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Solutions are analysed from large-eddy simulations of the phase-averaged equations
for oceanic currents in the surface planetary boundary layer (PBL), where the aver-
aging is over high-frequency surface gravity waves. These equations have additional
terms proportional to the Lagrangian Stokes drift of the waves, including vortex
and Coriolis forces and tracer advection. For the wind-driven PBL, the turbulent
Langmuir number, Latur = (U∗/Us)

1/2, measures the relative influences of directly
wind-driven shear (with friction velocity U∗) and the Stokes drift Us. We focus on
equilibrium solutions with steady, aligned wind and waves and a realistic Latur = 0.3.
The mean current has an Eulerian volume transport to the right of the wind and
against the Stokes drift. The turbulent vertical fluxes of momentum and tracers are
enhanced by the presence of the Stokes drift, as are the turbulent kinetic energy and
its dissipation and the skewness of vertical velocity. The dominant coherent structure
in the turbulence is a Langmuir cell, which has its strongest vorticity aligned longitu-
dinally (with the wind and waves) and intensified near the surface on the scale of the
Stokes drift profile. Associated with this are down-wind surface convergence zones
connected to interior circulations whose horizontal divergence axis is rotated about
45◦ to the right of the wind. The horizontal scale of the Langmuir cells expands with
depth, and there are also intense motions on a scale finer than the dominant cells
very near the surface. In a turbulent PBL, Langmuir cells have irregular patterns
with finite correlation scales in space and time, and they undergo occasional mergers
in the vicinity of Y-junctions between convergence zones.

1. Introduction
Mariners and aviators know that the surfaces of lakes and oceans often exhibit

arrays of convergence zones, marked by lines of buoyant surface debris. Their usual
orientation is roughly parallel to the directions of the surface wind and the primary
surface gravity wave propagation, which themselves are usually nearly aligned; we
will refer to this direction as longitudinal. These convergence zones are associated
with near-surface roll cells, called Langmuir cells, after the early observational char-
acterization by Langmuir (1938). Sub-surface measurements qualitatively confirm the
transverse circulation pattern, as well as a longitudinal jet centred in the convergence
zone (e.g. Pollard 1977; Weller & Price 1988). Some of the clearest indications
of Langmuir cell patterns in the interior come from acoustic scattering off bubbles
carried downwards underneath the convergence zones (e.g. Thorpe 1984; Zedel &
Farmer 1991; Smith 1992).
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The prevailing theoretical interpretation of Langmuir cells is as solutions of the
equations derived by Craik & Leibovich (1976), which, in their simplest form, are
steady roll cells that are independent of the longitudinal coordinate (x) and periodic
in the transverse coordinate (y). The Craik–Leibovich equations are a multi-scale
theory for the phase-averaged dynamics of low-frequency motions in the presence
of high-frequency surface gravity waves with Stokes drift, a horizontal Lagrangian
velocity field us(z), where z is height. The essential feature of these dynamics is an
added ‘vortex force’, us × ω (where ω = ∇ × v and v is the low-frequency Eulerian
velocity), which is conducive to growth of longitudinal vorticity. For example, in a
rapid-distortion solution for weak initial disturbances, with us = x̂us,

ω (x− us(z)t, y, z, t) = ω (x, y, z, 0) + x̂
dus
dz

[ω (x, y, z, 0) · ẑ] t+ O(t2).

This shows that initial seeds of vertical vorticity amplify with time as longitudinal
vorticity.

These Langmuir cell solutions occur as the first bifurcation from steady, one-
dimensional, longitudinal motion in the non-rotating Craik–Leibovich equations when
the laminar Langmuir number,

Lalam =
(
U∗/UsRe

3
s

)1/2
, (1.1a)

moves below an O(1) threshold value (i.e. an instability of type CL2; see Leibovich
1983). Here U∗ is the friction velocity associated with the surface wind forcing
(U∗ = (τ/ρ)1/2, where τ is the surface stress and ρ is the water density), Us = |us(0)|,
and Res is a Reynolds number based upon U∗ and the surface gravity-wave length
scale; in this context Res is usually assumed to be of O(1) in association with a vertical
eddy viscosity representing planetary boundary layer (PBL) turbulence. There are
further bifurcations to three-dimensional modes for even smaller Lalam (Leibovich &
Tandon 1993; Tandon & Leibovich 1995). Li & Garrett (1993, 1995, 1997) examine
transient two-dimensional (i.e. x and y) dynamics in the Craik–Leibovich equations for
moderate values of Lalam, hence behaviour that is effectively laminar. Leibovich (1983)
reviews Langmuir cell theory and observations from the perspective of a decade ago.

In nature, however, this phenomenon occurs within the PBL, which usually has
fully developed turbulence by the criterion of its Reynolds number being well beyond
any marginal stability threshold (e.g. Re ≡ Uh/ν = 107 for U = 0.1 m s−1, ν = 10−6

m2 s−1, and h = 102 m); hence, the PBL also has Lalam � 1. In conventional
PBL modelling, the turbulence arises from shear and buoyancy instabilities of the
horizontal-mean vertical profiles and transmits the surface fluxes throughout the
PBL, and any influences of surface gravity waves are ignored. Such models have had
considerable success in matching the observed evolution of PBL profiles (e.g. see the
review by Large, McWilliams & Doney 1994).

How can these two apparently unrelated views be reconciled? We attempt to
answer this question by solving numerical problems for the oceanic PBL by a
large-eddy simulation (LES) that includes the vortex force and other phase-averaged
effects associated with the Stokes-drift velocity. Skyllinstad & Denbo (1995) also
have recently explored this reconciliation with LES. In this context, where Re is
asymptotically large, the relevant parameter measuring the competition between shear
instability of the wind-driven currents and the vortex force is a turbulent Langmuir
number,

Latur = (U∗/Us)
1/2, (1.1b)
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which empirically is usually around 0.2 to 0.5 under quasi-equilibrium conditions
of wind and waves (e.g. Smith 1992). Our preference for LES rather than direct
numerical simulation of the Navier–Stokes equations is for the usual geophysical
reason of being interested in a larger-Reynolds-number regime than is achievable
with the latter (see e.g. Lesieur & Metais 1996).

We refer to the regime of Lalam � 1, Latur = O(1) as Langmuir turbulence, both to
associate it with and distinguish it from the laminar Langmuir circulations previously
investigated. In the present study we focus on the quasi-equilibrium state as Re→∞
under the influences of steady, parallel τ and us, planetary rotation (with Coriolis
frequency f), and stable interior stratification that limits the depth of penetration of
the PBL (with buoyancy frequency N = [−(g/ρ0)(d〈ρ〉/dz)]1/2, with ρ0 a reference
density and the angle brackets a horizontal average). Many previous studies have
examined the early-time, two-dimensional transient problem of spin-up from a state
of rest, where f can be neglected, with modest Re (Li & Garrett 1993, 1995, 1997).
From these it is clear that the presence of Langmuir cells accelerates spin-up and early
boundary-layer deepening by enhancement of 〈uw〉 and 〈ρw〉 fluxes in the interior,
where (u, v, w) are the (x, y, z) velocity components. In nature, of course, there is
often a complex mutual history of surface waves and boundary-layer motions in
response to variable winds, hence an enormous variety of scenarios to explore. The
quasi-equilibrium state achieved after a time O(1/f) – which we can call the turbulent
Stokes–Ekman layer – is a particularly cleanly posed, canonical problem for these
Langmuir turbulence dynamics. Our approach here is to establish the existence of
Langmuir turbulence in this particular regime and compare its statistical properties
and flow structure with another LES solution that is identically posed but for us ≡ 0.
Only a modest exploration of regimes and parameter sensitivities is made here, and
the spin-up phase is not analysed.

