on the position in the flow. This is not a very promising prospect. 
Consequently, applications of (2.3.7) are usually restricted to flows for which 
it can be argued that  u2' is approximately constant (at  least in the cross- 
stream direction) and for which G is either constant or depends in a simple 
way on the geometry of the shear flow concerned. 

In reality, turbulence consists of fluctuating motion in a broad spectrum 
of length scales. However, in view of the way Goccurs in (2.2.71, one may 
argue that large eddies contribute more to the momentum transfer than small 
eddies. The mixing-length model therefore favors large-scale motions; for 
simplicity, e may be taken to be proportional to the size of the larger eddies. 

The length-scale problem The approximations involved in the estimate 
(2.3.4) of the momentum deficit carried by a moving point need to  be 
carefully considered. Because the distance over which momentum is trans- 
ported is of order [, the approximation (2.3.4) of (2.3.3) should be accurate 
over transverse distances of order G. Let us define a local length scale 9 o f  the 
mean flow by (von KBrmBn, 1930) 

(2.3.10) 

The approximation U1 (x2  1 - U 1  (0) = x 2  aUl lax2  for all values of x2 of 
order k is valid only if 

9>>;e .  (2.3.11) 

In turbulent flows, however, the largest eddies tend to have sizes comparable 
to the width of the flow, as we have seen in Chapter 1. Consequently, G is 
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usually of the same order as the local length scale 9. This makes the "turbu- 
lent Knudsen number" t ' /Bof order one. Note that both 8 and Bare trans- 
verse length scales: they are associated with the x2 direction, which is normal 
to the mean flow. 

We have to conclude that the truncation of the Taylor series expansion 
involved in (2.3.4) is not justified. Therefore, a gradient-transport model, 
which links the stress to the rate of strain a t  the same point in time and space, 
cannot be used for turbulent flow. It should be emphasized again that turbu- 
lence is an irreducible part of the flow, not a mere property of the fluid. 
Turbulence interacts strongly with i t s  environment; the "state" of turbulence 
depends strongly on the flow in which it finds itself. 

A neglected transport term The approximation (2.3.4) to the momentum 
deficit AM given by (2.3.3) neglected the contribution p [ u l  ( x 2 ,  t )  - 
u1 (0,011. Let us call this p aUl. The momentum flux associated with this 
term is p u 2 * A u 1 ,  where the overbar again denotes an average over many 
moving points. The velocity difference Au, should be very small for trans- 
verse distances small compared to [, but it could be appreciable for values of 
x2 of order G, so that there is no a priori reason why this term can be 
neglected. However, in view of al l  of the other dubious assumptions involved 
in the mixing-length model, it does not seem useful to pursue this issue. 

The mixing length as an integral scale In the derivation of (2.3.71, we used 

(2.3.12) 

It is worthwhile to investigate how e could be defined. For this purpose, 
consider how the value of x2 increases as the moving point travels away from 
the reference level x2 = 0. We can write 

t 
x2 (t)  = 1 u2 (t') dt'. (2.3.13) 

This implies that (2.3.12) may be written as (Taylor, 1921; see Friedlander 
and Topper, 1962) 

0 

(2.3.14) 

The velocity u2 ( t )  can be taken inside the integral because it is independent 
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of t'; the averaging process can beperformed on the integrand because it is 
done over many moving points, not over time. 

In a statistically steady situation like the flow considered in this chapter, 
the origin of time is irrelevant, so that the correlation between u z ( t )  and 
uz (t') should depend only on the time difference t -  t' = 7. Let us define a 
correlation coefficient C(T) by 

u2 ( t b 2  ( t  - 7 )  
c(7) = - 

4 
Substituting (2.3.15) into (2.3.141, we obtain 

(2.3.15) 

(2.3.16) 

The correlation coefficient c(7) decreases as the time interval 7 increases; a t  
large values of 7 the velocities u2 ( t )  and u2 (t ')  are uncorrelated. A sketch of 
c(7)  is  shown in Figure 2.7. 

