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Abstract

We apply a one-dimensional mixed layer model, based on second moment closure of turbulence, to study

the effects of surface gravity waves on mixing in the oceanic mixed layer. The turbulent kinetic energy

injected near the surface by breaking waves, and the kinetic energy input from Langmuir circulations that
may exist in the presence of surface gravity waves, are both parameterized and included in the turbulence

model. As expected, the wave breaking elevates both the turbulent kinetic energy and its dissipation rate in

the upper few meters, well above the classical values expected from similarity theory for shear layers ad-

jacent to a boundary. While there is a significant impact on mixed layer properties near the surface, wave

breaking-induced turbulence decays rapidly with distance from the surface and hence the overall effects on

the mixed layer are small. On the other hand, the energy input to turbulence from Langmuir cells elevates

the turbulent kinetic energy and mixing throughout the mixed layer, and is therefore more effective in

deepening the mixed layer. While the changes in sea surface temperature (SST) brought about by the in-
clusion of Langmuir cells are rather small on diurnal time scales, they can be appreciable over seasonal time

scales. Nevertheless, these SST changes are well within the uncertainties in the modeled SST resulting from

an imperfect knowledge of the air–sea fluxes used to drive the mixed layer models.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The air–sea interface acts as a significant barrier to the exchange of heat and gases between the
ocean and the atmosphere, because the transfer of these scalar quantities is mediated by molecular
sublayers at the air–sea interface and the associated molecular diffusion. However, the sea surface
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is invariably covered with surface waves and under certain conditions, these waves break. When
they do, additional transfer mechanisms come into play that are more efficient in effecting the
transfer across the interface. For example, breaking waves entrain air in the form of small bubbles
that are propelled into the water to depths of the order of the depth of breaking and therefore
more efficiently transfer properties to the water. Similarly, spray and droplets ejected into the air
during breaking are an efficient mechanism for transferring water vapor, heat and dissolved gases
from the ocean to the atmosphere. Breaking waves also create additional turbulence and mixing.
This has a considerable effect on the near-surface distributions of mixed layer (ML) properties,
such as the velocity, temperature, salinity and concentrations of suspended matter, phytoplankton
and dissolved gases. This aspect is of particular importance to air–sea exchange of green-house-
active photochemicals in the water column such as carbonyl sulphide. These chemicals are pro-
duced principally in the upper few meters by the ultraviolet component of the solar insolation
penetrating into the water column, and are then mixed downward by turbulent eddies in the ML.
For all these reasons, it is important to include the effect of wave breaking in modeling the upper
layers of the oceanic mixed layer (OML).

Surface waves are also responsible for generating large-scale coherent motions in the upper
layers. These take the form of counter-rotating horizontal cells with horizontal dimensions scaling
roughly with the depth of the ML and with their axes roughly aligned with the wind. These
Langmuir cells have the capability to transport suspended matter such as phytoplankton and
zooplankton vertically downward deep into the ML and otherwise modifying the circulation and
turbulence characteristics in the upper layers. The near-surface vertical velocities in the conver-
gence and divergence zones of these cells can reach values of the order of 10 cm s�1 and therefore
Langmuir circulation, when present, can have a dramatic effect on near-surface properties in the
ML. These cells can also transfer some of their kinetic energy directly to turbulence and this
should be taken into account in ML models.

Surface waves can also extract energy from mean motions (Phillips, 1977). They can also
transfer energy directly to turbulence, without any breaking (Kitaigorodskii et al., 1983). These
wave–mean flow-turbulence interactions are not very well understood at present, but could
nevertheless be important to the overall dynamics of the upper layers of the ocean.

Traditionally, most OML models have been patterned after the atmospheric boundary layer
models (for example, Mellor and Yamada, 1974, 1982; Kantha and Clayson, 1994; Large et al.,
1994), and have therefore ignored the fact that the air–sea interface is a non-rigid, mobile surface
capable of sustaining gravity wave motions with all their attendant complex dynamics. The net
result is that traditional concepts such as the Karman–Prandtl law of the wall in shear flows
adjacent to a rigid boundary have been assumed to be valid near the more complex air–sea
interface as well. In the presence of a vigorous sea state the principal balance in the turbulent
kinetic energy (TKE) equation in the immediate vicinity of the air–sea interface is not between
local shear production and dissipation, but is instead between downward diffusion of turbulence
produced by breaking waves and dissipation. The influence of coherent motions such as Langmuir
cells are also excluded in this approach. Whatever limited comparisons with observational data
that have been possible (see for example, Mellor and Yamada, 1982; Kantha and Clayson, 1994;
Large et al., 1994; Clayson et al., 1997) have generally supported this approach. Nevertheless, one
particular situation where this approach is particularly uncomfortable is that of shallow ML such
as the diurnal ML generated by weak winds and strong solar insolation and rain-ML generated by

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight



L.H. Kantha, C. Anne Clayson / Ocean Modelling 6 (2004) 101–124 103
heavy precipitation. These MLs are typically less than 10 m deep, and therefore in the presence of
a vigorous sea state, gravity wave influence cannot be justifiably ignored.

There have been a few attempts to incorporate the effect of wave-breaking in ML models. Some
bulk ML models (see for example, Niiler and Kraus, 1977) have recognized the fact that a mixed
layer is mixed from both the top and the bottom, and in addition to incorporating the shear-
produced TKE at the ML base, have parameterized the TKE input at the surface by a term
proportional to u3�, where u� is the water-side friction velocity. On the other hand, but for a few
exceptions, second moment closure-based models (for example, Mellor and Yamada, 1982,
Kantha and Clayson, 1994), have traditionally ignored this input. Those that have (Kundu, 1980;
Kantha, 1988; Craig and Banner, 1994; Stacey and Pond, 1997; D�Alessio et al., 1998; Burchard,
2001) have confirmed the notion that the influence of this input is confined to the near-surface
layers of the order of a few meters. All but one (Kantha, 1988) of these assume that the wave field
is fully developed and corresponds to that generated by the local wind, and parameterize the TKE
input at the surface as proportional to u3�. While the capillary-gravity range of the wind-wave
spectrum adjusts rather quickly to changes in magnitude and direction of local winds, this is not
generally true for the low wave number range especially near the spectral peak. Fetch effects may
therefore be important and could account for the large scatter in the observed near-surface dis-
sipation rate (see Figs. 7 and 8 of Craig and Banner, 1994).