2. Phase-averaged equations
The Craik–Leibovich equations represent a subset of the full dynamics of interacting

surface gravity waves and PBL turbulence. The result of the low-pass time (or wave-
phase) averaging applied to the full Navier–Stokes equations is the reduced set of
Craik–Leibovich equations that describes fluid motions in the oceanic PBL for a flat
water surface (the rigid lid approximation for dynamics excluding surface gravity
waves). The sole effect of the surface waves enters through the Stokes drift associated
with the waves. Thus, any modification of the wave field by the evolving turbulence
field is neglected.

We will obtain solutions of the Craik–Leibovich equations by LES. These include
augmentation of the LES Navier–Stokes equations by a generalized vortex force,
us × [fẑ + ω], and an additional advection of any material property P by the
wave-induced Lagrangian motion, us · ∇P . Following the original Craik–Leibovich
derivation for a uniform-density fluid in a non-rotating environment, more general
and more elegant derivations of these equations have since been made as either a
generalized Lagrangian wave/mean-flow theory (Leibovich 1980; Craik 1985) or an
averaged Hamilton’s principle (Holm 1996).

A LES model is formally based upon a filtering of the fundamental fluid equations
of motion. In most applications the filter is simply a low-pass spatial one, but to
include the vortex force here it must also be a temporal filter that averages over the
irrotational surface gravity waves. The LES formulation is essentially that of Moeng
(1984) with a modified sub-grid-scale model (SGS) in the surface layer to improve
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correspondences with Monin–Obukhov similarity theory (Sullivan, McWilliams &
Moeng 1994), an altered surface boundary condition for momentum (i.e. replacing
the solid-boundary no-slip condition with specified stress; McWilliams et al. 1993),
and an internal-gravity-wave radiation boundary condition in the stratified interior
(Klemp & Duran 1983). It is arguable that the SGS model also ought to be modified
due to the presence of us, but we have not done so; excuses for this are the somewhat
ad hoc basis for SGS models in general, hence our uncertainty about how to include
Stokes effects, and our experience that LES PBL solutions are often not sensitive to
the details of the SGS formulation.

The filtered (i.e. LES) Craik–Leibovich equations are

Dv

Dt
+ fẑ × (v + us) = −∇π − gẑ(ρ/ρ0) + us × ω + SGS, (2.1)

Dρ

Dt
+ us · ∇ρ = SGS, (2.2)

∇ · v = 0. (2.3)

We have indicated the SGS terms only schematically; g is the gravitational accelera-
tion, D/Dt = ∂t + v · ∇, and π is a generalized pressure,

π = p/ρ0 +
(

1
2

) [
|v + us|2 − |v|2

]
.

We assume a trivial equation of state where the density is proportional to the
temperature θ, hence to the internal energy; i.e. ρ = ρ0(1−αθ), where α is the thermal
expansion coefficient. Skyllingstad & Denbo (1995; hereafter SD95) have recently
reported analogous LES Langmuir turbulence solutions for an intermediate fluid
model that does not include the Coriolis vortex force in (2.1) proportional to Stokes
drift; consequently, we find both similarities and differences between their solution
properties and ours as described below.

For simplicity, we assume the surface gravity wave field is a steady, monochromatic,
deep-water wave propagating in the +x̂ direction. Its solution form for surface
elevation, to leading order in wave steepness (ak), is

η = a cos[kx− σt],

and the associated Stokes drift is

us = x̂Use
2kz, (2.4)

where z = 0 is the average surface height, a is the wave amplitude, k is the wavenum-
ber, Us = σka2, and σ = (gk)1/2 (Phillips 1977). In nature, of course, the wave field
would have a broad-band spectrum, and us consequently would have a more complex
vertical profile. We do not expect this to make an important qualitative difference to
the Langmuir turbulence solutions, based on some exploratory solutions (not reported
here). Of far greater importance, perhaps, is the neglect of more nonlinear aspects
of surface gravity wave dynamics, especially wave breaking which causes increased
mixing and dissipation near the surface.

3. The laminar Stokes–Ekman layer
Before examining turbulent LES solutions of (2.1)–(2.4), we first consider the

simpler case of the Craik–Leibovich equations for the classical Ekman boundary layer
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problem in a uniformly rotating, uniform-density fluid. The horizontally averaged,
linear momentum equations are

ut − f(v + vs) = −Fxz , vt + f(u+ us) = −Fyz , (3.1)

after subtraction of a mean geostrophic, hydrostatic balance that is assumed to have
no boundary-layer structure. Here F = (Fx, Fy) is the turbulent vertical flux of
horizontal momentum. We further specialize the problem to having both the surface
wind stress and the Stokes drift oriented in the +x̂ direction. Thus, τ > 0, vs = 0,
us(z) > 0, and the boundary conditions for (3.1) are

Fx = −τ/ρ, Fy = 0 at z = 0,
u, v, Fx, Fy → 0 as z → −∞.

}
(3.2)

We assume the Stokes drift is as in (2.4).
Integral momentum budgets for (3.1)–(3.2) are

St − fT =
τ

ρ
, Tt + fS = −fUs

2k
, (3.3)

for the Eulerian horizontal volume transport,

(S, T ) ≡
∫ 0

−∞
(u, v) dz. (3.4)

Thus, the horizontal transport in steady-state balance has the familiar wind-driven
Ekman component perpendicular to the wind (i.e. T < 0 for f > 0 in the northern
hemisphere) plus an additional up-wave component (S = −Us/2k < 0) that cancels
the Stokes-drift transport (i.e.

∫
us dz = +Us/2k). Additionally one can superimpose

on the steady solution an inertial oscillation, assuming that it satisfies the boundary
conditions in (3.2).

To examine boundary-layer profiles, we assume an eddy viscosity relation,

F = −νvz, (3.5)

to close the problem (3.1)–(3.2) in a way that is equivalent to making the flow
laminar; this problem was first considered by Huang (1979). The solution is easiest
to manipulate if we define a complex variable U = u+ iv, for which the problem is

Ut + ifU − νUzz = −ifUse
2kz,

νUz = τ/ρ at z = 0,
U → 0 as z → −∞.

 (3.6)

The steady-state solution is

U =
1− i

(2fν)1/2
[τ/ρ− 2kνγ] exp

[
1 + i√

2

(
f

ν

)1/2

z

]
+ γe2kz, (3.7)

where γ = ifUs[4k
2ν − if]−1.

