
INTRODUCTION 

Most flows occurring in nature and in engineering applications are turbulent. 
The boundary layer in the earth’s atmosphere is turbulent (except possibly in 
very stable conditions); jet streams in the upper troposphere are turbulent; 
cumulus clouds are in turbulent motion. The water currents below the surface 
of the oceans are turbulent,; the Gulf Stream is a turbulent wall-jet kind of 
flow. The photosphere of the sun and the photospheres of similar stars are in 
turbulent motion; interstellar gas clouds (gaseous nebulae) are turbulent; the 
wake of the earth in the solar wind is presumably a turbulent wake. Boundary 
layers growing on aircraft wings are turbulent. Most combustion processes 
involve turbulence and often even depend on it; the flow of natural gas and 
oil in pipelines is turbulent. Chemical engineers use turbulence to mix and 
homogenize fluid mixtures and to accelerate chemical reaction rates in liquids 
or gases. The flow of water in rivers and canals is turbulent; the wakes of 
ships, cars, submarines, and aircraft are in turbulent motion. The study 
of turbulence clearly is an interdisciplinary activity, which has a very 
wide range of applications. In fluid dynamics laminar flow is the exception, 
not the rule: one must have small dimensions and high viscosities to 
encounter laminar flow. The flow of lubricating oil in a bearing is a typical 
example. 

Many turbulent flows can be observed easily; watching cumulus clouds or 
the plume of a smokestack is not time wasted for a student of turbulence. 
In the classroom, some of the films produced by the National Committee 
for Fluid Dynamics Films (for example, Stewart, 1969) may be used to 
advantage. 

1 .I 
The nature of turbulence 
Everyone who, at one time or another, has observed the efflux from a smoke 
stack has some idea about the nature of turbulent flow. However, it is very 
difficult to give a precise definition of turbulence. All one can do is l is t  
some of the characteristics of turbulent flows. 

Irregularity One characteristic is the irregularity, or randomness, of all 
turbulent flows. This makes a deterministic approach to turbulence problems 
impossible; instead, one relies on statistical methods. 
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Diffusivity The diffusivity of turbulence, which causes rapid mixing and 
increased rates of momentum, heat, and mass transfer, i s  another important 
feature of al l  turbulent flows. I f  a flow pattern looks random but does not 
exhibit spreading of velocity fluctuations through the surrounding fluid, it is 
surely not turbulent. The contrails of a jet aircraft are a case in point: exclud- 
'ling the turbulent region just behind the aircraft, the contrails have a very 
nearly constant diameter for several miles. Such a flow i s  not turbulent, even 
though it was turbulent when it was generated. The diffusivity of turbulence is 
the single most important feature as far as applications are concerned: it 
prevents boundary-layer separation on airfoils a t  large (but not too large) angles 
of attack, it increases heat transfer rates in machinery of all kinds, it is the source 
of the resistance of flow in pipelines, and it increases momentum transfer 
between winds and Ocean currents. 

Large Reynolds numbers Turbulent flows always occur a t  high Reynolds 
numbers. Turbulence often originates as an instability of laminar flows if the 
Reynolds number becomes too large. The instabilities are related to the inter- 
action of viscous terms and nonlinear inertia terms in the equations of mo- 
tion. This interaction is very complex: the mathematics of nonlinear partial 
differential equations has not been developed to a point where general solu- 
tions can be given. Randomness and nonlinearity combine to make the equa- 
tions of turbulence nearly intractable; turbulence theory suffers from the 
absence of sufficiently powerful mathematical methods. This lack of tools 
makes all theoretical approaches to problems in turbulence trial-and-error 
affairs. Nonlinear concepts and mathematical tools have to be developed 
along the way; one cannot rely on the equations alone to obtain answers to 
problems. This situation makes turbulence research both frustrating and 
challenging: it is one of the principal unsolved problems in physics today. 

Three-dimensional vorticity fluctuations Turbulence is rotational and three 
dimensional. Turbulence is  characterized by high levels of fluctuating vor- 
ticity. For this reason, vorticity dynamics plays an essential role in the des- 
cription of turbulent flows. The random vorticity fluctuations that char- 
acterize turbulence could not maintain themselves if the velocity fluctuations 
were two dimensional, since an important vorticity-maintenance mechanism 
known as vortex stretching is absent in two-dimensional flow. Flows that are 
substantially two dimensional, such as the cyclones in the atmosphere which 
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determine the weather, are not turbulence themselves, even though their char- 
acteristics may be influenced strongly by small-scale turbulence (generated 
somewhere by shear or buoyancy), which interacts with the large-scale flow. 
In summary, turbulent flows always exhibit high levels of fluctuating vor-, 
ticity. For example, random waves on the surface of oceans are not in turbu- 
lent motion since they are essentially irrotational. 

Dissipation Turbulent flows are always dissipative. Viscous shear stresses 
perform deformation work which increases the internal energy of the fluid a t  
the expense of kinetic energy of the turbulence. Turbulence needs a continu- 
ous supply of energy to make up for these viscous losses. I f  no energy is 
supplied, turbulence decays rapidly. Random motions, such as gravity waves 
in planetary atmospheres and random sound waves (acoustic noise), have 
insignificant viscous losses and, therefore, are not turbulent. In other words, 
the major distinction between random waves and turbulence is that  waves are 
essentially nondissipative (though they often are dispersive), while turbulence 
is  essentially dissipative. 

Continuum Turbulence is a continuum phenomenon, governed by the equa- 
tions of fluid mechanics. Even the smallest scales occurring in a turbulent 
flow are ordinarily far larger than any molecular length scale. We return to 
this point in Section 1.5. 