Using large eddy simulations (LES), Skyllingstad and Denbo (1995) and McWilliams et al.
(1997) have explored the impact of Langmuir cells on the turbulence in the OML. Both find el-
evated TKE and dissipation of TKE in the OML due to Langmuir circulation. This suggests that
these effects should be included in OML models. However, while it is straightforward to simulate
Langmuir cells in an LES approach, it is not clear how to parameterize their effects in a con-
ventional ML model. Since the resource-intensive nature of LES models makes it difficult to
incorporate them into complex general circulation models, it is imperative that some progress be
made in parameterizing Langmuir cells in conventional ML models of the bulk and second
moment closure type. We are aware of only one attempt to include the effect of Langmuir cir-
culations in 1-D ML models; D�Alessio et al. (1998) have parameterized the energy input from
Langmuir cells to TKE based on Skyllingstad and Denbo�s (1995) LES results, and have also
included wave-breaking effects. However, their model suffers from errors in Skyllingstad and
Denbo LES formulation. Also, unlike two-equation models of turbulence (for example, Mellor
and Yamada, 1982; Kantha and Clayson, 1994), where both TKE and a quantity involving the
length scale are computed using prognostic equations, D�Alessio et al. (1998) prescribe the tur-
bulence length scale using the Blackadar formulation. This paper is an attempt to parameterize
the effects of wave-breaking and Langmuir circulation on turbulence in the OML, using the
Kantha and Clayson (1994) two-equation second moment closure model and concentrating on the
injection of TKE into the OML by these processes.
2. Wave breaking

In the past, the dearth and difficulty of measurements close to the air–sea interface, especially at
high wind speeds, and reliance on observations at deeper levels tended to reinforce the traditional
view that the law of the wall prevails near the interface. Extensive tower-based measurements
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during the Water Air Vertical Exchange Studies (WAVES) project in the second half of 1980�s
(Agarwal et al., 1992; Drennan et al., 1992, 1996; Terray et al., 1996), and other observations
using vertical profilers (Anis and Moum, 1992, 1995) and from a submarine (Osborn et al., 1992)
have demonstrated the existence of a region of very high dissipation rate in layers adjacent to the
air–sea interface that is of profound importance to matters related to mixing in the upper layers
and air–sea exchanges. The dissipation rate in these upper layers is one to two orders of mag-
nitude larger than expected from the law of the wall scaling arguments:
ez
u3�

¼ 1

j
ð2:1Þ
where e is the dissipation rate, u� is the water side friction velocity, j is the von Karman constant
and z is the distance from the surface. This is due to the presence of breaking waves and their
influence on a shallow layer with a depth of the order of the wave height.

Laboratory measurements of Rapp and Melville (1990) also show enhanced dissipation levels
due to surface wave breaking. These observations (Melville, 1994) show that more than 90% of the
energy lost due to breaking is lost quite quickly, within about four wave periods, with the
breaking event itself lasting approximately a wave period, and more than 50% of the energy loss is
expended in entraining air bubbles against the action of gravitational forces. The bulk of the
dissipation takes place in a layer of depth of the order of the height of the breaking wave and not
its wavelength. After four wave periods, the dissipative layer is 1–2 wave heights thick, but even
after 100 wave periods, its depth is still of the order of the wave height. This suggests that the
influence of wave breaking in elevating the dissipation rate in the upper ocean is normally con-
fined to a layer few meters thick near the air–sea interface.

Gargett (1989) found that the dissipation rate in the upper layers of the ocean decayed as z�4.
This decay law is similar to that due to turbulence created by a stirring grid (Hopfinger and Toly,
1976), which can be characterized by a turbulence velocity scale q � z�1, and a turbulence length
scale ‘ � z, where z is the distance from the grid, so that the dissipation rate e � q3=‘ � z�4, and
the eddy viscosity (�q‘) is constant. Thus there is a rapid decay of TKE (�z�2) in this layer and
therefore its contribution to mixing in the bulk of the OML and hence to its deepening may not be
very significant, unless the OML is rather shallow. The presence of this layer of elevated turbu-
lence and dissipation rate is, however, quite important to air–sea exchanges.

Craig and Banner (1994) used second moment closure to simulate turbulence generated by
breaking waves and found a z�3:4 power law dependence for dissipation rate. Anis and Moum
(1992) found a z�3 dependence in their microstructure measurements. Drennan et al. (1996) find
z�2 dependence in ship observations during SWADE consistent with the WAVES tower obser-
vations of Terray et al. (1996). Thus there is considerable disagreement as to the exact value for
the exponent of the power law and it is not clear at this point what the decay rate should be,
although analytical considerations suggest an exponent of )4. Sufficiently far away from the wall,
one recovers the law of the wall scaling. This depth at which the law of the wall is attained can be
as large as 8–10 m for a very mature sea (wave age � 26), consistent with the observations of Anis
and Moum (1992) and Osborn et al. (1992). Immediately adjacent to the wall, for values of z less
than about 0.6 Hs, where Hs is the significant wave height, the dissipation rate is approximately
constant.

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight



L.H. Kantha, C. Anne Clayson / Ocean Modelling 6 (2004) 101–124 105
3. Langmuir cells

Langmuir (1938) was the first to observe and study the phenomena of organized counter-
rotating vortices with axes aligned roughly with the wind at the surface of a lake and associated
with a three-dimensional, cell-like circulation. These cells are now known as Langmuir cells or
windrows. Their presence is manifest by the surface convergence at the boundary of counter-
rotating cells. Windrows are often visible to the naked eye because seaweed and flotsam accu-
mulate at the surface in these convergence regions. On a blustery day with a vigorous surface wave
field, the convergence region is made visible by whitecapping and bubble entrainment due to
breaking of small-scale waves in the convergence regions, resulting in parallel white lines roughly
aligned with the wind and roughly uniformly spaced. Langmuir carried out a series of observa-
tions confirming the existence of cell-like circulation associated with windrows.

Langmuir cells are also associated with the bubble clouds (Thorpe, 1984; Farmer and Li, 1995)
seen in side-scan sodar observations of the near-surface layers of the ocean (Thorpe, 1992). The
bubble plumes are manifest in the form of streaks with a variety of scales, merging at charac-
teristic Y junctions to form large circulation cells, with the streaks aligned in the wind direction
and drifting to the right of the wind. These bubble plumes are concentrated at surface convergence
zones. Bubble clouds are important to air–sea gas transfer, and because they are efficient volume
backscatterers, important also to ocean acoustics at high frequencies. The depth of penetration of
the bubble cloud depends very much on the strength of the surface convergence and hence the
strength of Langmuir circulations.

It has long been suspected that Langmuir cells might play a role in the mixing in the upper
ocean, and other near-surface processes such as air–sea exchange of gases, entrainment of bub-
bles, photochemical production in the upper layers, and vertical transfer of momentum and other
properties into the interior from the air–sea interface. This is simply because these cells can be
quite vigorous and the downward vertical velocity immediately below the convergence region can
be as high as a few tens of cm s�1, leading to bubble entrainment and transport to greater depths.
The cells also provide a mechanism for distribution of properties in the vertical in the ML and
transport of phytoplankton and zooplankton in the vertical. However, their intimate association
with the surface wave field makes Langmuir cells inherently transient events, hard to observe and
measure. Consequently, not much is known about their generation and decay characteristics, and
it has been difficult to assess their importance and significance. Leibovich (1983) (see also Pollard,
1977) has reviewed earlier work on Langmuir cells. Weller and Price (1988) found that Langmuir
cells were able to rapidly destroy the surface thermal stratification in shallow diurnal MLs. The
vertical velocities below the convergence zones, while quite strong immediately below the surface,
also decay rapidly with depth. Thus, Langmuir cells are undoubtedly important to mixing in the
OML.