The area under the curve in Figure 2.7 is given by 

J = C(T) d7; (2.3.1 7) 
0 

it is assumed that c(7) decreases rapidly enough a t  large 7 to make Ffinite. 
The time F i s  called the Lagrangian integralscale. The adjective "Lagrangian" 
is used to indicate that it relates to moving points ("fluid particles"). The 
adjective "Eulerian" is used whenever correlations between two fixed points 
in a fixed frame of reference are considered. A more detailed discussion is 
given in Chapter 7. 

Figure 2.7. The Lagrangian correlation curve. Some correlation curves have negative 
tails, many do not. 
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Moving fluid loses its capability of transporting momentum when the 
correlation between x2 and u2 becomes zero. The time interval t involved in 
(2.3.16) should thus be large enough to make c ( t )  zero. The dispersion rate 
then becomes (see also Section 7.1) 

(2.3.18) 

If we define (Taylor, 1921) a Lagrangian integral length scaleCL by 

GL = U i Y ,  (2.3.19) 
we can write (2.3.18) as 

I d -  
- - ( x ; ) = U ; t L .  
2 dt 

(2.3.20) 

The time scale Y is hard to determine experimentally, because it requires 
that the motion of many tagged fluid particles be followed, say with 
photographic or radioactive tracer methods. In most turbulent flows, how 
ever, the length scale tL is believed to be comparable to the transverse 
Eulerian integral scale 4 which is defined by 

u;tE s- u2 (x2 )u2 (0) dx2. (2.3.21) 

The averaging process used in (2.3.21) is performed over a long period of 
time, with a fixed transverse separation x2 and zero time delay between the 
two velocities. Experimental determination of G is relatively simple. 

asclu2'& where Gis defined by (2.3.21) (see also Sections 7.1 and 8.5). 

- 

If  dL and Care of the same order of magnitude, we thus may estimate 

The gradient-transport fallacy The mixing-length model has been discussed 
in great detail because of its ubiquitous use in much of turbulence theory. Let 
us now demonstrate that  (2.3.7) is merely a dimensional necessity in a turbu- 
lent shear flow dominated by a single velocity scale u2' and a single length 
scale C. 

The correlation coefficient c12 between u1 and u2 is defined as 

c12 =u1u~I(u1)u;). (2.3.22) 

Hence, we may write 

7 1 2  = -C12Pu1u2. 
f l  (2.3.23) 

In all turbulent flows, ul' and u2 are of the same order of magnitude so that 
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(2.3.23) may be written as 

71 2 = c2p(u;)2. (2.3.24) 

In turbulent flows driven by shear, the unknown coefficients c1 and c2 are 
always of order one: u1 and u2 are well correlated in eddies that can absorb 
energy from the mean flow by vortex stretching (Figure 2.5). Note, however, 
that in turbulence maintained in other ways, say by buoyancy, c12 and c2 
may be quite small. 

The eddies involved in momentum transfer have characteristic vorticities 
of order u2’/t; they maintain their vorticity because of their interaction with 
the mean shear aUl laxz. Let us write 

u;fe‘= c3 auiiax2, (2.3.25) 

so that  c3 is a nondimensional coefficient. If the straining of eddies is the 
effective mechanism that Figure 2.5 suggests it is, c3 should be of order one. 
In effect, we are merely saying that the characteristic time of eddies (G/u2’) 
and the characteristic time of the mean flow (aU1lax2)-’ should be of the 
same order if no other characteristic times or lengths are present, because 
turbulence is the fluctuating part of the flow. In particular, it i s  implied that 8 
and the differential length scale gdefined in (2.3.10) are of the same order 
and that the mixing length is of the same order as the length scale of large 
eddies. The statement about time scales made here may be transposed into a 
statement about vorticities or strain rates if so desired: if c3-  1, (2.3.25) 
states that the vorticity found in the larger eddies is of the same order as the 
vorticity of the mean flow, and that  the respective strain rates are also com- 
parable. 