Turbulent flows are flows Turbulence is not a feature of fluids but of fluid 
flows. Most of the dynamics of turbulence is the same in all fluids, whether 
they are liquids or gases, i f  the Reynolds number of the turbulence is large 
enough; the major characteristics of turbulent flows are not controlled by the 
molecular properties of the fluid in which the turbulence occurs. Since the 
equations of motion are nonlinear, each individual flow pattern has certain 
unique characteristics that are associated with i t s  initial and boundary condi- 
tions. No general solution to the Navier-Stokes equations is known; conse- 
quently, no general solutions to problems in turbulent flow are available. 
Since every flow is different, it follows that every turbulent flow i s  different, 
wen though all turbulent flows have many characteristics in common. 
Students of turbulence, of course, disregard the uniqueness of any particular 
turbulent flow and concentrate on the discovery and formulation of laws that 
describe entire classes or families of turbulent flows. 
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- 
The characteristics of turbulence depend on i t s  environment. Because of 

this, turbulence theory does not attempt to deal with all kinds and types of 
flows in a general way. Instead, theoreticians concentrate on families of flows 
with fairly simple boundary conditions, like boundary layers, jets, and wakes. 

1.2 
Methods of analysis 
Turbulent flows have been investigated for more than a century, but, as was 
remarked earlier, no general approach to the solution of problems in turbu- 
lence exists. The equations of motion have been analyzed in great detail, 
but it is st i l l  next to impossible to make accurate quantitative predictions 
without relying heavily on empirical data. Statistical studies of the equations 
of motion always lead to a situation in which there are more unknowns than 
equations. This is called the closure problem of turbulence theory: one has to 
make (very often ad hoc) assumptions to make the number of equations 
equal to the number of unknowns. Efforts to construct viable formal pertur- 
bation schemes have not been very successful so far. The success of attempts 
to solve problems in turbulence depends strongly on the inspiration involved 
in making the crucial assumption. 

This book has been designed to get this point across. In turbulence, the 
equations do not give the entire story. One must be willing to use (and 
capable of using) simple physical concepts based on experience to bridge the 
gap between the equations and actual flows. We do not want to imply that 
the equations are of l i t t le  use; we merely want to make it unmistakably clear 
that turbulence needs spirited inventors just as badly as dedicated analysts. 
We recognize that this i s  a very specific, and possibly biased, point of view. It 
is possible that a t  some time in the future, someone will succeed in developing 
a completely formal theory of turbulence. However, we believe that there is a 
far better chance of developing a physical model of turbulence in the spirit of 
the Rutherford model of the atom. The model need not be complete, but it 
would be very useful. The real challenge, it seems to us, is that no adequate 
model of turbulence exists today. 

Turbulence theory is limited in the same way that general fluid dynamics 
would be i f  the Stokes relation between stress and rate of strain in Newtonian 
fluids were unknown. This illustration is not arbitrary: one approach to tur- 
bulence theory is to postulate a relation between stress and rate of strain that 
involves a turbulence-generated "viscosity," which then supposedly plays a 
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role similar to that of molecular viscosity in laminar flows. This approach is 
based on a superficial resemblance between the way molecular motions trans- 
fer momentum and heat and the way in which turbulent velocity fluctuations 
transfer these quantities. Phenomenological concepts like "eddy viscosity" 
(to replace molecular viscosity) and "mixing length" (in analogy with the 
mean free path in the kinetic theory of gases) were developed by Taylor, 
Prandtl, and others. These coqcepts are studied in detail in Chapter 2. 

Molecular viscosity is a property of fluids; turbulence is a characteristic of 
flows. Therefore, the use of an eddy viscosity to represent the effects of 
turbulence on a flow is liable to be misleading. However, current research 
seems to indicate that, in simple flows, we may, for analytical reasons, speak 
of a turbulent fluid rather than of a turbulent flow. Turbulent "fluids," 
however, are non-Newtonian: they exhibit viscoelasticity and suffer memory 
effects. In favorable circumstances, the memory is fading in time, so that one 
may be able to develop a semilocal theory relating the mean stress to the 
mean rate of strain. 

Phenomenological theories of turbulence make crucial assumptions a t  a 
fairly early stage in the analysis. In recent years, a group of theoreticians 
(Kraichnan, Edwards, Orszag, Meecham, and others) have developed very 
formal and sophisticated statistical theories of turbulence, in the hope of 
finding a formalism that does not need ad hoc assumptions (see Orszag, 
1971). So far, however, rather arbitrary postulates are needed in these 
theories, too. The mathematical complexity of this work is so overwhelming 
that a discussion of i t  has to be le f t  out of this book. 

Dimensional analysis One of the most powerful tools in the study of turbu- 
lent flows is dimensional analysis. In many circumstances it is possible to 
argue that some aspect of the structure of turbulence depends only on a few 
independent variables or parameters. If such a situation prevails, dimensional 
methods often dictate the relation between the dependent and independent 
variables, which results in a solution that is known except for a numerical 
coefficient. The outstanding example of this is the form of the spectrum of 
turbulent kinetic energy in what is called the "inertial subrange." 

Asymptotic invariance Another frequently used approach is to exploit some 
of the asymptotic properties of turbulent flows. Turbulent flows are char- 
acterized by very high Reynolds numbers; it seems reasonable to require that 
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any proposed descriptions of turbulence should behave properly in the limit as 
the Reynolds number approaches infinity. This is often a very powerful con- 
straint, which makes fairly specific results possible. The development of the 
theory of turbulent boundary layers (Chapter 5) is  a case in point. The limit 
process involved in an asymptotic approach is related to vanishingly small 
effects of the molecular viscosity. Turbulent flows tend to be almost indepen- 
dent of the viscosity (with the exception of the very smallest scales of mo- 
tion); the asymptotic behavior leads to such concepts as "Reynolds-number 
similarity" (asymptotic invariance). 

Local invariance Associated with, but distinct from, asymptotic invariance is 
the concept of "self-preservation" or local invariance. In simple flow geom- 
etries, the characteristics of the turbulent motion a t  some point in time and 
space appear to be controlled mainly by the immediate environment. The 
time and length scales of the flow may vary slowly downstream, but, if the 
turbulence time scales are small enough to permit adjustment to the gradually 
changing environment, it is  often possible to assume that the turbulence is 
dynamically similar everywhere if nondimensionalized with local length and 
time scales. For example, the turbulence intensity in a wake is of order 
6 aU/ay, where 6 is the local width of the wake and W / a y  is  the average 
mean-velocity gradient across the wake. 