To simplify the interpretation of (3.7), we non-dimensionalize variables by the
wind-driven scales,

U, v, us ∼
τ

ρ(2fν)1/2
, z ∼ (2ν/f)1/2,

and furthermore define a non-dimensional amplitude and vertical wavenumber for
the Stokes-driven component by s = Usρ(2fν)1/2τ > 0 and r = k(2ν/f)1/2 > 0. Then
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the non-dimensional solution is

U(r, s, z) = (1− i)(1− rγ̂)e(1+i)z + γ̂e2rz , (3.8)

where

γ̂ =
−1 + i2r2

1 + 4r4
s. (3.9)

The transport integral for (3.8), matching (3.3) in steady state, is −s/2r − i, oriented
obtusely to the right of the wind and waves. The vertical profile has a clockwise spiral
component that decays on the Ekman scale and a rectilinear component, oriented
obtusely to the left of the wind and waves, that decays on the scale of the Stokes
drift.

The surface current in (3.8) is

u(0) = 1 + s
−1 + r − 2r3

1 + 4r4
, v(0) = −1 + s

−r + 2r2 − 2r3

1 + 4r4
. (3.10)

This velocity is oriented 45◦ to the right of the wind when s = 0. The surface velocity
component proportional to s has a zonal value of −1 for r → 0, changes sign at
r ≈ 0.59, achieves a maximum of ≈ 0.4 at r ≈ 1.1, and vanishes as r → ∞. Its
meridional value is always negative and thus reinforces the sense of the wind-driven
flow, vanishes as r → 0,∞, and has a minimum of ≈ −0.21 at r ≈ 0.7. For all s > 0,
the surface current is oriented farther away from the wind than in the pure Ekman
layer.

Even in the limit of vanishing wind stress (i.e. s→∞ in (3.9)), there is a boundary-
layer current with zero surface stress and westward transport:

U = γ̂
(
r[−1 + i]e(1+i)z + e2rz

)
. (3.11)

Its hodograph exhibits a clockwise spiral, with two vertical decay scales, starting with
a southward surface component. If we simultaneously take the limit of vanishing
eddy viscosity (i.e. r → 0), then U → −s everywhere except at z = 0; here the Eulerian
flow cancels the Stokes drift except to accommodate the surface boundary condition
of zero stress (see also §8).

Lagrangian parcels in the Stokes–Ekman layer move with v + us; this is the
trajectory that a tracer or a drifting buoy follows. Thus, since S is the opposite of
the Stokes-drift vertical integral, the boundary-layer Lagrangian transport is ŷT (the
same as in the pure Ekman layer), and the Lagrangian surface current has a greater
magnitude and is directed more towards the wind for all values of s, r > 0.

To have some sense of the relative contributions of the wind and wave components
of the solution, consider the following representative example (which also matches
the turbulent problem posed in §4). We choose τ = 0.037 N m−2, corresponding to a
wind speed of about 5 m s−1; thus, the value of the friction velocity is U∗ = 6.1×10−3

m s−1. We also choose f = 10−4 s−1, k = 2π/60 = 0.105 m−1, and Us = 0.068 m s−1

(corresponding to a wave amplitude of 0.8 m). This implies a turbulent Langmuir
number, Latur = (U∗/Us)

1/2 of 0.3. Finally, we identify the Ekman-layer e-folding
scale (2ν/f)1/2 with he = 0.25U∗/f (Coleman, Ferziger & Spalart 1990); hence,
ν = 1.16 × 10−2 m2 s−1 and the e-folding scale is 15 m. Thus, the non-dimensional
wave parameters in (3.8)–(3.9) are s = 2.79, r = 1.60, and γ̂ = −0.10 + 0.52i, which
implies the substantial Stokes-drift modifications of the wind-driven Ekman layer
(figure 1): the Stokes–Ekman Eulerian (v) and Lagrangian (v + us) mean surface
currents are to the south and east-southeast, respectively, compared to the southeast
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Figure 1. Hodograph of the laminar Stokes–Ekman layer (solid line) from (3.7) for s = 2.79 and
r = 1.6 (see text); also shown is the Ekman hodograph, s = 0 (dashed line).

direction of the Ekman surface current. For higher or longer surface waves, or weaker
winds, the wave-driven modifications would be relatively larger.

4. Posing the Langmuir turbulence problem
We consider a domain that is rectangular in three dimensions. The boundary

conditions are the following: horizontal periodicity, outward wave radiation and
zero stress at the bottom, and no-normal flow and specified momentum and density
(temperature) fluxes at the top.

We choose the wind and wave fields to be aligned in the direction +x̂, with
τ = 0.037 N m−2 (corresponding to a wind speed of about 5 m s−1) and assume it is
constant in time. Thus, the value of the friction velocity is U∗ = 6.1 × 10−3 m s−1.
The wave Stokes drift is as in (2.4). We have obtained solutions for a variety of (a, k)
values, but we will focus primarily on the set (0.8 m, 2π/60 = 0.105 m−1), which
corresponds to Us = 0.068 m s−1 and Latur = 0.3. We demonstrate the behaviour of
Langmuir turbulence by comparing it with an identically posed problem without us,
which we designate shear turbulence.

The boundary layer environment is uniformly rotating, with f = 10−4 s−1, corre-
sponding to 45◦ N latitude. Thus, the value of the turbulent Ekman-layer depth scale
is he = 0.25U∗/f0 = 15 m. It is also bounded by a stably stratified layer below. The
initial stability profile is neutral for 0 > z > −zi, with zi = 33 m, and has a uniform
N = 0.0044 s−1 below, corresponding to dθ/dz = 0.01 K m−1 and α = 2 × 10−4

K−1. Since zi ∼ he, the profiles of PBL motions are compressed somewhat by the
interior stratification (McWilliams et al. 1993). Even this relatively weak stratification
suffices to make the rate of PBL deepening by entrainment small (O(1) m day−1)
over integration periods of O(1/f) ∼ 3 hrs that reach a quasi-equilibrium state with
respect to the wind- and wave-driving. In this regime, a large-eddy turnover time is
O(zi/U∗) ∼ 1.5 hrs. We also include a heat flux into the ocean of Q∗ = −5 W m−2,
which implies a Monin–Obukhov length of L = ρ0cpU

3
∗/καgQ∗ = −240 m (where

κ is von Kármán’s constant and cp is the heat capacity). Thus, zi/L ≈ −0.14 is
small, and this is a weakly convective, strongly sheared PBL regime. Similarly, the
Hoenikker number, Ho = −2αgQ∗/ρ0cpkUsU

2
∗ ≈ 0.02, is also small (Li & Garrett

1995), indicating that the convective forcing of Langmuir cells is less than that as-
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sociated with the Stokes drift vortex force. We include Q∗ 6= 0 only to facilitate
the spin-up from rest. Such solutions do contain inertial oscillations, whose spatial
structure is horizontally and vertically uniform down to z = zi and nearly zero below.
These oscillations are effectively decoupled from the quasi-equilibrium PBL dynam-
ics, as demonstrated by comparing turbulence statistics in different inertial phases,
and they are ignored (removed by time averaging) in the statistical analyses below.
LES involves a sub-grid-scale eddy viscosity νsgs (Moeng 1984). In our solutions we
find that νsgs = O(10−3) m2 s−1, which is much larger than the molecular viscosity;
nevertheless, even if we use νsgs to calculate an effective Lalam from (1.1a), its value is
O(10−3)� Latur , which assures that Latur is indeed the relevant measure for our LES
solutions.