I f  we use (2.3.25) to substitute for one of the u2’ occurring in (2.3.24), we 
find 

T12 = c2C3p~;~auliax2, (2.3.26) 

which, of course, is equivalent to (2.3.7). We see that we can relate the stress 
at  x2 = 0 to the mean velocity gradient a t  x2 = 0 because the correlation 
between u1 and u2 is good and because the time-scale ratio is of order one. 
No conservation of momentum needs to be assumed; the mean-velocity 
gradient aUl lax2 a t  x2 = 0 may be used because it is a convenient representa- 
t h e  of aUllax2 throughout an environment of scale G. Indeed, (2.3.16) is 
only one member of a class of expressions 

(2.3.27) 
au1 
3x2 

T lZ (X2  = O ) - p u z ’ ~ -  ( IxzIG3, 
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all of which are implied by (2.3.24) and (2.3.25). The localized estimate 
(2.3.26) merely is the most convenient member of this class. In other words, 
we may treat the local stress as if it were determined by the local rate of 
strain because there is only one characteristic length and one characteristic 
time. In short, (2.3.26) is a dimensional necessity that does not imply 
conservation of momentum or "localness" of the mechanism tha t  produces 
the stress; (2.3.26) should not be mistaken for a gradient-transport postulate. 

Further estimates Comparing (2.3.23) and (2.3.261, we see that  iY.2 part of 
u1 that is correlated with u2 is  of order Gaul lax,. If the correlation between 
u1 and u2 is good and if u1 ' and u2' are of the same order, we may write 

au, au, 
1 2  ax2 I= I 712 =c4pe - (2.3.28) 

In (2.3.281, c4 is a coefficient of order one; the modulus of aUJax2 is used 
to make r 1  switch signs with aUl lax2. This expression is the one originally 
proposed by Prandtl (see Hinze, 1959). 

The eddy viscosity is of order u2 2. The ratio of the Reynolds stress to the 
viscous stress is thus 

4' e 
.- - 71 2 

= c1 - =cl Rc. 
pauliaxz v V 

(2.3.29) 

This substantiates one of the  results obtained in Chapter 1: the Reynolds 
number ~ ~ ' 2 %  of the turbulent eddies may be interpreted as a ratio of 
diffusivities. In most flows, R, is very large, which implies that  the Reynolds 
stress is much larger than the viscous stress. In other words, turbulent trans- 
port of momentum tends to be much more effective than molecular trans- 
port. I f  this is the case, the viscous terms in the equations for the mean flow 
may be neglected. The dependence of the mean flow on the Reynolds 
number is thus small, except in regions where I and v/u2' are of the same 
order of magnitude. 

Recapitulation We have found that, in a shear flow with one characteristic 
velocity and one characteristic length, the time scale of the turbulence is 
proportional to the time scale of the mean flow. Under certain circumstances, 
G/uz' may be as small as one-tenth of the reciprocal of aUl/ax2, but the 
general conclusion must be that turbulence in a shear flow cannot possibly be 
in a state of equilibrium which is independent of the flow field involved. The 
turbulence is continually trying to adjust to i t s  environment, without ever 
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succeeding. This conclusion is substantiated by the good correlation between 
u1 and u2 .  In all turbulent shear flows I - G I  - 0 . 4 ~ ~ ' ~ ~ ' ;  the value of 0.4 
should be contrasted to the correlation coefficient for molecular motion, 
which was seen to be of order 1 O - 6 .  A theory for the Reynolds stress thus 
cannot be patterned after the kinetic theory of gases; the mixing-length 
model must be rejected, even though a mixing-length expression like (2.3.26) 
makes good dimensional sense in a situation where only one length scale and 
only one time scale are relevant. 

In situations where more than one characteristic length and time are 
involved, the problem of the relation between stress and rate of strain gener- 
ally becomes nearly intractable. If, for instance, the turbulence is mainly 
generated by buoyancy (as in an atmospheric boundary layer with an un- 
stable temperature gradient), there is no need for the vorticity aUllaxz of 
the mean flow to be of order u2'/4 so that  nothing can be said a priori about 
the value of the coefficient c1 in (2.3.7). Problems such as this require a very 
careful study of the kinetic energy budget of turbulent motion. 