Because turbulence consists of fairly large fluctuations governed by non- 
linear equations, one may expect a behavior like that exhibited by simple 
nonlinear systems with limit cycles. Such behavior should be largely indepen- 
dent of initial conditions; the characteristics of the limit cycle should depend 
only on the dynamics of the system and the constraints imposed on it. In  the 
same way, one expects that the structure of turbulence in a given class of 
shear flows might be in some state of dynamical equilibrium in which local 
inputs of energy should approximately balance local losses. If the energy 
transfer mechanisms in turbulence are sufficiently rapid, so tha't effects of 
past events do not dominate the dynamics, one may expect that this limit- 
cycle type of equilibrium is governed mainly by local parameters such as scale 
lengths and times. Simple dimensional methods and similarity arguments can 
be very useful in this kind of situation. Because one may want to look for 
local scaling laws (both in the spatial and the spectral domain), the problem 
of finding appropriate length and time scales becomes an important one. 
Indeed, scaling laws are a t  the heart of turbulence research. 
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1.3 
The origin of turbulence 
In flows which are originally laminar, turbulence arises from instabilities at 
large Reynolds numbers. Laminar pipe flow becomes turbulent at a Reynolds 
number (based on mean velocity and diameter) in the neighborhood of 2,000 
unless great care is taken to avoid creating small disturbances that might 
trigger transition from laminar to turbulent flow. Boundary layers in zero 
pressure gradient become unstable a t  a Reynolds number U6"lv = 600 
approximately (6" i s  the displacement thickness, U is the free-stream velo- 
city, and v i s  the kinematic viscosity). Free shear flows, such as the flow in a 
mixing layer, become unstable a t  very low Reynolds numbers because of an 
inviscid instability mechanism that does not operate in boundary-layer and 
pipe flow. Early stages of transition can easily be seen in the smoke rising 
from a cigarette. 

On the other hand, turbulence cannot maintain itself but depends on its 
environment to obtain energy. A common source of energy for turbulent 
velocity fluctuations is shear in the mean flow; other sources, such as buoy- 
ancy, exist too. Turbulent flows are generally shear flows. If turbulence 
arrives in an environment where there is no shear or other maintenance mech- 
anism, it decays: the Reynolds number decreases and the flow tends to 
become laminar again. The classic example is turbulence produced by a grid 
in uniform flow in a wind tunnel. 

Another way to make a turbulent flow laminar or to prevent a laminar 
flow from becoming turbulent is to provide for a mechanism that consumes 
turbulent kinetic energy. This situation prevails in turbulent flows with 
imposed magnetic fields a t  low magnetic Reynolds numbers and in atmos- 
pheric flows with a stable density stratification, to cite two examples. 

Mathematically, the details of transition from laminar to turbulent flow 
are rather poorly understood. Much of the theory of instabilities in laminar 
flows is linearized theory, valid for very small disturbances; it cannot deal 
with the large fluctuation levels in turbulent flow. On the other hand, almost 
all of the theory of turbulent flow is asymptotic theory, fairly accurate at 
very high Reynolds numbers but inaccurate and incomplete for Reynolds 
numbers a t  which the turbulence cannot maintain itself. A noteworthy excep- 
tion is the theory of the late stage of decay of wind-tunnel turbulence 
(Batchelor, 1953). 

Experiments have shown that transition is commonly initiated by a pri- 
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mary instability mechanism, which in simple cases is two dimensional. The 
primary instability produces secondary motions, which are generally three 
dimensional and become unstable themselves. A sequence of this nature gen 
erates intense localized three-dimensional disturbances (turbulent "spots"), 
which arise a t  random positions a t  random times. These spots grow rapidly 
and merge with each other when they become large and numerous to form a 
field of developed turbulent flow. In other cases, turbulence originates from 
an instability that causes vortices which subsequently become unstable. Many 
wake flows become turbulent in this way. 

1.4 
Diffusivity of turbulence 
The outstanding characteristic of turbulent motion is i ts  ability to transport 
or mix momentum, kinetic energy, and contaminants such as heat, particles, 
and moisture. The rates of transfer and mixing are several orders of magni- 
tude greater than the rates due to molecular diffusion: the heat transfer and 
combustion rates of turbulent combustion in an incinerator are orders of 
magnitude larger than the corresponding rates in the laminar flame of a 
candle. 

Diffusion in a problem with an imposed length scale Contrasting laminar and 
turbulent diffusion rates is a useful exercise not only for getting acquainted 
with turbulence but also for recognizing the multifaceted role of the Rey- 
nolds number. Suppose one has a room (with a characteristic linear dimension 
L )  in which a heating element (radiator) is installed. If there is no air motion 
in the room, heat has to be distributed by molecular diffusion. This process is 
governed by the diffusion equation (8 is the temperature; 7 is the thermal 
diffusivity, assumed to be constant): 

(1.4.1) 

We are not looking for a specific solution of (1.4.1) with a given set of 
boundary conditions. Instead, we want to discover the gross consequences of 
(1.4.1) with the simple tools of dimensional analysis. Dimensionally, (1.4.1) 
may be interpreted as 

A8 A8 - - r p '  
Trn 

(1.4.2) 
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where A6 is a characteristic temperature difference. From (1.4.21, we obtain 

LZ 
T,- - ,  

Y 
(1.4.3) 

which relates the time scale T,,, of the molecular diffusion to the independent 
parameters L and y. If the characteristic linear dimension L (the length scale) 
of the room is 5 m, the time scale T, of this diffusion process is of the order 
of lo6 sec (more than 100 h). In this estimate the value of y for air at room 
temperature and pressure has been used (y = 0.20 cm2/sec). We conclude that 
molecular diffusion is rather ineffective in distributing heat through a room. 

On the other hand, even fairly weak motions, such as those generated by 
small density differences (buoyancy), can disperse heat through the room 
quickly. Suppose that the turbulent motion of the air in the room may also 
be characterized by the length scale L (that is, motions are present of scales 
< L). This is a fair assumption, since large-scale motions are most effective in 
distributing heat and since the largest possible scales of motion can be no 
larger than the size of the room. We also need a characteristic velocity u (this 
u may be thought of as an rms amplitude of the velocity fluctuations in the 
room). For flow with a length scale L and a velocity scale u, the characteristic 
time is 

L 
Tt--. 