In the modeling arena, Skyllingstad and Denbo (1995) were the first to perform LES simula-
tions of Langmuir circulations under a variety of conditions, including wind- and convection-
driven mixing with and without Stokes drift to highlight their importance in the structure of the
upper layers. The enhancement of vertical velocity variance and the increased entrainment heat
flux led to their conclusion that Langmuir circulations might be important to the dynamics of the
OML. However, they ignored the modification of the Coriolis and pressure terms in the mean
momentum equation by Stokes drift. McWilliams et al. (1997) have corrected this oversight and
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demonstrated the changes in the mean and turbulence fields brought about by the presence of
Langmuir circulation.

Langmuir circulations (Craik and Leibovich, 1976) are formed due to the interaction of the
wind-driven surface shear with the Stokes drift of the surface waves. The governing momentum
equations are modified by the appearance of a vortex force term as well as modification of Co-
riolis term by the Stokes drift. Neglecting viscous terms for simplicity, the governing equations for
momentum can be written as (see McWilliams et al., 1997)
oUj

ot
þ o

oxk
ðUkUjÞ þ ejklfkðU1 þ VSlÞ ¼ � 1

q0

oP
oxj

� gjbH� o

oxk
ðukujÞ þ ejplVSpX1 ð3:1Þ
where Xl ¼ elmn
oUn

oxm
is the vorticity andP is the generalized pressure that includes the contribution

from the
Stokes drift : P ¼ p þ q0

2
½ðUi þ VSiÞðUi þ VSiÞ � VSiVSi� ð3:2Þ
The quantity VSi (note that VS3 ¼ 0) is the Stokes drift velocity due to surface waves, whose
magnitude is given by
jVSj ¼ ðVSiVSiÞ1=2 ¼ VS0 expð2kzÞ ¼ cðkaÞ2 expð2kzÞ ð3:3Þ

where c is the wave phase speed, k is the wave number and a is the amplitude. This vortex force
acts like a buoyancy force term in the vertical momentum equation.

The horizontally averaged KE equation for the resolved scales in LES can be written as
o

ot
q2 ¼ �2ukuj

oUj

oxk
� 2u3uj

oVSj
ox3

þ � � � ð3:4Þ
where only the traditional Reynolds stress production term and the Stokes drift term are retained
for simplicity. The most important thing to note is the appearance of the production term due to
the Stokes drift. When the cells are fully developed, one can expect that this energy input is lost to
small-scale turbulence and hence act as an additional source term in the TKE equation.

The appropriate velocity scale for Langmuir circulations may be taken as (Kantha and Clay-
son, 2000):
VL � ðu2�VS0 cos hÞ
1=3 � ½u2�ðkaÞ

2C cos h�1=3 ð3:5Þ

where h is the angle between the shear stress and the Stokes drift vectors. Eq. (3.5) suggests that
the strength of the Langmuir circulations depends on the combined effects of the Stokes drift and
wind stress, so that strong winds and small waves can have an influence similar to that of weak
winds and large waves. But both are essential. This fact is underscored by Plueddemann et al.
(1996), who could not scale their sonar observations of the near-surface rms convergent velocities
during Surface Wave Processes Program (SWAPP, Weller et al., 1991) by the friction velocity
alone and had to use a velocity scale based on the combination of the friction and Stokes ve-
locities. They, however, used ðu�VS0Þ1=2 as the characteristic velocity scale for Langmuir circula-
tions.

Skyllingstad and Denbo (1995) failed to include the Stokes drift contribution to the Coriolis
term in Eq. (3.1) and the pressure term in Eq. (3.2). They also derived a TKE equation similar to
Eq. (3.4), but the form is different since they did not include the Stokes term in the generalized
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pressure. D�Alessio et al. (1998) have used the Skyllingstad and Denbo form of the TKE input to
parameterize the impact of Langmuir cells on mixing in the OML.

McWilliams et al. (1997) present solutions for a laminar Ekman layer in the presence of Stokes
drift and show how the laminar Ekman profile is modified by the Stokes drift to yield an angle
between the wind direction and the surface velocity larger than the 45� value typical of the classic
laminar Ekman layer. They also performed LES calculations for the case of a monochromatic
surface wave of 60 m wavelength (wave number k ¼ 0:105 m�1) and 0.8 m amplitude (providing a
Stokes drift VS of 0.068 m s�1) in the presence of a 5 m s�1 wind blowing over the surface (pro-
viding u� of 0.0061 m s�1), so that the Langmuir number La equal to ðu � =VSÞ1=2 is 0.3. The
latitude of the ML was 45�, with the inversion at a depth of 33 m, so that kd ¼ 3:465, where d is
the ML depth. This situation corresponds to a strongly sheared PBL, where Langmuir effects can
be expected to be significant. Their calculations show elevated TKE and dissipation rate of TKE
in the ML, especially the upper part, as well as a significant increase in eddy viscosity. The velocity
profiles in the Ekman layer were also more uniform than in the case without Langmuir circula-
tions. It is important to note that both La and kd are important non-dimensional parameters in
the problem, the first one signifying the relative strength of the Stokes drift, and the second, its
relative depth of penetration.
4. The mixed layer model–the length scale equation

The ML model we will use (Kantha and Clayson, 1994) is based on the Mellor–Yamada (MY
henceforth) type second moment turbulence closure (Mellor and Yamada, 1982; Galperin et al.,
1988). Here, the second moment equations are reduced to a single equation for q2 (twice the TKE)
and algebraic relations for the second moments. In addition, since the minimum description of
turbulence must consist of two quantities, its velocity scale (indicative of the energy contained in
turbulent fluctuations) and its length scale (indicative of the scale of the energy containing eddies),
the turbulence macroscale ‘ is either prescribed or derived through a conservation equation for
q2‘. It is here that other closure models differ; for example, one popular model uses a conservation
equation for the dissipation rate of TKE (e) to provide information on the length scale. Since
e � q3=‘ for high Reynolds number turbulence, this is a surrogate equation for ‘. There are other
conservation equations possible, for example for the quantity q‘ (indicative of the eddy viscosity)
and q=‘ (indicative of the turbulence frequency–frequency pertaining to energy containing eddies).
Unlike the TKE equation which has a firm physical basis, and which all these closure models use,
the equation for the length scale, no matter which quantity is used, is merely patterned after the
TKE equation and consequently, its physical basis is tenuous (Kantha, 1988). Both these equa-
tions contain a production and a destruction term, as well as a diffusion term; unfortunately,
unlike in the TKE equation, in the length scale equation, all these terms have to be modeled, and
herein lies a major difficulty in two-equation turbulence models of this type.