In the model problem considered in this chapter, downstream variation in 
the flow was suppressed by virtue of the assumption that  U1 is only a func- 
tion of x2. In most flows, however, downstream changes do occur, introduc- 
ing time scales such as the reciprocal of aUl/axl and length scales such as 
the distance x1 from some suitably defined origin. These parameters would 
have to be taken into account were it not for the fact that in many flows of 
practical interest 

au, au, - c - .  e c x , .  
ax, axz 

(2.3.30) 

If these inequalities hold almost everywhere in the flow, the downstream 
changes in the flow field are slow compared to the time scale of the turbu- 
lence, so that the turbulence may be in approximate equilibrium with respect 
to i ts environment a t  all values of the downstream distancexl . This concept 
i s  vital to the theory of turbulent shear flows (Chapters 4 and 5). 

2.4 
Turbulent heat transfer 
Passive contaminants are transported by turbulent motions in much the same 
way as momentum. The transfer of heat in the pure shear flow considered in 
this chapter is a good example. We assume here that the heat flux does not 
cause significant buoyancy effects. 
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Reynolds' analogy The vertical heat flux H2 is given by (2.3.2): 
- 

H2 = P C ~ U ~ ~ .  

An eddy diffusivity for heat, yT, is defined by 

H~ = -pcpyT aoiax,. (2.4.1) 

This is a mere definition, which does not assume anything about the nature of 
yT. In most turbulent flows, the "turbulent Prandtl number" V T / y T  is  close 
to one: turbulence transports heat just as rapidly as momentum (Hinze, 
1959). Recall that T~ may be expressed as (2.3.8): 

T1 = pvT au, lax2. 

If z+yT is equal to one, heat and momentum transfer are related by 

(2.4.2) 

This is called Reynolds'analogy. It is used to estimate the turbulent heat flux 
if the stress and the mean velocity and temperature fields are known. The 
analogy avoids an explicit statement on the magnitudes of the eddy diffusivi- 
ties for heat and momentum, so that it can be applied even if vT and yT 
cannot be determined. 

The mixing-length model Mixing-length theory (Taylor, 1915) estimates the 
heat flux as 

u2 = -pcIDcSu; e aoiax2, (2.4.3) 

where cs is  a coefficient of order one. The mixing-length model of turbulent 
heat transfer is not as misleading as the model of momentum transfer, be- 
cause the temperature of a fluid particle is more nearly conserved than i t s  
momentum. Even so, (2.4.31, like i t s  stress counterpart, does not need to be 
defended with a mixing-length model in order to justify i t s  use in situations 
with a single characteristic length and velocity. If the correlation between u2 
and 0 is  good and if 

8 2 -  aoiax2, (2.4.4) 

the heat transfer can be expressed as (2.4.3). 
The assertion (2.4.4) may be understood as follows. Consider turbulent 
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motion between x2 = 0 and x2 = 9, where 9 i s  the local length scale of the 
flow field, defined by (2.3.10). Let us assume that the mean temperature 
difference between x2 = 0 and x2 = $'is A@. In turbulent flows, 9and  tare 
of the same order of magnitude, so that  the eddies, in attempting to mix the 
temperature field, create temperature fluctuations of order A@. This implies 
that 8' - A@ i f  t'- 9, which is expressed most concisely in the differential 
form (2.4.4). Strictly speaking, an average value of a@lax2 between x z =  0 
and x2 = Yshould be used, but the definition of Yimplies that aOlax2 is  of 
the same order of magnitude everywhere between x2 = 0 and x2 = 9, so that 
a local value may be used to represent the average. It should be kept in mind, 
however, that a local interpretation of (2.4.31, though often convenient, is 
more restrictive than it needs to be. 