U 
(1.4.4) 

Apparently, Tt can be determined only if u can be estimated. Suppose the 
radiator heats the air in i t s  vicinity by A6 degrees Kelvin. This causes a 
buoyant acceleration g Ae/O, which is of order 0.3 m/secz if 4 6  = 10°K. 
This acceleration probably occurs only near the surface of the radiator. I f  it 
has a height h = 0.1 m, the kinetic energy of the air above the radiator is 
ghA6/6, which is of order 0.03 (m/sec)’ per unit mass. This corresponds to  a 
velocity of 17 cm/sec. Much of the kinetic energy, however, is lost because of 
the stable vertical temperature gradient in the room (the air near the ceiling 
tends to be hotter than the air near the floor). A characteristic velocity u of 
order 5cm/sec may be a reasonable average throughout the room. With 
u = 5 cm/sec and L = 5 m, Tt becomes 100 sec, or about 2 min. Of course, we 
s t i l l  have to rely on molecular diffusion to even out small-scale irregularities 
in the temperature distribution. However, the turbulence generates eddies as 
small as about 1 cm (this estimate can be obtained with simple equations 
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based on the dissipation of kinetic energy; those are discussed in Section 1.5). 
The temperature gradients associated with these small eddies are smeared out 
by molecular diffusion in a time of ordereZ/y (see Section 7.31, which is only a 
few seconds if e = 1 cm. 

Diffusion by random motion apparently is very rapid compared to 
molecular diffusion. The ratio of the turbulent time scale Tt to the molecular 
time scale T, is the inverse of the  Peclet number: 

Since for gases the heat conductivity y i s  of the same order of magnitude as 
the kinematic viscosity v (for air vly = 0.73; this ratio is known as the Prandtl 
number), and since we are discussing only orders of magnitude, we may write 
without compromise, 

(1.4.6) 

In our example, the Reynolds number R i s  about 15,000. 
This exercise shows that the Reynolds number of a turbulent flow may be 

interpreted as a ratio of a turbulence time scale to a molecular time scale that 
would prevail in the absence of turbulence in a problem with the same length 
scale. This point of view is often more reliable than thinking of R as a ratio of 
inertia terms to viscous terms in the governing equations. The latter point of 
view tends to be misleading because a t  high Reynolds numbers viscous and 
other diffusion effects tend to operate on smaller length scales than inertia 
effects. 

Eddy diffusivity Since the equations governing turbulent flow are very 
complicated, it is tempting to treat the diffusive nature of turbulence by 
means of a properly chosen effective diffusivity. In doing so, the idea of 
trying to understand the turbulence itself is partly discarded. If we use an 
effective diffusivity, we tend to treat turbulence as a property of a fluid 
rather than as a property of a flow. Conceptually, this is a very dangerous 
approach. However, it often makes the mathematics a good deal easier. 

If the effects of turbulence could be represented by a simple, constant 
scalar diffusivity, one should be able to write for the diffusion of heat by 
turbulent motions, 
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ae az8 
a t  aX,ax, 
- = K -  (1.4.7) 

in which K is the representative diffusivity (often called "eddy" diffusivity 
but sometimes called the "exchange coefficient" for heat). In order to make 
this equation a t  least a crude representation of reality, one must insist that the 
value of K be chosen such that the time scale of the hypothetical turbulent 
diffusion process is equal to that of the actual mixing process. The time scale 
associated with (1.4.7) is  roughly 

LZ 
T - -  

K '  
(1.4.8) 

and the actual time scale is Tt, given by (1.4.4). Equating T with Tt, one finds 

K-UL.  (1.4.9) 

It should be noted that this is a dimensional estimate, which cannot predict 
the numerical values of coefficients that may be needed. Expressions like 
(1.4.91, with experimentally determined coefficients, are used frequently in 
practical applications. 

The eddy diffusivity (or viscosity) K may be compared with the kinematic 
viscosity Y and the thermal conductivity 7: 

(1.4.1 0) 

One concludes that this particular Reynolds number may also be interpreted 
as a ratio of apparent (or turbulent) viscosity to molecular viscosity. A note 
of warning is in order, though. In most flow problems, many different length 
scales exist, so that the interpretation of Reynolds numbers based on these 
length scales may not always be as straightfotward as in the example used 
here. 

It cannot be stressed too strongly that  the eddy diffusivity K is an artifice 
which may or may not represent the effects of turbulence faithfully. We 
investigate this question carefully in Chapter 2. 

Diffusion in a problem with an imposed time scale As another example of 
the diffusivity of turbulence, we look a t  boundary layers in the atmosphere. 
The boundary layer in the atmosphere i s  exposed to the rotation of the earth. 
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In a rotating frame of reference, flows are accelerated by the Coriolis force, 
which is twice the vector product of the flow velocity and the rotation rate. 
I f  the angular velocity of the frame of reference is f/2, it follows that atmos- 
pheric flows have an imposed time scale of orderllf. At a latitude of 40 
degrees, the value of f for a Cartesian coordinate system whose z axis is 
parallel to the local vertical is about sec-' (f is called the Coriolis 
parameter). 

If the boundary layer in the atmosphere were laminar, it would be 
governed by a diffusion equation like (1.4.1), so that i t s  length and time 
scales would be related by 

L k  - vT. (1.4.1 1) 

With v = 0.15 cm2 sec-' and T = f-' = lo4 sec, this gives L, = 40 cm. 
In reality, however, the atmospheric boundary layer is nearly always 

turbulent; a typical thickness is  about lo3 m (1 km). One can obtain some 
appreciation for this by replacing v by K in (1.4.11) and substituting for K 
with (1.4.9). This yields 

Lt - uT, (1.4.1 2) 

which, of course, merely rephrases (1.4.4). In turbulent boundary-layer 
flows, the characteristic velocity of the turbulence is typically about 30 of 
the mean wind speed. For a wind speed of 10 m/sec, we thus estimate that 
u - 0.3 m/sec. With T = l / f =  lo4 sec, (1.4.12) then yields L, - 3 x lo3 m 
(3 km), which is indeed of the same order as the observed thickness. 