While there is no ambiguity in the form of the q2 equation, which can be written as (Mellor and
Yamada, 1982; Galperin et al., 1988; Kantha and Clayson, 1994)
D

Dt
ðq2Þ � o

oz
q‘Sq

o

oz
ðq2Þ

� �
¼ �2 uw

oU
oz

�
þ vw

oV
oz

�
þ 2bgwh� 2

q3

B1‘
ð4:1Þ
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the most general form for the q2‘ equation (Kantha et al., 1989; Kantha and Rosati, 1990) is
D

Dt
ðq2‘Þ � o

oz
q‘S1

o

oz
ðq2‘Þ

� �
¼ E1‘

�
� uw

oU
oz

� vw
oV
oz

�
þ E3ðbgwhÞ

� E2

q3

B1

1

"
þ E4

‘

j‘w

� �2
#
þ E5ð2XÞq2‘ ð4:2Þ
The last term accounts for the effect of rotation (X is the rotation rate of the reference frame),
important only in strongly rotating flows, and therefore, usually ignored in most geophysical
flows. The first three terms on the right-hand side of Eqs. (4.1) and (4.2) denote shear production,
buoyancy production (destruction) and dissipation, respectively. Note that in addition to the
production, destruction and diffusion terms, a wall-proximity term indicated by the very last term
is somewhat arbitrarily added to the q2‘ equation to force a log-law behavior near a bounding
surface (‘w is the distance from the surface). The second term on the left-hand side of Eqs. (4.1)
and (4.2) represents down-the-gradient diffusion, and parameters Sq and S1 are eddy diffusion
coefficients.

So far very little attention has been paid to the performance of the q2‘ equation in MY type
models. Specifically, there is considerable uncertainty as to the precise values of the universal
constants in this equation. Based on a limited amount of relevant data, Mellor and Yamada
(1982) recommended Sq ¼ S1 ¼ 0:2, E1 ¼ 1:8, E2 ¼ 1, E3 ¼ 1:8, E4 ¼ 1:33, E5 ¼ 0, and these
values have been used ever since in most MY type closure, although a value of Sq ¼ S1 ¼ 0:41 is
more common, to assure adequate diffusion. Kantha et al. (1989) recommended E5 ¼ 0:04. In
particular, to insure that as ‘ ! jz as z ! 0, E1 and E4 cannot be chosen independently and are
related to each other. It can also be shown (Kantha, 1988; see also Burchard and Deleersnijder,
2001) that by choosing a value of E3 greater than unity (�5–9) under stable stratification con-
ditions, it is possible to avoid imposing an additional constraint on the length scale based on
Ozmidov length scale considerations (Kantha and Clayson, 1994; Galperin et al., 1988):
N‘=q < 0:53.

There are also indications, notwithstanding statements to the contrary by Mellor and Yamada
(1982) that the diffusion coefficient S1 must be greater than Sq. This latter fact is quite important.
In the TKE equation, compared to the production and destruction terms, the diffusion term plays
a very minor role (this is one reason why the down-the-gradient model for the diffusion term,
while clearly inaccurate, does not appear to seriously affect the model performance), and in most
practical situations, the turbulence is in near-equilibrium, where the production and destruction
terms closely balance each other. On the other hand, the diffusion term in the q2‘ equation is as
important as the production and dissipation terms, and care must be given to the proper choice of
S1. While the performance of MY type models in applications to the OML does not appear to
have suffered due to these deficiencies, it is clearly time to reexamine the length scale equation,
especially in the present context.

In the wave-mixed upper oceanic mixed layer, energy injection by breaking surface waves is
accompanied by shear production of TKE deeper below. Mixed layer models have traditionally
been tuned to perform well for the latter situation, but not the former, where the turbulence is
dominated by diffusion away from the source. A popular analog to wave-mixing is the turbu-
lence generated by a stirring grid that has been extensively studied by turbulence researchers.
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Unfortunately, experiments with stirring grids suffer from a variety of problems (including wall
effects, residual mean circulation, not high enough Reynolds numbers and finite oscillation am-
plitude etc.) and the precise power law for the decay of TKE with distance from the source is
uncertain. Dimensional considerations dictate that the length scale must scale as the distance from
the source (‘ � z), but the value of 2m in q2 � z�2m is quite uncertain. The situation here is
somewhat analogous to decaying turbulence behind a grid in a wind tunnel, where theory dictates
q � t�1 in the ideal situation of infinite Reynolds number turbulence, while experimental values
suggest a non-unity exponent in the necessarily non-ideal experimental setups. Nevertheless, there
are indications that q � z�1 so that the dissipation rate e � z�4 and turbulent viscosity
mt � constant. Eqs. (4.1) and (4.2) must reproduce this behavior.

In the neutrally stratified log-layer, by simple dimensional reasoning, ‘ ¼ jz, dU=dz ¼ u�=jz,
and q ¼ B1=3

1 u�. Substituting these values and neglecting tendency and buoyancy terms, it is
possible to show that q2 equation (4.1) is identically satisfied, irrespective of the value of Sq, since
the diffusion terms are identically zero. Doing the same for the q2‘ equation, Eq. (4.2) is satisfied
provided
B1j
2S1 ¼ E2ðE4 þ 1Þ � E1 ð4:3Þ
Note that S1 appears because, unlike the q2 equation, the diffusion term in the q2‘ equation is non-
zero even in the log-layer.

For the stirring grid case, q ¼ az�m, ‘ ¼ bz, dU=dz ¼ 0. Note that m � 1, and there is no apriori
reason to assume that b must be equal to j (in fact j is defined as the proportionality constant in
the ‘ � z relationship in the logarithmic region of a neutrally stratified boundary layer adjacent to
a solid surface, and this has nothing to do with decaying turbulence behind a grid or for that
matter turbulence generated by wave breaking). Neglecting once again the tendency and buoy-
ancy terms (production term is identically zero), Eqs. (4.1) and (4.2) give
3B1b2Sq ¼
1

m2
ð4:4Þ

B1b2S1 ¼
E2½E4 þ ðb=jÞ2�
ð2m� 1Þð3m� 1Þ ð4:5Þ
Eqs. (4.3)–(4.5) can be rewritten as
E4 ¼
ð2m� 1Þð3m� 1Þ

mð6m� 5Þ
E1

E2

�
� 1

�
þ

j
b

� �2
mð6m� 5Þ

S1
Sq

¼ E2ðE4 þ 1Þ � E1

B1j2Sq
j
b

� �
¼ mð3B1j

2SqÞ1=2

ð4:6Þ
There is little reason to change the value of Sq or E1, which have worked well so far in MY
models. Also note that m must be greater than 5/6 to assure positive values for E4. Based on this
and the considerations mentioned above, we choose m ¼ 1. Thus the value of j=b is immediately
fixed: 1.81. Choosing the traditional value for E2 of 1.0 yields E4 ¼ 4:88 (note the traditional MY

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight

kelvin
Highlight



110 L.H. Kantha, C. Anne Clayson / Ocean Modelling 6 (2004) 101–124
value is 1.33) and S1=Sq ¼ 3:74 (traditional value is 1). For the time being, we will fix the value of
E3 at 1.0 and impose the buoyancy constraint on the length scale in stably stratified flows.