The expression Of / { -  aOlaxz often is more reliable than i t s  momentum 

counterpart uz '/em aU, l axz ,  because the former merely expresses that tur- 
bulence mixes passive scalar contaminants over scales of order{, whereas the 
latter is valid only if the turbulent motion is maintained by a mean strain 
rate. Momentum i s  not a passive contaminant; "mixing" of mean momentum 
relates to the dynamics of turbulence, not merely to  i t s  kinematics. 

2.5 
Turbulent shear flow near a rigid wail 
Let us apply the concepts developed in this chapter to a pure shear flow in 
the vicinity of a rigid, but porous wall. The flow geometry is sketched in 
Figure 2.8. If there is no mass transfer (blowing or suction) through the wall, 
we shall find that there is only one velocity scale. In that case, mixing-length 
models may be used. However, if the mass-transfer velocity is different from 
zero, there are two velocity scales. We shall see that mixing-length theory 
cannot cope with that problem. 

We take the mean flow to  be steady and homogeneous in the xl, x 3  plane. 
We take U3 = 0 and aP/axi = 0 for i = 1,2,3. The flow may be thought of as 
occurring in a very wide channel, with the upper wall a t  x2 + 00 moving a t  a 
certain velocity to maintain the momentum of the flow. The entire half-space 
x2  > 0 i s  supposed to  be filled with turbulent flow. 

The equations of motion are 

(2.5.1) 
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Figure 2.8. Turbulent flow near a rigid surface with mass transfer. The surface is at rest 
(U, (0) = O ) .  

(2.5.2) 

Equation (2.5.1) can be solved a t  once; because U2 has to be independent of 
X I  by virtue of downstream homogeneity, U2 is uniform: 

u2 = vm, (2.5.3) 

The mass-transfer velocity v, is  independent of x1 and x 2 ,  but it does not 
need to be zero as in the flow considered in Section 2.3. 

With (2.5.31, (2.5.2) can be integrated to yield 

P Vm u1 = 7-12 - 7-12(0). (2.5.4) 

The boundary condition U l ( 0 )  = O  is implied in (2.5.4). Let us define a 
friction velocity u, by 

T12(0) = p u t .  (2.5.5) 

I f  the analysis is restricted to values of x2 where x2 U1 lv >> 1, the viscous 
contribution to the total shear stress T12 should be negligible, so that we may 
write 

- 
(2.5.6) 2 vmul  = -u1u2-u*. 
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- 
A flow with constant stress If v, = 0, the Reynolds stress - ulu2 is equal to 
u,’ at all values of x2 for which viscous effects are negligible. A flow of this 
kind is called a consranr-stress layer; it also occurs close to the wall in most 
turbulent boundary layers (Chapter 5). Assuming that u1 and u2 are well 
correlated, we conclude that u2’ must be independent of x2 and proportional 
to u,. The scale relation (2.3.25) between the vorticity of the turbulence and 
the vorticity of the mean flow becomes 

in which a1 is a coefficient of order one. 
The rigid wall constrains the turbulent motion in the sense that transport 

of momentum downward from some level x2 is restricted to distances smaller 
than x2 itself. If no length scales are imposed on this flow, the only dimen- 
sionally correct choice foreis 

I=  a 2 x 2 .  (2.5.8) 

A comprehensive study of the implications of (2.5.8) is deferred until Chap- 
ter 5. With (2.5.81, (2.5.7) becomes 

lax2 = U, /KX2, (2.5.9) 

which readily integrates to 

--- ‘1 - I In x2 + const. 
u* K . 

(2.5.10) 

The coefficient K is known as the constant of von KBrmBn (KBrmBn constant, 
for short). Experiments have shown that K is approximately equal to 0.4 
(Hinze, 1959). 

The additive constant in (2.5.10) is presumably determined by the no-slip 
condition (U, = 0 at  x2 = 0). However, this condition cannot be enforced 
because (2.5.10) is not valid at  values of x2 which are so small that the 
Reynolds numberx2U11v i s  of order unity. 