From a somewhat different point of view, we may argue that turbulent 
eddies with a characteristic velocity u, exposed to a Coriolis acceleration 
which imposes a time scale l/f, must have a size (length scale) of order u/f.  It 
should be noted that we can equate eddy size and boundary-layer thickness 
only because in most turbulent flows the larger eddies seem to have sizes 
comparable to  the characteristic size of the flow in a direction normal to the 
mean flow field (Figure 1.1). In estimates of diffusion or mixing, the large 
eddies are relevant because they perform most of the mixing (K - ueincreases 
with eddy size). 

Arguments of this nature are often supplemented by experiments to 
determine the numerical coefficient in formulas like (1.4.12), because this 
coefficient cannot be found by dimensional reasoning. In the case of the 
atmospheric boundary layer, 

1 
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Figure 1.1. Large eddies in a turbulent boundary layer. The flow above the boundary 
layer has a velocity U ;  the eddies have velocities u.  The largest eddy size ( l )  is comparable 
to the boundary-layer thickness (Lt). The interface between the turbulence and the flow 
above the boundary layer is quite sharp (Corrsin and Kistler, 1954). 

L t =1 4 ulf  (1.4.13) 

would give very close agreement between ”theory” and experimental evi- 
dence. 

Using (1.4.111, (1.4.12), and T = l / f ,  we find the ratio between the 
thicknesses of the laminar and turbulent atmospheric boundary layers to be 

(1.4.14) 

This is the square root of the Reynolds number associated with the turbulent 
boundary layer in the atmosphere, since u/f is  proportional to the actual 
length scale L,. In this example, the Reynolds number R is clearly associated 
with the ratio of the turbulent and molecular diffusion length scales: 
turbulent flow penetrates much deeper into the atmosphere than laminar 
flow. In our example, R - lo’. 

The results obtained here concerning the different aspects of the Reynolds 
number may be summarized by stating that  in flows with imposed length 
scales the Reynolds number is proportional to the ratio of time scales, while 
in flows with imposed time scales the Reynolds number is proportional to the 
square of a ratio of length scales. Since the Reynolds numbers of most flows 
are large, these relations clearly show that turbulence is a far more effective 
diffusion agent than molecular motion. 
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The examples discussed here are rather crude because only a single length 
or time scale has been taken into account. Most turbulent flows are far more 
complicated; this introduction would not be complete without a look a t  
turbulence as a multiple lengthscale problem. 

1.5 
Length scales in turbulent flows 
The fluid dynamics of flows a t  high Reynolds numbers is characterized by the 
existence of several length scales, some of which assume very specific roles in 
the description and analysis of flows. In turbulent flows a wide range of 
length scales exists, bounded from above by the dimensions of the flow field 
and bounded from below by the diffusive action of molecular viscosity. 
Incidentally, this is the reason why spectral analysis of turbulent motion is 
useful. 

Laminar boundary layers Let us take a look a t  the problem of multiple 
scales in laminar shear flows. For steady flow of an incompressible fluid with 
constant viscosity, the  Navier-Stokes equations are 

(1.5.1) 

One would be tempted to estimate the inertia terms as Uz/L (U being a 
characteristic velocity and L a characteristic length) and to estimate the 
viscous terms as vU/L2. The ratio of these terms is UL/v = R, indicating that 
viscous terms should become negligible a t  large Reynolds numbers. However, 
boundary conditions or initial conditions may make it impossible to neglect 
viscous terms everywhere in the flow field. For example, a boundary layer has 
to exist in the flow along a solid surface to satisfy the no-slip condition. This 
can be understood by allowing for the possibility that viscous effects may be 
associated with small length scales. The viscous terms can survive a t  high 
Reynolds numbers only by choosing a new length scale tsuch that the viscous 
terms are of the same order of magnitude as the inertia terms. Formally, 

U2/L  -vu/P. ( 1.5.2) 

The viscous length t i s  thus related to the scale L of the flow field as 

(1.5.3) 



15 1.5 Length scales in turbulent flows 

The viscous length G i s  a transverse length scale: it represents the width 
(thickness) of the boundary layer, because it relates to the molecular 
diffusion of momentum deficit across the flow, away from the surface. 
Molecular diffusion along the flow, of course, is negligible compared to the 
downstream transport of momentum by the flow itself. Figure 1.2 illustrates 
this situation. 

Diffusive and convective length scales As (1.5.3) indicates, the boundary- 
layer thickness may be considerably smaller than the scale L of the flow field 
in which the boundary layer (or other laminar shear flow) develops. The 
distinction between a "diffusive" length scale across the flow and a 
"convective" length scale along the flow is essential to the understanding of 
all shear flows, both laminar and turbulent. Many shear flows are very 
slender: their width is much smaller than their "length" (that is, the distance 
from some suitably defined origin). The wide separation between lateral and 
longitudinal length scales in shear flows leads to very attractive simplifying 
approximations in the equations of motion; without this feature, analysis 
would be next to impossible. 

The most powerful of the asymptotic approximations associated with 
d/L + 0 is that the shear flow becomes independent of most of i ts  environ- 
ment, except for the boundary conditions imposed by the overall flow. The 
use of words like boundary layers, wakes, fronts in weather systems, 
jetstreams, and the Gulf Stream is not a semantic accident. Because of the 
wide difference in length scales, these shear flows are identifiable as distinct 
regions in flow fields. These regions have distinct dynamics and distinct 

Figure 1.2. Length scales, diffusion, and convection in a laminar boundary layer over a 
flat plate. 
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characteristics; they are governed by specific equations of motion, which, in 
the asymptotic approximation &'L+ 0, may be substantially simpler than the 
equations governing other parts of the flow field. 

Turbulent boundary layers It is useful to compare turbulent shear flows to 
laminar ones, even though we can do so a t  t h i s  moment only in a very 
rudimentary way. The relevant length and velocity scales in a turbulent 
boundary layer are illustrated in Figure 1.3. The turbulent eddies transfer 
momentum deficit away from the surface. With characteristic velocity 
fluctuations of order u, the boundary-layer thickness L' presumably increases 
roughly as &/dt - u (see Section 5.5). The time interval elapsed between the 
origin of the boundary layer and the downstream position L is of order L/U 
(convective time scale), so that we may estimate L'- ut  - uL/U. In effect, we 
are equating the turbulent "diffusion" time scale t/u to the convective time 
scale L/U. This procedure could also have been used for laminar boundary 
layers. In laminar boundary layers, the diffusion distance L' increases as 
(vt) 1'2 ;with t = L/U, the result (1.5.2,1.5.3) i s  retrieved. 