Based upon the values of k−1, he, and zi above, we choose a domain depth of
H = 90 m, well below the PBL bottom at z = −zi. Based upon the expectation from
laminar Craik–Leibovich solutions that Langmuir cells have a moderately anisotropic
aspect ratio, we choose the standard (S) horizontal dimensions to be Lx = Ly = 150
m with a grid of 50 × 50 × 150, which implies resolution scales of ∆x = ∆y = 3 m
and ∆z = 0.6 m. For some calculations, to test the constraint of the finite horizontal
extent, we also use an extended (E) domain of Lx = Ly = 300 m and grid of
64 × 64, hence ∆x = ∆y = 4.7 m. We also have calculated solutions in the extended
domain with a nested grid (N) in the top 9 m near the surface, with horizontal and
vertical resolution scales of 1.2 and 0.3 m, respectively (see Sullivan, McWilliams &
Moeng 1996). We will analyse these alternative solutions for Langmuir turbulence
with different trade-offs in resolution and domain size; comparing them gives an
indication of the discretization errors in the calculations and sampling errors in
calculating the averages.

5. Low-order statistics of Langmuir turbulence
We begin our analysis of Langmuir turbulence by comparing its low-order statistical

moments with those of an identically posed problem for shear turbulence. These
moments are based on averages, denoted by angle brackets, over the horizontal
domain and over many large-eddy turnover times during the quasi-equilibrium phase
following a spin-up from rest. The moments include vertical profiles of mean, variance,
covariance, and skewness for various flow properties, which are the usual statistical
measures of PBL turbulence. We denote a particular solution by a label in the form
‘domain/Latur ’, and the other parameters specified above are implicit; thus, shear
turbulence in the standard domain is labelled S/∞, and Langmuir turbulence in the
extended domain is E/0.3.

The mean horizontal velocity is shown in figure 2. The largest difference between
Langmuir turbulence and shear turbulence is in 〈u〉(z): in Langmuir turbulence
(but not shear turbulence) it has a negative value for both the surface value and
transport. It is also much more uniformly distributed with depth in Langmuir
turbulence, indicating the presence of a more efficient vertical transport process than
in shear turbulence, which we can anticipate to be the Langmuir cells. This is true
in general for the turbulent boundary layers: both shear turbulence and Langmuir
turbulence exhibit less spiral in their hodograph than their laminar counterparts.
The differences in 〈v〉(z) are more modest between Langmuir turbulence and shear
turbulence. In both cases the tangential flow component is to the south, but the depth
distribution is again more uniform in Langmuir turbulence. Compared to the laminar
boundary layer (§3 and figure 1), all mean surface current directions are shifted in
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Figure 2. Horizontal and time-mean horizontal velocity profiles, 〈u〉(z), 〈v〉(z). Included are one
solution for shear turbulence (S/∞) and two for Langmuir turbulence (S/0.3 and E/0.3).
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Figure 3. (a) Mean vertical momentum flux profiles, 〈u′w〉(z), 〈v′w〉(z), normalized by the surface
momentum flux U2

∗ . (b) Bulk eddy viscosity profiles, −〈v′w〉 · 〈uz〉/〈u2
z〉, normalized by U∗zi.

the counterclockwise direction in the turbulent solutions, but the mutual relations
for the orientation between Langmuir turbulence and shear turbulence and between
Eulerian and Lagrangian are all qualitatively the same. Weller & Price (1988, figures
13–14) observed that the mean surface flow is often nearly perpendicular to the wind
direction when Langmuir cells are present, consistent with the southward flow here,
although the observational testing of this prediction is not yet very precise. This
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mean flow behaviour is missing in the SD95 solutions because they did not include
the Stokes Coriolis force in their equations.

We also see modest differences in the two Langmuir turbulence solutions (S/0.3
and E/0.3) in figure 2, the greater part of which is sampling error in filtering out the
inertial current, whose magnitude is comparable to the mean current. Other statistical
moments shown below have no contribution from horizontal mean quantities, and
they show much closer correspondences between the two Langmuir turbulence solu-
tions. Thus, the computational and analysis errors here are generally small enough to
allow firm conclusions about the differences between Langmuir turbulence and shear
turbulence.

Profiles of the mean vertical flux of horizontal momentum are shown in figure
3(a). These, of course, are strongly constrained by the imposed surface stress and
the mean velocity profiles (figure 2) through the mean horizontal momentum balance
((3.1) in steady state). They are qualitatively similar in Langmuir turbulence and
shear turbulence, although Langmuir turbulence has a significantly larger magnitude
in the interior of the PBL, hence again a greater transport efficiency. This is
confirmed by having a bulk eddy viscosity (i.e. Km(z) ≡ −〈v′w〉 · 〈uz〉/〈u2

z〉) about
three times larger in Langmuir turbulence than in shear turbulence (figure 3b). The
bulk eddy viscosities in figure 3(b) have magnitudes on the order of 0.1U∗zi =
2 × 10−2 m2 s−1, which exceeds νsgs by more than an order of magnitude. They
also have the convex profile shape that is assumed in the K-profile parameterization
for turbulent transports in shear- and buoyancy-driven PBLs (Large et al., 1994),
suggesting that Langmuir turbulence might be similarly parameterized but with an
enhanced transport coefficient compared to shear turbulence. This convex eddy-
viscosity profile differs strongly from that proposed by SD95 (their equation (9) and
figure 3).

Also discernible in figure 3(a) is a relatively weak 〈v′w〉 > 0 and 〈u′w〉 = 0 beneath
the PBL. The flux is nearly constant with depth, implying no contribution to the mean
momentum balance, hence no necessity for a balancing mean velocity in the Coriolis
force in (3.1). (This depth range also has us nearly zero.) This flux is carried by
internal gravity waves radiating downward out the bottom of the domain. The waves
are generated in the entrainment layer by the interaction of PBL turbulence with
the stable mean stratification by a process that is not quantitatively well understood
(nor accurately calculated with typical LES grid resolution). Other measures of the
sub-PBL waves can be seen in figures 4–9 below. Their amplitude is somewhat larger
in Langmuir turbulence compared to shear turbulence, probably because the PBL
turbulent variances (below) are larger in Langmuir turbulence. Previous examples of
internal-wave generation by PBL turbulence are in Carruthers & Moeng (1987) and
Fernando (1991).

Eddy kinetic energy is larger in Langmuir turbulence than shear turbulence,
especially within the top few metres (figure 4), as is also observed in laboratory
Langmuir turbulence (Magnaudet & Thais 1995). Although the SGS kinetic energy is
also larger in Langmuir turbulence, it makes up a smaller fraction of the total, which
suggests that it is exerting a lesser degree of dynamical control over the resolved-scale
fluid dynamics in the Langmuir turbulence LES solution.