We include the effects of Langmuir circulation in this model by modifying Eqs. (4.1) and (4.2)
to account for the additional turbulence production terms:
Fig. 1

Langm

right,

u com
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ðq2Þ � o
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oz

�
þ ouS

oz

�
� 2vw

oV
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�
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oz
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þ 2bgwh� 2

q3

B1‘
ð4:7Þ

D
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ðq2‘Þ � o

oz
q‘S1
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oz
ðq2‘Þ

� �
¼ E1‘

�
� uw

oU
oz

� vw
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�
þ E6‘

�
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� vw
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oz

�

þ E3ðbgwhÞ � E2

q3

B1

1

"
þ E4

‘

j‘w

� �2
#
þ E5ð2XÞq2‘ ð4:8Þ
where uS and vS are components of the Stokes drift velocity VS. The new model constant intro-
duced into the mixing model, E6, has to be chosen greater than unity to simulate the vigorous
mixing produced by Langmuir cells. Its value can only be determined empirically. We have
therefore simulated the McWilliams et al. (1997) monochromatic surface wave case with the
Langmuir number La of 0.3. Fig. 1 shows the model results with and without the Langmuir
circulation terms in Eqs. (4.7) and (4.8). The modeled increases in TKE and its dissipation rate in
the bulk of the ML due to Langmuir circulation are of very similar magnitude to that of
McWilliams et al. (their Figs. 4 and 5). The increase in the mixing coefficient KM, however, de-
pends on the value of E6. With E6 ¼ 1, the KM values are only slightly higher than that for the case
without Langmuir terms, even though the TKE and dissipation levels do agree well with the LES
results (see the middle panel in Fig. 1). But for E6 � 4, the increase in the mixing coefficient is of
similar magnitude to that in McWilliams et al. (1997) simulations (their Fig. 3). We therefore
. Model results at 45� latitude without (thin black line) and with (thick red line) turbulence injection from

uir cells for conditions identical to the McWilliams et al. (1997) LES calculations. The panels show from left to

TKE normalized by u2�, dissipation rate of TKE normalized by u2�=zi, the eddy viscosity KM normalized by u�zi, the
ponent of velocity in m s�1 and the v component of velocity in m s�1. Quantity u� is the water-side friction velocity

is the inversion depth (see McWilliams et al., 1997 for details). The medium blue line in the center panel indicates

M values when the model constant E6 is put equal to unity.
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choose a value of 4 for E6, a new model parameter. It is important to note that a value for E6 much
higher than unity is crucial, since it enables the turbulence length scale (and hence the mixing) in
the mixed layer to be increased significantly in the presence of Langmuir cells, which is consistent
with the fact that these cells are indeed large scale structures.

Fig. 1 also shows the velocity profiles from the model. Both u and v velocity profiles are not as
uniform as in McWilliams et al. calculations, even though the trends are very much similar. In
particular, while the u- and v-components decrease in the upper layers when Langmuir effects are
included, they do not decrease as much as theirs (their Fig. 2). This suggests that while we may
have successfully included one rather important aspect of Langmuir circulation in the 1-D model,
namely its turbulence injection into the ML, we may have not managed to capture all its effects,
notably its subtle effects on momentum transfer in the mixed layer, which leads to somewhat
flatter velocity profiles. Nevertheless, these simulations are quite striking.

It is important to note here that in one-equation turbulence models, where TKE is determined
by a prognostic equation such as Eq. (4.7) but the turbulence length scale is arbitrarily prescribed
(and not calculated), it is necessary to guess the correct form for the variation of length scale in the
ML. This is hard to do except under some rather simple circumstances. For more general ap-
plications, the changes in the length scale brought about by effects such as those due to Langmuir
cells, are best simulated with a two-equation turbulence model, even though it is computationally
more expensive.
5. Turbulence input from wave motions

Parameterizing the TKE input at the surface by wave breaking at limited fetches requires a
knowledge of the wind wave spectrum. Starting with the pioneering effort by Phillips (1958),
considerable effort has gone into determining the shape of the wind–wave spectrum. Phillips
(1958) hypothesized a saturation range in the high wavenumber range of the spectrum, where the
waves are saturated and therefore any energy input by the wind is immediately lost by breaking.
From dimensional arguments, it is easy to show that this leads to )5 power law for the frequency
spectrum
UðnÞ ¼ ag2n�5 ð5:1Þ

where a is the Phillips constant (with a value of around 0.015), g is the gravitational acceleration,
and n is the radian frequency. This hypothesis was, however, revised (Phillips, 1985, see also
Kitaigorodskii, 1986) to bring the theory more into line with the empirical spectrum (for example,
Toba, 1973) that consistently showed a )4 power law for the frequency spectrum beyond the
spectral peak
UðnÞ ¼ u�

c

� �
bg2n�5 ¼ bu�gn�4 ð5:2Þ
where b is the Toba constant (with a value of around 0.11) and u� is the friction velocity corre-
sponding to the air side of the interface. This corresponds to an equilibrium state of the waves
where the energy input by the wind, spectral transfer of energy by resonant wave–wave interactions
and wave dissipation are all in rough balance. Detailed observations however appear to indicate
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the presence of both equilibrium and saturation ranges in the wind–wave spectrum (for example
Forristall, 1981, Kahma, 1981 among others), which led Kitaigorodskii (1986) to suggest a com-
posite spectrum with the equilibrium range prevailing in the vicinity of the peak of the spectrum,
but saturation range at the tail end, with the transition between the two occurring at a frequency
given by nt ¼ ða=bÞðg=u�Þ consistent with observations. For purposes of this paper, we will assume
that the wind–wave spectrum is truncated at the low wave number end at the spectral peak np, and
consists of the equilibrium range (5.2) from np to nt and the saturation range (5.1) from nt to 1.
Integration of the spectrum readily leads to the energy density Ed ¼ qgf2 from which
g2f2

ðu�Þ4
¼ b

3
A3 � b4

12a3
ð5:3Þ
where f2 is the square of the wave amplitude and A is the wave age equal to cp=u�, where cp is the
phase speed at the spectral peak. The larger the value of A, the more developed the wave field.
Following Longuet-Higgins (1969), (see also Phillips, 1977, pp. 196–197), the energy flux from
breaking waves can be shown to be proportional to npEd and can be written as
Ef

qðu�Þ3
¼ c1

b
3
A2

�
� b4

12a3A

�
ð5:4Þ
where c1 is an unknown constant. Wave age A is a function of the fetch. Observations (see Phillips,
1977) suggest
A ¼ 0:45
gx

ðu�Þ2

 !1=4

ð5:5Þ
with an upper bound on cp roughly equal to U10, the wind speed at anemometric height, so that
the upper bound on A is ðcdÞ�1=2

, a value of roughly 26. This corresponds to a fully developed
wave field. Since u� ¼ u�

ffiffiffiffiffiffiffiffiffiffiffiffi
qw=qa

p
¼ 28:66u�, Eq. (5.4) can be rewritten as
Ef

qu3�
¼ 4:053 0:037A2

�
� 3:615

A

�
ð5:6Þ
making use of the fact that Craig and Banner (1994) and Stacey and Pond (1997) have used a
value of 100 for Ef

qu3�
in their simulations, which correspond to a fully developed wave field with a

wave age A of �26.

When waves break, they give up some of their energy to turbulence, which is eventually dis-
sipated. However, the associated momentum is transferred to the currents. There is however no
need to include this explicitly in the model since the conventional drag coefficient encompasses the
wave breaking effects as well.