In analogy to (1.4.4) and (1.4.1 2), we thus can write the scale relations for 
turbulent boundary layers as 

t / L  - u/u, (1.5.4) 

e/u .-, L/U. (1.5.5) 

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\' 

Figure 1.3. Length and velocity scales in a turbulent boundary layer. The time passed 
since the fluid at L passed the origin of the boundary layer is of  order L/U. 
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These relations merely relate characteristic lengths and velocities; they should 
not be used as formulas to compute the rate of spreading of a turbulent 
boundary layer. The relation between the time scales, (1.5.51, rephrases the 
fundamental assumption we implicitly encountered earlier, that is, that in a 
situation with an imposed external flow the turbulence, being part of the 
flow, must have a time scale commensurate with the time scale of the flow. As 
we will see later, this assumption conflicts with eddy-viscosity concepts. 
Fortunately, not all of the turbulence has such a large time scale: the small 
eddies in turbulence have very short time scales, which tend to make them 
statistically independent of the mean flow. 

Laminar and turbulent friction If we compare (1.5.3) and (1.5.4) and 
introduce experimental data, which suggest that u/U is  of the order of lo-' 
over a wide range of Reynolds numbers, we again get some appreciation for 
the relatively rapid growth of turbulent shear flows. This rapid growth should 
correspond to a larger drag coefficient. 

For a steady laminar boundary layer in twodimensional flow on a plate 
with length L, the drag D per unit span is equal to the total rate of loss of 
momentum. Estimating the momentum loss as pU2e, where 8 is a boundary- 
layer thickness a t  the end of the plate, we may put 

D - pU 2t. (1.5.6) 

The drag coefficient (or friction coefficient) Cd is  defined by 

(1.5.7) 

Substituting (1.5.6) into (1.5.7) and using the relation for t /L given by 
(1.5.3), we obtain 

(1.5.8) 

For a turbulent boundary layer, on the other hand, the mass flow deficit 
a t  the end of the plate is proportional to pul (see Chapter 51, so that the rate 
of loss of momentum is proportional to (pu4U. Consequently, 

e cd N 2 - = 2R-112. 
L 

D - puUC (1.5.9) 
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The drag coefficient then becomes, if we use the definition (1.5.7) and the 
scale relation (1.5.4), 

( 1.5.1 0) 

Experimental evidence shows that  the turbulence level u/U varies very slowly 
with Reynolds number, so that  the drag coefficient of a turbulent boundary 
layer, given by (1.5.101, should be very much greater than the drag 
coefficient of a laminar boundary layer (1.5.8). Figure 1.4 illustrates this 
point. Similar conclusions are valid for heat- and mass-transfer coefficients. 

Equation (1.5.4) has another interesting implication. In boundary layers 
and wakes u/U and t /L tend to zero as L increases beyond limit. In jets 
entering fluid a t  rest and shear layers, on the other hand,u/U andL‘/L approach 
finite asymptotic values as L +m. This distinction is  the origin of 
some important differences in the asymptotic treatment of the two different 
types of flow. In particular, jets and mixing layers spread linearly, while 
wakes and boundary layers grow slower the farther downstream they travel. 
Even so, most turbulent shear flows spread slowly enough to make& + 0 a 
useful approximation. 
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Small scales in turbulence So far only the largest eddy sizes in turbulent 
flows have been considered, because the large eddies do most of the transport 
of momentum and contaminants. We have suggested that large eddies are as 
big as the width of the flow and that the latter is the relevant length scale in 
the analysis of the interaction of the turbulence with the mean flow. For 
some of the other aspects of the dynamics of turbulence, however, other 
length scales are needed. 

We shall attempt to find the smallest length scales in turbulent flows. At 
very small length scales, viscosity can be effective in smoothing out velocity 
fluctuations. The generation of small-scale fluctuations is due to the nonlinear 
terms in the equations of motion; the viscous terms prevent the generation of 
infinitely small scales of motion by dissipating small-scale energy into heat. 
This is characteristic of a small parameter like Y (more properly 1/R)  with a 
singular behavior. One might expect that  a t  large Reynolds numbers the 
relative magnitude of viscosity is so small that  viscous effects in a flow tend 
to become vanishingly small. The nonlinear terms in the Navier-Stokes 
equation counteract this threat by generating motion a t  scales small enough 
to be affected by viscosity. The smallest scale of motion automatically adjusts 
itself to the value of the viscosity. There seems to be no way of doing away 
with viscosity: as soon as the scale of the flow field becomes so large that 
viscosity effects could conceivably be neglected, the flow creates small-scale 
motion, thus keeping viscosity effects (in particular dissipation rates) a t  a 
finite level. 

Since small-scale motions tend to have small time scales, one may assume 
that these motions are statistically independent of the relatively slow 
large-scale turbulence and of the mean flow. If this assumption makes sense, 
the small-scale motion should depend only on the rate a t  which it is supplied 
with energy by the large-scale motion and on the kinematic viscosity. It is fair 
to assume that the rate of energy supply should be equal to the rate of 
dissipation, because the net rate of change of small-scale energy is related to 
the time scale of the flow as a whole. The net rate of change, therefore, 
should be small compared to the rate a t  which energy is dissipated. This is the 
basis for what is called Kolmogorov's universal equilibrium theory of the 
small-scale structure (Chapter 8). 

This discussion suggests that the parameters governing the small-scale 
motion include a t  least the dissipation rate per unit mass E (m2 S ~ C - ~ )  and the 
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kinematic viscosity v (mZ sec-' 1. With these parameters, one can form length, 
time, and velocity scales as follows: 

(1.5.1 1) 

These scales are referred to as the  Kolmogorov microscales of length, time, 
and velocity (see Friedlander and Topper, 1962). In the Russian literature, 
these scales are called "inner" scales. 