The mean budget equation for resolved-scale eddy kinetic energy can be derived
from (2.1), assuming equilibrium; it is

∂ 1
2
v′2

∂t
= 0 = −∂〈v

′2w〉
∂z

− 〈v′w〉 · ∂〈v〉
∂z

+ αg〈θ′w〉 − 1

ρ0

∂〈p′w〉
∂z

− 〈u′w〉∂us
∂z
− ε, (5.1)
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Figure 5. Mean kinetic energy dissipation profiles, ε(z), normalized by
U3
∗/zi ≈ 7× 10−9 m2 s−3. (See Moeng 1984 for definition.)

where the prime denotes a departure from horizontal average. The terms in (5.1)
are referred to, respectively, as transport, shear production, buoyancy production,
pressure working, ‘Stokes production’, and dissipation. (Equation (5.1) differs in its
Stokes production term from the eddy kinetic energy budget of SD95 (their Appendix)
because they failed to include the Stokes term in the generalized pressure in (2.1).)
In the present LES solutions, transport and buoyancy production are relatively small
contributors to this budget. In shear turbulence, the pressure working is also rela-
tively small, and shear production approximately balances dissipation at all depths.
In Langmuir turbulence, however, Stokes production adds greatly to shear produc-
tion and combines with pressure working to increase eddy kinetic energy, collectively
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balanced against dissipation. Thus, the dissipation ε(z) is much larger in Langmuir
turbulence than in shear turbulence (figure 5). While budget contributions do not
rigorously imply causality, this behaviour suggests why eddy kinetic energy is so much
larger in Langmuir turbulence. A similar analysis has been made for the covariance
budgets of mean momentum and buoyancy fluxes, but the interpretation is somewhat
more ambiguous since the analogous added Stokes production is largely cancelled by
increased pressure working; however, if one argues that the latter, as an isotropizing
influence (Rotta 1951; Wyngaard, Cote & Izumi 1971), acts like additional damping
or dissipation for the intrinsically anisotropic motions that sustain the fluxes, then
their interpretation is also analogous. The dissipation profile in figure 5 is very
strongly peaked near the surface, even without any benefit of enhanced dissipation
by surface gravity-wave breaking. It reaches a magnitude of nearly 10−6 m2 s−3 (after
multiplication by the normalization factor U3

∗/zi = 7× 10−9 m2 s−3). This magnitude
is similar to those observed by Anis & Moum (1992) and modelled in the Langmuir
turbulence solution of SD95 (their figures 6 and 7), using the conversion factor ∝ U3

∗
to match their stronger wind-stress conditions.

Langmuir turbulence has much greater velocity anisotropy than shear turbulence,
as shown in the component variances (figure 6). The larger transverse and vertical
motions and weaker longitudinal motions (except very near the surface) in Langmuir
turbulence are as would be expected from the presence of transverse Langmuir cells
instead of the more isotropic turbulent eddies in shear turbulence. Note that the
horizontal velocity variances are strongly surface intensified in Langmuir turbulence,
roughly on the e-folding scale of the Stokes drift (2.4), whereas the vertical velocity
variance remains large throughout the PBL, indicating that the Langmuir cells fill the
weakly stratified layer, 0 > z > −zi. Together these profiles indicate the presence of
at least two vertical scales for the Langmuir cells in Langmuir turbulence.

The negative skewness of the vertical velocity (figure 7) indicates that downward
motions are narrower and stronger than the broader upward motions required for
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net mass balance. The skewness magnitude is greater for Langmuir turbulence than
shear turbulence, although less so than in some previous two-dimensional laminar
Craik–Leibovich solutions (e.g. Li & Garrett 1993) or in Pollard’s (1977) often-cited
sketch based on velocity observations. The skewness grows monotonically with depth
through the PBL and is largest near z = −zi in both Langmuir turbulence and shear
turbulence. Thus, downward vertical velocity pulses, driven from the top surface by
instability of the mean velocity profile, extend appreciably into the entrainment layer.

The mean buoyancy flux profiles (figure 8) show much larger entrainment rates
for Langmuir turbulence than shear turbulence, as was also shown in Li, Zahariev
& Garrett (1995). (The two flux profiles must coincide at the upper surface to
match the imposed surface buoyancy flux.) There is also a significantly larger eddy
diffusivity throughout the boundary layer in Langmuir turbulence, analogous to the
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eddy-viscosity enhancement in figure 3(b), although the former has singularities in the
middle of the PBL and is thus a less useful diagnostic measure than the latter. Because
of the larger buoyancy flux minimum in the entrainment layer, the average rate of
boundary layer deepening, We ≡ dzi/dt, is also much greater in Langmuir turbulence
than in shear turbulence (i.e. We/U∗ ≈ 6.0 and 2.6 × 10−3, respectively). The enhanced
buoyancy-transport efficiency in Langmuir turbulence is consistent with its greater
turbulent kinetic energy (figure 4) and vertical velocity down-draught bias (figure
7). Consequently, the temperature variance is also enhanced in Langmuir turbulence
(figure 9), both in the entrainment layer and in association with the internal gravity
waves beneath the PBL. The Langmuir turbulence solutions of SD95 (their figure 4)
also show an enhanced entrainment-layer heat flux, albeit to a lesser degree than in
figure 8, consistent with their relatively larger Q∗ (with Ho values 3–10 times larger)
that diminishes the relative contribution by Langmuir cells.

6. Flow structures in Langmuir turbulence
Now we examine the patterns of the currents in Langmuir turbulence. Since many

observations are of material distributions near the surface (surfactants and bubbles),
we calculate Lagrangian trajectories for surface-trapped objects. The evolutionary
equation is

dX

dt
= v(X , 0, t) + us(X , 0, t), X (0) = X 0, (6.1)

where X (t) ≡ (X,Y , 0) is the horizontal parcel coordinate. One realization is shown
in figure 10(a) for an array of X (t) released along a line of constant X0 at the surface.
The overall parcel motion is to the east-southeast, as in the laminar Stokes–Ekman
layer (§3), at an average speed of about 0.1 m s−1, which is the mean of the right-
hand side of (6.1). Convergence zones are clearly seen, and few parcels remain outside
them. The zones are extremely narrow in most places, although some sectors have an
apparently finite width in which nearby parcels move in parallel with each other along
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Figure 10. (a) Trajectories of 60 surface parcels released along a transverse line over an interval
of 5920 s in Langmuir turbulence solution E/0.3; (b) Locations of 104 surface parcels 1440 s after
being released randomly within 0 6 x, y 6 300 m.

the zone axis. A typical spacing between the zones is about 50 m, which is roughly
the surface gravity wavelength 2π/k = 60 m. However, there is evident irregularity
in these zones: they are wobbly, their spacing is irregular, and parcels occasionally
escape. There are also instances of zones joining, which is indicative of the Langmuir
cell merger seen in two-dimensional laminar solutions (Li & Garrett 1993) and Y-
junctions seen in time-range acoustic scattering patterns (Thorpe 1992; Farmer & Li
1995). In figure 10(b) is shown the instantaneous distribution of 104 surface parcels at
a little more than one-quarter of an eddy turnover time after being released randomly
throughout the domain. They too have aggregated into convergence zones that
occupy a small fraction of the domain. However, in comparison with the trajectory
view of figure 10(a), this synoptic view has a somewhat more fractured pattern whose
dominant orientation is more longitudinal. Our impression is that the Langmuir cell
patterns in our Langmuir turbulence solutions are about as well organized as those
observed, but this needs to be quantitatively assessed.

An instantaneous Eulerian depiction of the Langmuir cell pattern is provided by
the longitudinal vorticity in three dimensions (figure 11a). It shows irregularly spaced,
longitudinally elongated, tangentially alternating ‘tubes’ that are strongly confined to
near the surface, roughly on the Stokes-drift decay scale (2k)−1 = 5 m. The apparent
tangential spacing between the tubes is somewhat shorter than between the zones
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Figure 11. Instantaneous iso-surfaces of ω · x̂ in (a) Langmuir turbulence (S/0.3) and (b) shear
turbulence (S/∞) viewed from the top. The surface values are 0.017 (blue) and −0.017 (green).

in figure 10, and the direction of elongation is much more nearly due east than the
east-southeast parcel motion within the convergence zones. In comparison with shear
turbulence (figure 11b), the longitudinal vorticity in Langmuir turbulence is much
stronger and more ordered into a longitudinal array.