The ML model can be run with either the Neumann boundary condition on TKE flux at the
surface
Kq
oq2

oz
¼ 2

Ef

q
ð5:7Þ
or the Dirichlet condition on q2, following Kundu (1980), Kantha (1988), Craig and Banner
(1994) and Stacey and Pond (1997) as given by Eq. (A.12). The latter is computationally more
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convenient. Also, since McWilliams et al. (1997) LES results do show elevated TKE near the
surface under the influence of Langmuir cells, we added a contribution from Langmuir cells to
the TKE boundary condition at the surface: q2j0 ¼ C1V 2

L , with the value of C1 chosen to be unity.
The results in the bulk of the ML are however relatively insensitive to the precise value of C1.

The value of the Stokes drift velocity at the air–sea interface is
VS0 ¼
Z 1

0

n3

g
UðnÞdn ¼ bu� 1

�
þ ln

a
b
A

� ��
ð5:8Þ
so that
VS0
u�

¼ 28:66b 1

�
þ ln

a
b
A

� ��
¼ 3:15½1þ lnð0:136AÞ� ð5:9Þ
For fully developed waves, VS0=u� is 7.14. Li and Garrett (1993) recommend VS0 ¼ 0:016 U10.
Using a typical value of 0.0015 for cd, this yields VS0=u� ¼ 11:8. Since a truncated spectrum tends
to underestimate the Stokes drift, we have chosen to use the Li and Garrett value for VS0 in our
model simulations: VS0 ¼ 11:8u�.

The effective wave number kS of the Stokes drift current can be taken to correspond to the mean
frequency nm, which can be shown to be approximately 1.5np for the truncated Toba-Phillips
spectrum. The corresponding wave number kS ¼ ð1:5Þ2kp. Since kp ¼ g=c2p, the effective wave
number
kS ¼
1:5

A

� �2 g

ðu�Þ2
¼ 0:00274g

A2u2�
ð5:10Þ
For a fully developed wave field, this gives kS ¼ 0:033g=ðu�Þ2, slightly smaller than the Li and
Garrett value of kS ¼ 4:17g=U 2

10.
6. Model results

Model simulations have been carried out with and without wave breaking, and with and
without the turbulence input from Langmuir circulations, for saturated wind–wave conditions
and for a diurnal equatorial mixed layer. The wind stress is 0.037 N, corresponding to roughly a 5
m s�1 wind. The Stokes drift is assumed to be 0.068 m s�1 corresponding to a 0.8 m amplitude
wave of 60 m wavelength (wave number k ¼ 0:105 m�1). These conditions are the same as in
McWilliams et al. (1997) LES. For each case, the model was run for 5 days with a half-sinusoidal
SW solar flux with a peak amplitude of QSp of 1000 Wm�2 and a constant net air–sea flux Qas of
)200 W m�2. Only the last two days of the simulation are shown. Fig. 2 shows the resulting SST
for all four cases (1) without wave breaking and Langmuir cells, (2) with wave breaking only, (3)
with Langmuir cells only, and (4) with both wave breaking and Langmuir cells. The SST is not
very much affected by the inclusion of wave breaking, but somewhat stronger changes in SST arise
from the inclusion of the Langmuir terms. Wave breaking makes a significant impact on TKE and
its dissipation rate close to the surface, whereas the inclusion of Langmuir cells produces elevated
TKE and dissipation rate levels throughout the mixed layer (not shown). Increased mixing
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Fig. 2. SST for the equatorial ML: no wave breaking or Langmuir TKE input (solid red line); wave breaking effects

included but no Langmuir terms (blue dashed line); no wave breaking effects but Langmuir terms included (dotted

green line); and both wave breaking and Langmuir terms included (black solid line). The maximum temperature drop is

about 0.16 �C.
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deepens the ML; thus, the sea surface temperature drops in cases where the Langmuir terms are
included. Nevertheless, the impact of wave breaking and Langmuir cells on SST, one of the
important parameters related to the OML are rather small.

The results for mid-latitude MLs are qualitatively similar. Model runs for a diurnal ML at 45�
latitude with identical forcing conditions as above produced similar results as can be seen in Fig. 3.
Note that because of the slight excess of heat flux into the ML, in this case, the SST increases
slowly with time. The decreased SST is due to elevated levels of TKE (Fig. 4) and hence mixing in
the ML.

The impact of changes in TKE on the velocity profiles in the equatorial ML can be seen from
Fig. 5, which shows the velocity profiles for all four cases. As is to be expected, increase in mixing
tends to make properties more homogeneous in the water column. The increased mixing in the
water column tends to decrease the velocity in the near-surface layers, with a corresponding in-
crease in the layers below. The influence of wave breaking itself is rather small. The Langmuir
generation of TKE has a relatively bigger impact, leading to more dramatic decrease of velocity in
the near-surface layers and a corresponding increase in the layers below.
Fig. 3. SST for a mid-latitude ML: no wave breaking or Langmuir terms (solid red line); wave breaking effects included

but no Langmuir terms (blue dashed line); no wave breaking effects but Langmuir terms included (dotted green line);

and both wave breaking and Langmuir terms included (black solid line). The maximum temperature drop is about

0.25 �C.
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Fig. 4. TKE distribution in the mid-latitude ML (CI ¼ 0:5 cm2 s�2). From top to bottom: no wave breaking or

Langmuir terms; wave breaking effects included but no Langmuir terms; no wave breaking effects but Langmuir terms

included; and both wave breaking and Langmuir terms included. The black line denotes the bottom of the ML. Note

the elevated TKE levels near the surface from wave breaking (second and fourth panels from the top) and throughout

the ML by Langmuir cells (third and fourth panels).
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Most earlier ML models including wave-breaking effects have assumed the wave field to be fully
developed. The energy flux from breaking waves is, however, a strong nonlinear function of fetch.
To investigate this effect, we carried out simulations (not shown) for two additional wave ages: 5
and 12. However, the impact of fetch on the effect of wave breaking on SST is rather small, since
the effect even for a fully developed wave field is small to begin with (Figs. 2 and 3). Therefore, the
standard practice of assuming the wave field is fully developed when incorporating wave breaking
effects into a ML model is quite acceptable. However, it is important to note that fetch effects may
be important when the effects of Langmuir cells are considered, since the magnitude of the Stokes
drift is a strong function of the wave age.