The Reynolds number formed with q and u i s  equal to one 

qulv = 1, (1.5.12) 

which illustrates tha t  the small-scale motion is qu i te  viscous and tha t  the 
viscous dissipation adjusts itself to the energy supply by adjusting length 
scales. 

An inviscid estimate for the  dissipation rate One can form an impression of 
the differences between the large-scale and small-scale aspects of turbulence if 
the  dissipation rate e can be related to the length and velocity scales of the 
large-scale turbulence. A plausible assumption is to take the  rateatwhich large 
eddies supply energy to small eddies to be proport ional to the reciprocal of 
the t ime  scale of the large eddies. The amoun t  of kinetic energy per  unit mass 
in the large-scale turbulence is proport ional to u 2 ;  the rate of transfer of 
energy is assumed to be proport ional to u/t: where [represents the size of the 
largest eddies or the width of the flow. We shall see later t ha t  [relates to the 
"integral" scales of turbulence, which can be measured by statistical methods. 
To avoid confusion, we identi fy d' f r o m  here on as the "integral scale," 
leaving a more precise def in i t ion for Chapter 2. Russian scientists speak of 
"outer" scales rather than of integral scales. 

The rate of energy supply to the small-scale eddies is thus of order 
u2 *u/t= u3/L This energy is dissipated a t  a rate e, which should be equal to 
the supply rate. Hence (Taylor, 1935), 

e - u ~ e ,  (1.5.13) 

which states that  viscous dissipation of energy can be estimated from the 
large-scale dynamics, which do not involve viscosity. In this sense, dissipation 
again is clearly seen as a passive process in the sense tha t  it proceeds a t  a rate 
dictated by the inviscid inertial behavior of the large eddies. 

The estimate (1.5.13) should not be passed over l ightly. It is one of the 
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Figure 1.5. Sketch of  the nonlinear breakdown of a drop of ink in water. 

cornerstone assumptions of turbulence theory; it claims that large eddies lose 
a significant fraction of their kinetic energy uz within one "turnover" time 
t/u. This implies that the nonlinear mechanism that makes small eddies out of 
larger ones is  as "dissipative" as i t s  characteristic time permits. In other words, 
turbulence is a strongly damped nonlinear stochastic system. Some re- 
searchers believe that this feature may be related to the entropy production 
concept embodied in the second law of thermodynamics. It should be kept in 
mind, however, that large eddies lose a negligible fraction of their energy to 
direct viscous dissipation effects. The time scale of their decay is  d2 /v ,  so that 
their viscous energy loss proceeds a t  a rate vu2/d2 ,  which is  small compared 
to 0 3 / t  i f  the Reynolds number udv i s  large. The nonlinear mechanism is 
dissipative because it creates smaller and smaller eddies until the eddy sizes 
become so small that viscous dissipation of their kinetic energy is almost 
immediate. The reader may gain some appreciation for the vigor of this 
process by observing drops o 
(Figure 1.5). 

Scale relations Substituting 

qlt- (~elv)-~'~ = R-3'4. 

rule- r / t  = (u&)-'" = R-' '2,  

VIU - ( u ~ v ) - " ~  = R-'I4. 

ink or mill 

1.5.13) into 

that are put in a glass of water 

1.5.1 I), we obtain 

( 1.5.1 4) 

(1.5.15) 

(1.5.1 6) 

These relations indicate that the length, time, and velocity scales of the 
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smallest eddies are very much smaller than those of the largest eddies. The 
separation in scales widens as the Reynolds number increases, so tha t  one 
may suspect that  the statistical independence and the dynamical equilibrium 
state of the small-scale structure of turbulence will be most evident at  very 
large Reynolds numbers. 

The main difference between two turbulent flows with different Reynolds 
numbers but with the same integral scale is the size of the smallest eddies: a 
turbulent flow at  a relatively low Reynolds number has a relatively "coarse" 
small-scale structure (Figure 1.6). Visual evidence of the small-scale structure 
can be obtained if temperature fluctuations are present in the turbulence. 
Temperature and index of refraction gradients are steepest if they are 
associated with the smallest eddies; any optical system tha t  is  sensitive to 
such fluctuating gradients "sees" the small-scale structure of turbulence. The 
trembling, jittery horizon seen on a very hot day and the random pattern of 

Figure 1.6. Turbulent jets a t  different Reynolds numben: (a) relatively low Reynolds 
number, (b) relatively high Reynolds number (adapted from a film sequence by R .  W. 
Stewart, 1969). The shading pattern used closely resembles the small-scale structure of 
turbulence seen in shadowgraph pictures. 
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light and dark seen on the wall next to a heating element in sunlight are good 
illustrations. 

Vorticity has the dimensions of a frequency (sec-' 1. The vorticity of the 
small-scale eddies should be proportional to the reciprocal of the time scale 7. 
From (1.5.1 5) we conclude that the vorticity of the small-scale eddies is very 
much larger than that of the large-scale motion. On the other hand, (1.5.16) 
indicates that the small-scale energy is small compared to the large-scale 
energy. This is  typical of all turbulence: most of the energy is associated with 
large-scale motions, most of the vorticity is  associated with small-scale 
motions. 

Molecular and turbulent scales The Kolmogorov length and time scales are 
the smallest scales occurring in turbulent motion. At this point, it is 
convenient to demonstrate that most turbulent flows are indeed continuum 
phenomena. The Kolmogorov scales of length and time decrease with 
increasing dissipation rates. High dissipation rates are associated with large 
values of u. In gases, large values of u are more likely to occur than in liquids. 
Therefore, it is sufficient to show that in gases the smallest turbulent scales of 
motion are normally very much larger than molecular scales of motion. The 
relevant molecular length scale is the mean free path t .  The velocity scale of 
molecular motion in a gas is proportional to the speed of sound a in the gas. 
Kinetic theory of gases shows that the product a5 is proportional to 
the kinematic viscosity of the gas: 

v - at. (1.5.17) 