Horizontal contour plots of instantaneous, near-surface vorticity and vertical ve-
locity (figure 12a, b) confirm these impressions of smaller transverse spacing and
primarily eastward orientation. The two fields are mutually aligned in the sense
expected for roll cells; e.g. a tube of positive vorticity usually has an upwelling
tube to the north and a downwelling tube to the south. On the other hand, the
downwelling extrema and tubes are only moderately stronger and narrower than the
upwelling ones, consistent with the only moderately negative skewness values near
the surface (figure 7). Their width is clearly greater than that of the parcel density
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Figure 12. Horizontal contour plots of instantaneous (a) ω · x̂, (b) w, (c) v′, (d) u′ in Langmuir
turbulence (E/0.3). These fields are shown at z = −3 m, and the contour values for ω · x̂ (in
s−1) and for w (in m s−1) are (−0.015, −0.01, −0.005, 0.005, 0.01, 0.015) dark (light) shad-
ing are values larger (smaller) than 0.005 (−0.005). The contour values for u (in m s−1) are
(−0.015, −0.01, −0.004, 0.004, 0.01, 0.015) dark (light) shading are values larger (smaller) than
0.004 (−0.004); contour values for v (in m s−1) are (−0.025, −0.015, −0.0060, 0.0060, 0.015, 0.025)
dark (light) shading are values larger (smaller) than 0.006 (−0.006).

in convergence zones (figure 10). This width is also greater than in two-dimensional
laminar Craik–Leibovich solutions, where it shrinks monotonically as Lalam → 0 (Li
& Garrett 1993). The longitudinal-transverse aspect ratio of the Langmuir cells is
about 3 or 4, which is large but certainly not infinite (as in two dimensions).

The instantaneous horizontal patterns of near-surface horizontal velocity (figure
12c, d) are somewhat less well organized into roll-cell patterns: their horizontal aspect
ratios are smaller than for vorticity and vertical velocity, especially for longitudinal
velocity. Furthermore, the pattern orientation is somewhat more complex in that
elongations are discernible both to the east on a smaller horizontal scale and to the
southeast on a larger one. Nevertheless, their phase relations are roughly consistent
with an idealized Langmuir cell: the v pattern shows tubes of convergence into the
w < 0 tubes, and local maxima in u are in phase with minima in w. The pitch is defined
as the ratio of the horizontally coincident u′ maximum and w minimum, which occur
at the surface and at about 5 m depth, respectively (see figure 6). From figures 12(b)
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Figure 13. Horizontal contour plots of instantaneous w in Langmuir turbulence (E/0.3), averaged
over different vertical intervals. Contour values (in m s−1) are (−0.015, −0.01, −0.005, 0.005, 0.01,
0.015), dark (light) shading values larger (smaller) than 0.005 (−0.005). The averaging intervals (in
m) are: (a) −3 > z 6 0, (b) −12 6 z 6 −3, (c) −20 6 z 6 −12, and (d) −30 6 z 6 −20.

and 12(c) it is evident that the pitch is of order unity for our turbulent Langmuir
cell, roughly as observed by Weller & Price (1988) and also as in the Langmuir
turbulence solutions of SD95 (their Plate 7). These values are much larger than the
small pitch of two-dimensional laminar Langmuir cell for small Lalam (Li & Garrett
1993). The reason for this difference is primarily because two-dimensional Langmuir
cell have narrow, strong downwelling zones beneath the surface convergence zones

(proportional to La
1/2
lam and La

−1/3
lam , respectively, as Lalam → 0), whereas our and

SD95’s Langmuir turbulence solutions exhibit downwelling zones only about 30%
narrower than the upwelling zones. In a two-dimensional solution, the instability
to three-dimensional, turbulent motions does not occur, even as Lalam → 0, and
evidently the stirring by such motions keeps the downwelling zones broad.

The instantaneous circulation pattern changes with depth (figure 13). Near the
surface the w(x, y) tubes are longitudinally oriented with relatively small horizontal
scales. With increasing depth, though, the direction of pattern elongation spirals
clockwise towards a more diagonal orientation and the spatial scale expands. Also
the asymmetry between stronger downwelling and weaker upwelling increases (as also
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indicated by the increased skewness; figure 7). Very deep into the boundary layer,
the tube-like pattern is more fragmented, suggesting that the degree to which Lang-
muir cells dominate the turbulent variability diminishes with depth. The Langmuir
turbulence solutions of SD95 (their Plates 3 and 4) also show the scale expansion of
w(x, y) with depth, but not as much rotation of orientation as ours, consistent with
their lack of a Stokes Coriolis force in the mean Ekman balance (§3).

In the presence of such a degree of irregularity, it is somewhat difficult to discern
from a few examples what the typical Langmuir cell structure is. To educe this
typical structure, we have made conditional averages in our Langmuir turbulence
solutions. Since Langmuir cells are primarily identified by their strong downwelling
sites underneath a surface convergence zone, we define the conditioning event E as
all (x, y, t) instances of w(x, y, z∗, t) 6 −w∗, where w∗ is the r.m.s w at the depth z∗
where it is largest (i.e. about 5 m; see figure 6). Thus, the conditional average for a
quantity P is defined by

P (x′, y′, z′) ≡ 〈P (x+ x′, y + y′, z′, t)|E〉. (6.2)

Of course, we could use alternative definitions of E, such as one with a different
value of w∗ or one based upon a strong extremum in longitudinal vorticity; we have
done some experimentation with these choices and not found a strong sensitivity in
the shape of the resulting P . Nevertheless, we appreciate the potential danger of
circularity in educing a flow structure by a conditional average based upon a prior
conception of its form; however, insofar as structural forms emerge in the averages
beyond those imposed in the conditioning definition, we view the danger as not severe.
Detection of coherent structures from experimental and numerical databases using
conditional averages like (6.2) is well established for a variety of flows (e.g. Adrian
1992; Adrian et al. 1989) and is closely related to the method of stochastic estimation
developed by Adrian and Moin (1988). An important result from this experience is
that, when the conditional fields are normalized by the threshold value in E, they are
found to be nearly independent of the conditioning threshold, suggesting a certain
degree of universality for the conditionally sampled fields.