To investigate the influence of wave breaking and Langmuir cells on SST on seasonal time
scales, we performed simulations of the OML at OWS Papa for the year 1961 (see Kantha and
Clayson, 1994 for details), with and without wave breaking and Langmuir terms in the model.
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Fig. 5. Velocity profiles in the equatorial ML for four cases: with no Langmuir or wave breaking terms (red solid line),

with only wave breaking included (blue dashed line), with only Langmuir terms included (green dotted line), and with

both Langmuir and wave breaking terms (black solid line).
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Fig. 6 shows the resulting SST and MLD for all four cases. Wave breaking does not affect the
OML evolution as much as the Langmuir cells, which is not surprising. However, the inclusion of
the Langmuir terms in the model tends to deepen the mixed layer significantly. The effect is largest
during the spring heating cycle. The mixed layer can be deeper at times by as much as 20 m and
the SST can decrease by as much as 0.5 �C. This does produce a better agreement between the
model and observations during springtime, but the agreement worsens a bit during the fall cooling
cycle, although towards the end of the year, the agreement improves once again. However it is
important to note that similar changes in SST can result from relatively small adjustments to the
prescribed radiative or surface heat fluxes, and even small changes in model parameters. Since air–
sea fluxes are seldom directly measured and even if measured, not with enough accuracy, the
agreement or lack of it between observed and model SSTs can be attributed either to the fluxes or
to the model itself. Nevertheless, it is fair to conclude that for consistency, ML models should
include at least the effect of Langmuir cells, although many ML models have successfully simu-
lated the seasonal evolution of SST at various places (for example, Kantha and Clayson, 1994),
without including either the Langmuir cell or the wave breaking effects.

D�Alessio et al. (1998) also studied the effect of Langmuir cells on mixed layer evolution at
station Papa and showed that the mixed layer depth increased somewhat during winter. However,
they do not show the effect on SST itself and did not do a thorough study of the Langmuir effect
itself. While the results of this study are consistent with their findings in that the turbulence in-
jection from Langmuir cells tends to deepen the mixed layer, it is important to point out that their
Langmuir TKE input term, which they based on Skyllingstad and Denbo (1995) LES results, is
incorrect. This study has used the correct form due to McWilliams et al. (1997) LES. They also did
not use a length scale equation, preferring instead to prescribe the length scale.
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Fig. 6. Model Results for OWS Papa for the year 1961 (see Kantha and Clayson, 1994 for details). Top left hand panel

shows the model SST (thin black line) compared to observed SST (thick red line) for the base case without wave

breaking and Langmuir terms. The top right-hand panel shows the model MLD for the base case. The bottom three

panels show the difference between the modeled SSTs (left-hand panels) and MLDs (right-hand panels): T0 and D0 are

the SST and MLD for the base case; T1 and D1 for the case with wave breaking terms only; T2 and D2 for the case with

Langmuir terms only; T3 and D3 for the case with both Langmuir and wave breaking terms included.
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7. Concluding remarks

We have modified the second moment closure-based two-equation ML model of Kantha and
Clayson (1994) to account for the injection of turbulence into the ML from wave breaking and
Langmuir cells. The results show that the changes in ML properties due to wave-breaking are
dramatic in the upper few meters of the OML, as expected. However, the highly dissipative nature
of turbulence makes the TKE injected at the surface by wave breaking decay rapidly with depth
and therefore the effect of wave breaking is confined typically to the upper few meters. Therefore,
in shallow diurnal MLs, typically several meters deep, the effects of wave breaking on the upper
level turbulence (to a lesser extent, on the sea surface temperature) can be expected to be
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significant. However, for MLs deeper than 20–30 m, the impact of wave breaking on the overall
ML dynamics can be expected to be small. Nevertheless, where near-surface properties are of
great importance, as for example in air–sea gas transfer, wave-breaking effects should be included.

The impact of injection of turbulence into the ML from Langmuir circulation is much larger
than that of wave breaking. This is principally because, unlike wave breaking where TKE input
occurs just near the surface and rapidly decays with depth, TKE input from Langmuir cells occurs
throughout the water column, wherever significant ambient shear stress and Stokes drift exist. The
impact of including Langmuir cell terms in the ML model on the SST is rather small on diurnal
time scales, but can be appreciable on seasonal time scales. OWS Papa simulations for the year
1961 showed that the SST can decrease by as much as 0.5 �C due to the additional mixing and ML
deepening caused by Langmuir cells. Nevertheless, such SST changes are well within the uncer-
tainties in modeled SST that exist simply because of our imperfect knowledge of surface heat and
radiative fluxes used to drive the ML models. This may explain why the current generation mixed
layer models, which ignore both wave mixing and Langmuir circulation influences, have managed
to simulate the SST reasonably well, since the inevitable adjustments in surface fluxes, well within
reason, may have contributed to this outcome.

To properly include the effect of Langmuir cells in the two-equation turbulence models, it is
important to make the coefficient that multiplies the Langmuir production term in the length scale
equation much greater than unity. Otherwise, the increase in the turbulence length scale (and
hence mixing) in the mixed layer, brought on by Langmuir cells, cannot be reproduced. In one-
equation turbulence models, where the length scale is prescribed, appropriate changes must be
made to the prescribed length scale to reproduce Langmuir cell effects.
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Appendix A. Comparison with analytical solutions for the wave-mixed surface layer

In an effort to compute the velocity profiles adjacent to the air–sea interface of a wave- and
wind-mixed oceanic mixed layer, Craig (1996) derived an analytical expression for the TKE in the
surface layer. In the current notation, it is
q2 ¼ B2=3
1 u2� 1

"
þ 3ma0j

z0
z0 � z

� �3m
#2=3

ðA:1Þ
where z0 is the roughness scale, m is an arbitrary constant and a0u3� is the energy flux from wave
breaking. Craig (1996) assumed ‘ ¼ jðz0 � zÞ to derive this expression. This also yields the fol-
lowing expression for the dissipation rate:
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ez0
u3�

¼ 1

j
z0

z0 � z

� �
1

"
þ 3ma0j

z0
z0 � z

� �3m
#

ðA:2Þ
When the energy flux from breaking waves is zero (a0 ¼ 0), the solution yields the log-law
behavior for the dissipation rate
ez0
u3�

¼ 1

j
z0 � z
z0

� ��1

ðA:3Þ
whereas, when the flux dominates, the dissipation rate becomes
ez0
a0u3�

¼ 3m
z0 � z
z0

� ��3m�1

ðA:4Þ
akin to that for a stirring grid. At z ¼ 0, the dissipation rate is given by
ez0
a0u3�

¼ 3mþ 1

a0j
ðA:5Þ
The turbulence velocity scale q � ½z0=ðz0 � zÞ��m
close to the surface (akin to stirring grid so-

lution) but transitions to the log-layer behavior q � u� as ½z0=ðz0 � zÞ� ! 0. The transition distance
is given by
z0
z0 � z

� �
t

¼ ð3ma0jÞ1=ð3mÞ ðA:6Þ
For m ¼ 1, this value is about 5 (assuming a0 � 100). Craig�s analytical solution has been used
as the basis of a modification to the k � e model of turbulent mixing by Burchard (2001).

A quantity of considerable interest in geophysical boundary layers is UM ¼ ‘
u�

dU
dz , which is given

by
UM ¼ 1

"
þ a0

3

B1Sq

� �1=2 z0
z0 � z

� �3m
#�1=3

ðA:7Þ
which assumes a value of 1 for the neutral log-layer and 0:246ðz0�z
z0
Þm in the wave-mixed region

immediately below the interface.
As indicated earlier, there is no reason to presume ‘ ¼ jðz0 � zÞ in the wave-mixed layer, al-

though this law should prevail in the neutral log-layer region. In fact, assuming the propor-
tionality constant is j leads to very small values of Sq for values of m in the vicinity of 1 (0.125 for
m ¼ 1). On the other hand, the traditional value of Sqð0:41Þ is obtained for m ¼ 0:57, which is
however not permissible in Eq. (4.6). Since most indications are that the value of m is close to
unity, this assumption must be relaxed. Assuming instead that ‘ ¼ bðz0 � zÞ in the wave-mixed
region, the length scale must be chosen as
‘ ¼ j0ðz0 � zÞ

j0 ¼ bþ ðj� bÞ 1



� exp d 1

��
� z0 � z

z0

��� ðA:8Þ
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This assures proper asymptotic behavior in the wave-mixed and logarithmic regions. We have
introduced another arbitrary constant d, which determines how fast the transition in the value of
the constant of proportionality occurs. The value of d must be determined empirically.