The ratio of the mean free path t to the Kolmogorov length scale q (this 
might be called a microstructure Knudsen number) becomes (Corrsin, 1959) 

t lq - M/R 'I4, (1.5.18) 

where we have used (1.5.14) and (1.5.17). In (1.5.18) the turbulence 
Reynolds number R = UQV and the turbulence Mach number M = u/a are used 
as independent variables. It is seen that turbulence might interfere with 
molecular motion a t  high Mach numbers and low Reynolds numbers. This 
kind of situation is unlikely to occur, because M is seldom large, but R is 
typically very large. A pertinent illustration i s  the situation in gaseous nebulae 
(cosmic gas clouds) (Spitzer, 1968). In clouds that consist mainly of neutral 
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hydrogen, the turbulent Mach number is of order 10 (u - 10 km/sec, 
a -  1 km/sec), while the Reynolds number is of order l o7  (1- 10l7 m, 
$! - 10' ' m). With (1.5.181, we compute that g/q - 1/6. In this extreme case, 
it seems doubtful that the smallest eddies perceive a continuum. In clouds 
that consist mainly of ionized hydrogen, temperatures are quite high, 
increasing a to about 10 km/sec and decreasing M to about 1. The mean free 
path .$ remains roughly the same (the density in ionized clouds is not 
appreciably different from that in neutral clouds), so that R reduces to about 
lo6 .  In this case, [/q-&, which may be small enough for the smallest 
eddies to operate in a continuum. 

The ratio of the time scale r to the collision time scale [/a associated with 
molecular motion is, in terms of R and M, 

ra/g- R ' I 2  MP2.  (1.5.19) 

For M = 10 and R = lo', the smallest time scale of turbulence is 32 times as 
large as the collision time scale of the gas molecules; for M = 1 and R = lo6 
the ratio is 1000. It should be recognized that in ionized gases other length 
and time scales are associated with the motion of the microscopic particles 
and with the several other dynamical processes (radiation, cosmic rays, 
magnetic fields) that may be present, so that r )  may not always be a relevant 
length scale. 

Because the smallest time scales in turbulent motion tend to be much 
larger than molecular. time scales, the motion of the gas molecules is in 
approximate statistical equilibrium, so that molecular transport effects may 
indeed be represented by transport coefficients such as viscosity and heat 
conductivity. These representations would become invalid if the departures 
from equilibrium were large; the case t / q  - g ,  ra/[ - 32 would probably re- 
quire treatment with the methods of statistical mechanics. 

1 

1.6 
Outline of the material 
The bird's-eye view of turbulence dynamics given in the preceding sectioris 
sets the stage for a brief outline of this book. In Chapter 2, we deal with 
eddy-viscosity and mixing-length theories. The dimensional framework of 
these theories is useful in the analysis of typical shear flows. In Chapter 3, the 
energy and vorticity equations of turbulent flow are derived. In Chapter 4, 
some free shear flows like wakes and jets are discussed. In Chapter 5, 
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boundary layers are analyzed. To prepare a formal basis for the study of 
diffusion and spectral dynamics, an introduction to statistics is given in 
Chapter 6. In Chapter 7, turbulent diffusion and mixing are studied. 

The study of the spatial dynamics of turbulent flows precedes that of the 
spectral dynamics. There exist many similarities and analogies between spatial 
and spectral dynamics of turbulence. Also, spatial dynamics can be visualized 
more easily by those new to the subject. Once some of the subtle features of 
turbulent shear flow are understood, the dynamics of turbulence in wave- 
number space should not be too perplexing. Spectral dynamics is studied in 
Chapter 8. 

Problems 

1.1 Estimate the energy dissipation rate in a cumulus cloud, both per unit 
mass and for the entirecloud. Base your estimates on velocity and length 
scales typical of cumulus clouds. Compute the total dissipation rate in 
kilowatts. Also estimate the Kolmogorov microscale 7. Use p = 1.25 kg/m3 
and Y = 15 x m2/sec. 

1.2 A cubical box of volume L 3  is filled with fluid in turbulent motion. No 
source of energy is present, so that the turbulence decays. Because the 
turbulence is confined to the box, i ts  length scale may be assumed to be equal 
to L a t  all times. Derive an expression for the decay of the kinetic energy 
?u2 as a function of time. As the turbulence decays, i t s  Reynolds number 2 
decreases. If the Reynolds number uL/v becomes smaller than 10, say, the 
inviscid estimate f = u3/L should be replaced by an estimate of the type 
f = cvu2/L2, because the weak eddies remaining at low Reynolds numbers 
lose their energy directly to viscous dissipation. Computec by requiring that 
the dissipation rate i s  continuous a t  uL/v = 10. Derive an expression tor the 
decay of the kinetic energy when uL/u < 10 (this is called the "final" period 
of decay). I f  L = 1 m, v = 15 x m2 /sec and u = 1 m/sec a t  time t = 0, how 
long does it take before the turbulence enters the final period of decay? 
Assume that the effects of the walls of the box on the decay of the turbu- 
lence may be ignored. Can you support this assumption in any way? 

1.3 The large eddies in a turbulent flow have a length scalet, a velocity 
scale v(fl = u, and a time scale to =&I. The smallest eddies have a length 
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scale 9, a velocity scale u, and a time scale 7. Estimate the characteristic 
velocity v( r )  and the characteristic time t (r)  of eddies of size r ,  where r is any 
length in the range r )<r< t .  Do t h i s  by assuming that v(r) and t(r) are 
determined by E and r only. Show that your results agree with the known 
velocity and time scales a t  r =t and r = r). The energy spectrum of turbulence 
is a plot of E ( K )  = K-' v2 ( K ) ,  where K = l / r  i s  the "wave number" associated 
with eddies of size r .  Find an expression for E ( K )  and compare your result 
with the data in Chapter 8. 

1.4 An airplane with a hot-wire anemometer mounted on its wing tip is to 
fly through the turbulent boundary layer of the atmosphere a t  a speed of 
50 m/sec. The velocity fluctuations in the atmosphere are of order 0.5 m/sec, 
the length scale of the large eddies i s  about 100 m. The hot-wire anemometer 
is to be designed so that it will register the motion of the smallest eddies. 
What is the highest frequency the anemometer will encounter? What should 
the length of the hot-wire sensor be? If the noise in the electronic circuitry is 
expressed in terms of equivalent turbulence intensity, what is the permissible 
noise level? 
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