In this flow without mass transfer through the surface, mixinglength 
models can be used because there is only one length scale Cy2) and one 
velocity, scale (u*) ,  so that no ambiguity can arise. Specifically, (2.3.7) be- 
comes 

-uIu2 = KU,X2 au,iax2. 
- 

(2.5.1 1) 
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- 
Because -uIuz is  equal to u,* if V,  = 0, (2.5.11) produces (2.5.10) upon 
integration. Prandtl's version of the mixing-length formula can be applied 
with equal success. 

Nonzero mass transfer If v, # 0, the problem has two characteristic veloci- 
ties, u, and v,. The length scale, however, remains proportional to x 2 .  This 
problem cannot be solved without making further assumptions. The least 
restrictive assumption we can make is that aU, laxz should be proportional 
to w/x2, where w is an undetermined velocity scale that depends on u, and 
v,. Let us write 

au, tax2 = w/x2. (2.5.1 2) 

The numerical coefficient needed in (2.5.12) has been absorbed in the un- 
known velocity scale w. 

integration of (2.5.12) yields 

U,/w = In x2 + const. (2.5.1 3) 

This equation is not a solution to the equations of motion; it is merely a 
consequence of the differential similarity law (2.5.12). Because w is un- 
known, it has to be determined experimentally. In this flow, v, and U,, are 
the only two velocity scales, so that we may write 

w/u* = f (vm h*). (2.5.1 4) 

Experimental results on w/u, are given in Figure 2.9. In the case of blowing 
(v, > 01, the Reynolds stress is larger than u+' ;this results in an increase of 
w/u,. If v, >>us, the friction velocity becomes relatively unimportant, so 
that w should be proportional to v,. In the case of suction (v,< 01, the 
Reynolds stress is smaller than u + ~ ,  so that w/u, decreases. If the suction rate 
is  large, the Reynolds stress becomes so small that turbulence cannot be 
maintained; this causes reverse transition from turbulent to laminar flow. If 
v,< 0, the situation is  further complicated by the fact that the suction 
imports not only mean momentum toward the wall but also turbulent kinetic 
energy. 

The mixing-length approach The preceding analysis was based on the a s  
sumption expressed by (2.5.12). If the resulting velocity profile (2.5.13) is 
substituted into the equation of motion (2.5.6). there results 

-u1u2 =U2,+vmw(~nx2 + c ) .  (2.5.15) 
- 
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- V,lU* 

Figure 2.9. The velocity scale of flow near a rigid wall with mass transfer (based on 
data collected by Tennekes, 1965). 

However, if we insist on using a mixinglength model and if we continue to 
use w as a characteristic velocity, we should write 

- U ~ U ~ = ( Y ~ W X ~  au , iax2 ,  (2.5.1 6) 

where a3 is an unknown coefficient. I f  we substitute (2.5.12) into (2.5.16), 
we obtain 

-u1u2 =a3w 2 . (2.5,17) 

A stress that i s  independent of x2 is clearly not a correct solution: (2.5.6) 
states that the stress depends on x2 because U1 presumably depends on x 2 .  

However, the difference between (2.5.15) and (2.5.17) is not as large as it 
seems. For v, =0, w =  2.5u, (Figure 2.9), so that a3 =0.16. For small 
values of vm/ux, Figure 2.9 shows that w/u, = 2.5 (1 + 9  Vm/U*), so that 
a3 w2 may be approximated by u , ~  + 18 vmu, i f  Ym/U, is small. This is very 
much like (2.5.15) except for the suppressed dependence on x 2 .  

A third approach would be to substitute (2.5.16) into (2.5.6) without 
making a further substitution based on (2.5.12). Upon integration, this yields 

- UZ = Y, ( (~4x2 3 w . (2.5.18) 

This expression agrees neither with (2.5.15) nor with (2.5.17). 