The non-constant value of j0 makes it necessary to modify Craig�s solutions. Since in the co-
ordinate y defined as:
y ¼
Z z

0

dz0

‘ðz0Þ ðA:9Þ
the length scale appears implicitly, the solution for q remains unchanged and is given by Eq. (15)
of Craig (1996):
q3 ¼ u3�ðB1 þ a0ceayÞ; a ¼ 3

B1Sq

� �1=2

¼ 3mb; c ¼ 3B1

Sq

� �1=2

¼ 3B1mb ðA:10Þ
The various quantities can now be written as:
TKE

u2�
¼ B2=3

1

2
½1þ 3mba0eay�2=3

ez0
u3�

¼ 1

j0
z0

z0 � z

� �
½1þ 3mba0eay�

KM

u�z0
¼ j0 z0 � z

z0

� �
½1þ 3mba0eay�1=3

UM ¼ ½1þ 3mba0eay��1=3

ðA:11Þ
Note that the value of y in Eqs. (A.10) and (A.11) has to be obtained by integration of Eq.
(A.9). We recover Craig�s original solutions if we put b ¼ j in Eq. (A.8), since Eq. (A.9) then
yields ay ¼ ðz0=ðz0 � zÞ�m.

The value of m can now be chosen as 1, and b ¼ j=1:81 in Eq. (A.11), keeping the value of Sq
unchanged at 0.41. These solutions will be compared to the solutions obtained by the modified
mixed layer model in Fig. 1. Note that the value of q2 at the surface is
q2 ¼ B2=3
1 ½1þ 3mba0�2=3u2� ðA:12Þ
and the value of UM at z ¼ 0 is 0.246, the same value as given by the Craig (1996) solution (Eq.
(A.7)), even though the variation of UM with depth is no longer a simple power law.

In the constant-flux surface layer of the lower atmospheric boundary layer, quantities like UM

are universal functions of the Monin–Obukhoff similarity variable f ¼ z=L where L is the Monin–
Obukhoff length scale that denotes the relative strength of the density stratification in the surface
layer. It is often presumed that the same similarity relationships hold in the OML adjacent to the
air–sea interface. However, the presence of a dynamical interface with an actively breaking surface
wave field is an important distinction that is very often ignored (for example, Large et al., 1994).
Eq. (A.12) suggests that normalized quantities like UM in the constant flux surface layer of
geophysical boundary layers must be plotted against ðz� z0Þ=L, not f ¼ z=L. This is not of major
importance in the atmospheric boundary layer, where z0=L tends to be small, but in the oceanic
mixed layer, z0=L can be of order unity. Also, there is a small region around f ¼ 0, where UM
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increases from a value of about 0.25 at f ¼ 0 its canonical value of 1, the extent of this region
depending very much on the value of z0=L. In other words, the Monin–Obukhoff similarity
variable is not the only parameter in the problem, and z0=L or equivalently the wave age cp=u� is
also important in the upper OML.

The numerical model was run with a high vertical resolution (Dz ¼ 0:1 m) to resolve the wave-
mixed layer for a neutrally stratified mixed layer driven by 0.5 N m�2 wind stress and fully de-
veloped waves (cp=u� ¼ 26, a0 ¼ 100). Both the Neumann boundary condition (TKE flux at the
surface, Eq. (5.7)) and the Dirichlet boundary condition (Eq. (A.12)) were tested. Both yielded
similar results, but since the Dirichlet condition is simpler to impose computationally, the model
was henceforth run with it. Since the model uses a differential equation to calculate ‘ (Craig and
Banner, 1994 and Stacey and Pond, 1997, prescribe an analytical form for ‘ instead), the surface
boundary condition needed in the solution of the q2‘ equation (4.2) requires ‘ to be prescribed at
the surface. The value of ‘ depends on the waterside roughness length about which not much is
known (see the discussion by Craig and Banner, 1994; Burchard, 2001). It is however known that
its value can be as much as 1 m, and from dimensional arguments, it should be similar in form to
the Charnock law for the air-side roughness length, that is, it should be proportional to u2�=g, with
the proportionality constant being perhaps fetch-dependent. Alternatively, the roughness length
should be proportional to the significant wave height. For a narrow-band spectrum, the proba-
bility distribution of wave height maxima can be approximated by a Rayleigh distribution
(Phillips, 1977; Kantha and Clayson, 2000) and in this case, the significant wave height Hs is equal

to 4ðf2Þ1=2. We take the roughness scale to be equal to 1.6Hs, which is consistent with Stacey
(1999), who also found that z0 � OðHsÞ. For a discussion of the parameterization of z0, see Stacey
(1999).

Fig. 7 shows normalized values of TKE, its dissipation rate, and the velocity profile from the
model. It also shows these quantities without wave breaking. It can be seen that the model results
Fig. 7. Normalized TKE, TKE dissipation rate, the Monin–Obukhoff similarity function UM and the eddy viscosity KM

plotted as a function of ðz0 � zÞ=z0 for model vertical resolution Dz of 0.1 m (thick red lines). The panels show from left

to right, TKE normalized by u2�, dissipation rate of TKE normalized by, u2�=z0, UM and KM normalized by u�z0. Quantity

u� is the water-side friction velocity and z0 is the roughness scale. Solutions without wave breaking (thin blue lines) and

modified Craig (1996) analytical solutions (medium black lines) are also shown.



Fig. 8. Normalized dissipation rate plotted as a function of ðz0 � zÞ=z0 and compared with measurements of Anis and

Moum (1995) denoted by symbol r, Drennan et al. (1996) denoted by symbol D and Terray et al. (1996) denoted by

symbol O (figure adapted from Burchard, 2001).
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correspond roughly to the modified Craig solutions with d ¼ 0:1, which are also shown. Changing
the model resolution Dz to 0.01 and 1.0 m produced very little differences, which are not signif-
icant in light of the scatter in the observational data relevant to these parameters (for example, see
Fig. 8).

Fig. 8 shows the normalized dissipation rate ez0=ða0u3�Þ plotted against the normalized distance
from the surface ðz� z0Þ=z0 from the model (assuming a0 ¼ 100), compared against available
observations. The model is within the error bars of these difficult measurements. Also shown are
the analytical solutions for pure wave-breaking for values of m ¼ 1 (value chosen in this paper)
and m ¼ 0:57 (Craig�s value). The log-law behavior is also shown assuming a0 ¼ 100. The nu-
merical model behavior is quite acceptable.
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