The conditionally averaged velocity field v′ is shown in three-dimensional per-
spective in figure 14. The downwelling tube and its neighbouring upwelling tubes
are longitudinally elongated near the surface, but with depth the downwelling axis
rotates clockwise towards the diagonal direction and expands in width. The trans-
verse velocity v′ has a combined longitudinally and diagonally oriented tube structure
flanking the downwelling tube near the surface, but at deeper levels it changes into a
diagonally oriented, unidirectional (southward) flow region. The longitudinal velocity
u′ is positive (eastward) at all depths above and below the downwelling origin for the
conditional averaging, but near the surface it abruptly changes to a reverse (west-
ward) flow to the east of the origin. This sign reversal of u near the origin means
that ∂u′/∂x < 0 combines appreciably with ∂v′/∂y < 0 to balance the downwelling.
Horizontal contour plots of v′(x, y) (figures 15–16) demonstrate the weaker and more
distant features of the typical Langmuir cells circulation pattern in Langmuir turbu-
lence. In w(x, y) (figure 15), we see the neighbouring cells, closely packed near the
surface and more widely spaced at depth. The horizontal flow (figure 16) is convergent
above the downwelling extremum (near z = z∗) and divergent below, and the flow pat-
tern changes quite substantially with depth in both orientation and horizontal scale.
Thus, the Langmuir cells in Langmuir turbulence are more longitudinally oriented
with finer horizontal scales near the surface and have a more diagonal orientation
and larger scales in the PBL interior.
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Figure 14. Iso-surfaces of conditionally averaged velocity: (a) w/U∗, (b) v′/U∗, and (c) u′/U∗ in
Langmuir turbulence (E/0.3. The three rows, respectively, are views from above, the south, and the
east and below. Surface values are 0.19 (blue) and −0.19 (green) for all variables.

The conditionally averaged longitudinal vorticity (figure 17) exhibits a greater
resemblance to idealized roll cells than do the other conditionally averaged fields.
The Langmuir cell vorticity tubes are elongated in the longitudinal direction by a
factor of more than five, relative to their transverse span. They alternate in sign, in an
antisymmetric configuration about the conditioning origin, with strong intimations of
transverse periodicity (i.e. a lattice-like array) over several periods. They are confined
to near the upper surface; the deepest extent of the surfaces in figure 17 is only about
12 m. There is an evident longitudinal asymmetry, with an upward slant of the tube
axis towards the surface in the down-wind direction; this asymmetry is analogous
to the tilt of the hairpin vortices in shear turbulence (Head & Bandyopadhyay,
1981).

The conditionally averaged eddy flux densities (figure 18) show the local contribu-
tions of a Langmuir cell near the origin and asymptotically approach the domain-
average profiles in the far field (cf. figure 3). The primary contribution to u′w < 0
occurs in the core of the downwelling region in the upper 15 m, due to the coincidence
of u′ > 0 and w < 0 (figures 14c and 16). The broadest peak in v′w > 0 lies deeper
in the PBL, and it is associated with the v′ < 0 region beneath the origin. Near the
surface there are regions of both signs in this flux density that provide little spatially
integrated net flux, consistent with vanishing near-surface flux in figure 3; these are
associated with the different signs of both v′ and w near the surface (figures 14b and
16). The normalized heat flux Q−1

∗ θ′w(z) has a positive extremum near the surface,
that carries the surface buoyancy flux downward, and an opposite-sign extremum in
the entrainment layer; the former is of relatively small horizontal extent, whereas the
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Figure 15. Contour plots of conditionally averaged vertical velocity w/U∗ at different vertical levels
in Langmuir turbulence (E/0.3): (a) z = 1.2 m, (b) z = 4.8 m, (c) z = 12.0 m, and (d) z = 21.0 m.
Contour values are (−0.30, −0.25, −0.18, −0.10, −0.05, 0.050, 0.10, 0.18, 0.25, 0.3) dark (light)
shading are values larger (smaller) than 0.18 (−0.18).

latter is much larger, consistent with the expanding scale of w with depth (cf. figures
13 and 15). This shows the efficiency of Langmuir cells in deeply penetrating the PBL
for even a rather weak surface buoyancy flux, as has also been observed (Pollard &
Thomas 1989). Because the local deviations in the flux magnitudes are substantial
relative to the far-field values, it is clear that the Langmuir cells dominate the mean
eddy transports in Langmuir turbulence: if we volume-average the conditionally
averaged flux over the region in which it appreciably differs from its far-field value,
we approximately recover the mean profiles in figures 3 and 8 (this is more precisely
true for momentum than buoyancy).

7. Life cycles of turbulent Langmuir cells
A view of the temporal evolution of Langmuir cells is provided by the Hovmuller

diagram in figure 19. As in the Lagrangian surface trajectories (figure 10), there is a
prevailing southward motion in the patterns of w, but here the speed is somewhat
smaller, around 0.025 m s−1. The relevant advecting velocity for the vorticity field, as
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Figure 16. Vector plots of conditionally averaged horizontal velocity v′/U∗ at different vertical
levels in Langmuir turbulence (E/0.3): (a) z = 1.2 m, (b) z = 4.8 m, (c) z = 12.0 m, and (d) z = 21.0
m. The vector length scales are indicated above each panel in m s−1.

for tracers, is v + us from (2.1), so only the Eulerian component, v, contributes to the
y motion in figure 19, and its mean value in the middle of the boundary layer (figure
2) matches this pattern speed fairly well.

A given downwelling zone near z = z∗ in figure 19(a) waxes and wanes in strength
and width over intervals of O(103) s, comparable to the large-eddy turnover time.
Many zones, particularly the stronger ones, have a lifetime of at least many turnover
times. Even those that weaken and seem to disappear over a shorter interval are often
replaced by successors occupying the same (advectively extrapolated) site. There
are many examples here of Y-junctions of downwelling zones, more so than in
instantaneous plots of spatial structure (i.e. figures 11 and 12; see also Thorpe
1992, and Farmer & Li 1995). Interestingly, the bases of the Y’s all point to the
future, indicating that zones tend to join each other rather than separate. Also the
bases of the Y’s are stronger and wider than the branches, indicating that joining
provides a growth mechanism for the convergence zones. A time sequence in figure
20 illustrates the joining of two adjacent convergence lines, proceeding longitudinally
away from an existing Y-junction by suppression of the longitudinal vortex pair
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Figure 17. Iso-surfaces of conditionally averaged longitudinal vorticity, ω · x̂ normalized by U∗/zi
in Langmuir turbulence (E/0.3): (a) top view and (b) oblique perspective viewed from the side and
from slightly above the water surface. Surface values are 5.0 (blue) and −5.0 (green).

initially lying between them. The longitudinal non-uniformities shown here differ
from the two-dimensional Langmuir cell mergers calculated by Li & Garrett (1993),
but the essential mechanism of vortex-pair suppression does seem to be the same.
There may also be some dynamical similarity with the merger of like-sign vortices in
homogeneous two-dimensional turbulence, which does not involve opposite-sign pair
suppression (McWilliams 1984). In equilibrium, to balance a systematic reduction
in the number of zones through joining, there is a continual regeneration of new,
relatively weak and narrow zones, as well as the less frequent disappearance of some
older, larger, previously joined zones.

The Hovmuller diagram for w deeper in the PBL (figure 19b) shows a similar bulk
pattern motion. Its horizontal scale is larger, as expected from figures 13 and 15,
and it has no unambiguous example of a Y-junction (although there is a hint of
one near t = 3000 s, y = 30 m), indicating that the phenomena of zone merger and
regeneration are much more common near the upper surface.



24 J. C. McWilliams, P. P. Sullivan and C.-H. Moeng

(a)

(b)

(c)

0

15

30

z (m)

0

15

30

z (m)

0

15

30

z (m)

–40 –20 0 20

y (m)

Figure 18. Transverse cross-sections of conditionally averaged momentum and heat fluxes in
Langmuir turbulence (E/0.3). (a) u′w/U2
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0.5, 0.75, 1.0, 1.25), dark (light) shading values larger (smaller) than 0.75 (−0.75).