- 

- 
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A fourth approach would be to use (2.5.12) to  remove w from the mixing- 
length formula (2.5.16). This results in Prandtl’s version of the mixing-length 
formula; after integration of the equation of motion (2.5.6) there results 

-u1u2 = [as v,(In a6x2)I ’. (2.5.1 9) 

The corresponding velocity profile is obtained by substitution of (2.5.19) 
into (2.5.6). The proponents of (2.5.19) claim that it agrees with their experi- 
mental data. However, (2.5.19) contains two adjustable coefficients (as and 
a6) ,  both of which may depend on vm/u,. Like (2.5.15), (2.5.17). and 
(2.5.18), (2.5.19) is not a solution to the equations of motion. 

__ 

The limitations of mixing-length theory A t  this point it has become abun- 
dantly clear that mixing-length models are incapable of describing turbulent 
flows containing more than one characteristic velocity with any degree of 
consistency. None of the versions that were tried gives a clear picture of the 
roles of the two velocity scales; the effects of vm/u, on the integration 
constants remain altogether unresolved. Let us recall that mixing-length ex- 
pressions can be understood as the combination of a statement about the 
stress (-= - w’ )  and a statement about the mean-velocity gradient 
(aU,/ax2 - w / x 2 ) .  These statements do not give rise to inconsistencies if 
there is only one characteristic velocity, but they cannot be used to  obtain 
solutions to the equations of motion if there are two or more characteristic 
velocities that contribute to  w in unknown ways. In  other words, mixing 
length theory is useless because it cannot predict anything substantial; it is 
often confusing because no two versions of it can be made to  agree with each 
other. Mixing-length and eddy-viscosity models should be used only to  gener- 
ate analytical expressions for the Reynolds stress and the-mean-velocity pro- 
f i le if those are desired for curve-fitting purposes in turbulent flows character- 
ized by a single length scale and a single velocity scale. The use of mixing- 
length theory in turbulent flows whose scaling laws are not known before- 
hand should be avoided. 

Problems 

2.1 Consider a fully developed turbulent Couette flow in a channel between 
two infinitely long and wide parallel plane walls. The distance between the 
walls is 2h, the lower wall is  a t  rest and the upper wall moves with a velocity 
Uo in i ts  own plane. Assume that the flow consists of two wall layers (Section 



58 Turbulent transport of momentum and heat 

2.5) which match a t  the center line of the channel. Find an expression for the 
friction coefficient a t  the lower wall (cr = ~ U + ~ / U ~ ~ ,  where U, is the mean 
velocity a t  the center line) in terms of an appropriate Reynolds number. 
Estimate the additive constant in the logarithmic velocity profile (2.5.1 0) by 
assuming that near the walls there exist "viscous sublayers" in which the 
Reynolds number is so small that the Reynolds stress is negligible. The thick- 
ness of these sublayers is equal to lOv/u,. Sketch the velocity profile in the 
channel. 

2.2 Experimental evidence obtained in pipe flow (Hinze, 1959) suggests that 
a more accurate representation of the velocity profile in turbulent Couette 
flow is obtained if it i s  assumed that the eddy viscosity is nowhere larger than 
O.O7hu,. Repeat the analysis of Problem 2.1 on this basis. 

2.3 A certain amount of hot fluid i s  released in a turbulent flow with charac- 
teristic velocity u and characteristic length 4. The temperature of the patch is 
higher than the ambient temperature, but the density difference and the 
effects of buoyancy may be neglected. Estimate the rate of spreading of the 
patch of hot fluid and the rate a t  which the maximum temperature difference 
decreases. Assume that the size of the patch a t  the time of release is much 
smaller than G and much larger than the Kolmogorov microscale 17. The use of 
an eddy diffusivity is  appropriate, but the choice of the velocity and length 
scales that are needed to form an eddy diffusivity requires careful thought, in 
particular as long as the size of the patch remains smaller than the length scale 
t. In this context, a review of Problem 1.3 will be helpful. 

2.4 A vortex generator in the shape of a low aspect-ratio wing is  located on 
the wing of a Boeing 707. The height of the vortex generator is comparable to 
the thickness of the turbulent boundary layer over the wing. Give a qualita- 
tive description of the effect of the vortex generator on the momentum 
transfer in the boundary layer. 
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