8. Sensitivities
In the course of our research leading to the solutions analysed above, many other

LES solutions were computed. It is not our present purpose to describe in detail the
parameter dependences in Langmuir turbulence, but several qualitative results from
this survey will be briefly reported.

The principal parameter of the problem posed in §4 is the turbulent Langmuir
number Latur defined in (1.1b). We have found, by varying Us, that Latur directly
controls the strength of the differences between shear turbulence and Langmuir
turbulence in the low-order statistical measures of the PBL (§5; figures 1–9). For
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Figure 19. (y, t) phase diagram for instantaneous w(0, y, z̃, t) in Langmuir turbulence (E/0.3) at (a)
z̃ = −5 and (b) z̃ = −20 m. Downwelling contours (in m s−1) are (−0.016, −0.0080, −0.0020),
shading indicates values below −0.002.

Latur larger than about 0.5, these differences become rather small, which suggests
that Langmuir cell may not be very important in equilibrium, wind-driven boundary
layers with weak surface waves. Also, the degree of irregularity of the Langmuir
cells strongly increases with Latur . Variation of the gravity wavelength 2π/k alters
the characteristic horizontal and near-surface vertical scales of the Langmuir cells
roughly proportionally.

In an extreme case of Latur = 0, achieved by setting the wind stress to zero,
we find that v ≈ −us is an equilibrium LES solution with only weak turbulence.
This flow has nearly zero total Coriolis force in (2.1), hence all other terms in the
momentum balance can also be small; however, this state cannot be realized exactly
because it is inconsistent with the surface-stress boundary condition. Evidently this
flow configuration is a stable one, at least in our present LES implementation. This
LES solution is unlike the laminar Stokes solution (3.11), because the effective (eddy)
viscosity ν also becomes very small with weak turbulence.
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Figure 20. Temporal and spatial variation of surface particles and near-surface streamwise vorticity
contours in Langmuir turbulence solution E/0.3 in the (x, y)-plane. Streamwise vorticity contours at
level z = −1.8 m of magnitude (0.0055, −0.0055) s−1 are indicated by (dark, light) shading. Surface
particles are denoted by small solid dots. The position of a single particle that is near the early-time
Y-junction of two particle lines is indicated by large solid dot; note the Langmuir cell merger that
occurs to the left of this particle. (a–h) Correspond to times [288, 448, 576, 704, 832, 992, 1120,
1248] s after the particles were randomly released.

Prompted by Li & Garrett (1995), we also have examined the influence of Langmuir
cells in a much more convective PBL regime, with Q∗ = −370 W m−2, Latur = 0.3,
zi/L = −10.2, and all other parameters the same as in §4. This implies, in their
nomenclature, a Hoenikker number, Ho ≡ −2αgQ∗/kUsU

2
∗ , of about 1.5, which is still

within the regime they declare to be Langmuir cell dominated. Our solutions partially
support this conclusion: the Langmuir turbulence velocity statistics are still clearly



Langmuir turbulence in the ocean 27

0

–0.05

–0.10

–0.15

–0.20

zi

z

〈w2〉/U 2
*

0 1 2 3 4

〈w2
x〉(ziU*

)2×104
0 2 4 6

Figure 21. Vertical profiles in Langmuir turbulence solutions E/0.3 (solid line) and N/0.3
(dot-dash line) of 〈w′2〉(z), normalized by U2
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Figure 22. Instantaneous w(x, y) at z = −3 m in Langmuir turbulence solutions E/0.3 and N/0.3.
Values less than −0.005 m s−1 are shaded.

distinguishable from those of shear turbulence, but the mean buoyancy flux profile,
including its entrainment-layer extremum, is nearly the same in both, which indicates
that convective plumes have overcome Langmuir cells as the dominant flux-carrying
mode. SD95 also found persistent Langmuir cell influences in strongly convective
PBLs.

We have also calculated a Langmuir turbulence solution N/0.3 with increased
spatial resolution using a nesting technique (Sullivan et al. 1996), with the grid
spacings listed in section 4. Comparisons of this solution with the solution E/0.3
with standard resolution (figures 21 and 22) show that the spatial scale of the
solution becomes increasingly smaller approaching the top surface as the grid is
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refined, with a corresponding increase in amplitude for w and especially for ω,
in an apparently singular fashion (i.e. without any limit as ∆ → 0; see figure
21). Obviously this is not a physically sensible limit both because the rigid-lid
approximation is inappropriate very close to the surface and because we have neglected
the enhanced turbulent mixing and dissipation due to breaking surface gravity waves
near the surface (Melville 1996), that would act to limit the scale decrease. Notice
that the downwelling pattern (figure 22) manifests its smaller scales by increased
branching from the primary Langmuir cell zones; this appears as a hierarchy of
Y-junctions.

9. Conclusions
We have examined the roles of Langmuir cells in the turbulent planetary boundary

layer (PBL) in large-eddy simulation (LES) solutions with and without the phase-
averaged gravity-wave effects in the generalized Craik–Leibovich (Craik–Leibovich)
equations. We find that, under typical wind and wave conditions, Langmuir turbulence
with Langmuir cells can have significantly altered mean velocity and momentum flux
profiles, greater anisotropy, and enhanced turbulent velocity variance and skewness,
dissipation, and entrainment buoyancy flux, compared to shear turbulence without
Langmuir cells. The characteristic flow structures in Langmuir turbulence do resem-
ble somewhat the classical Langmuir cell solutions of the laminar Craik–Leibovich
equations. However, they also exhibit considerable irregularity in space and time, and
they have a rich structure with increasing depth, including scale expansion, rotation
of Langmuir cell orientation, and transition from dipolar, horizontally converging
u, v patterns to monopolar, momentum-fluxing patterns. There is no sharp separa-
tion of scales in Langmuir turbulence between the visually distinguisable Langmuir
cell patterns and the even more irrregular motions on generally smaller scales. The
horizontal structure has intermittent Y-junctions near the surface that occur on both
the dominant Langmuir cell scale and finer ones. The Langmuir cells are also the
primary flux transporting agents in Langmuir turbulence. Because of this, it is likely
that PBL parameterization models need further development to adequately repre-
sent Langmuir turbulence effects, which act to increase the PBL transport efficiency
when present, particularly the entrainment flux. Thus, the nature of the wind-driven
oceanic PBL is determined by the relative strengths of the surface stress and the
surface gravity-wave drift current, as measured by the turbulent Langmuir number
Latur .

The present solutions are only analysed during their equilibrium phase for the
situation of steady, aligned wind and waves and negligible surface buoyancy flux.
Obviously, typical oceanic conditions exhibit a much greater degree of transience
than this and a wider range of buoyancy forcing. Also, our present formulation
of the LES problem with a rigid lid for PBL motions and conservative Craik–
Leibovich wave dynamics is inaccurate for small-scale motions near the surface.
Thus, the subject of Langmuir turbulence provides a wide frontier for further explo-
ration.

This research was supported by the Office of Naval Research and Minerals Man-
agement Service through contract N00014-92-F-0117 and by the National Science
Foundation through the National Center for Atmospheric Research. We had
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problem.
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