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ABSTRACT

To describe the heat and scalar fluxes in the convective boundary layer, we propose expressions for eddy
diffusivities and countergradient terms, The latter expressions can be used in a modified flux-gradient approach,
which takes account for nonlocal convective vertical exchange. The results for heat are based on a derivation
similar to that of Deardorff by utilizing the turbulent heat-flux equation, but the closure assumptions applied
to the heat-flux budgets are different. As a result, the physical interpretation for the countergradient term differs;
our countergradient term results from the third-moment transport effect, while Deardorff”s results from the
buoyancy production term. On the basis of our analysis, we are able to calculate an eddy diffusivity for heat,
using large-eddy simulation results. The results are presented in the form of a similarity profile, using the
convective velocity scale w, and the inversion height z;. It is shown that the latter profile is well behaved and
that it matches the results of surface-layer theory. Using the top-down and bottom-up decomposition, we have
generalized our findings for any scalar, such as the moisture field or an air pollution contaminant. We show
that the eddy diffusivity profile for scalar C is sensitive to the entrainment-surface flux ratio of C. Therefore,
a different scalar field should have a different eddy-diffusivity profile. The proposed expressions for the eddy
diffusivities and the countergradient terms are easy to apply in (large-scale) atmospheric and diffusion models.
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1. Introduction

In the upper haif of the convective, atmospheric
boundary layer (CABL), the upward transport of heat
is typically accompanied by a slightly stable tempera-
ture gradient. This means that the heat transport is
countergradient and that the usual flux-gradient ap-
proach is not appropriate (Deardorff 1966, 1972;
Schumann 1987). The countergradient transport orig-

inates from large convective plumes (or eddies) that -

dominate the transport in the CABL. As such, the use
of an eddy-diffusivity formulation based on local gra-
dients alone (so-called local K theory) is not physical
and of limited value (e.g., Ebert et al, 1989). Neverthe-
less, atmospheric models often utilize local X theory
and neglect countergradient transport.

Deardorff (1972) derived the countergradient term
for heat in the CABL by neglecting the transport term
in the heat-flux equation. In this paper, we will derive
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a modified countergradient term by utilizing the recent
results of large-eddy simulations (LES) by Moeng and
Wyngaard (1989). We introduce an empirical param-
eterization for the transport term in the heat-flux equa-
tion and use the modified Rotta return-to-isotropy hy-
pothesis by Moeng and Wyngaard (1986); this leads
directly to a simple description of vertical heat trans-
port.

In section 2, our results and those of Deardorff
(1972) are compared with the LES data for heat trans-
port. We also discuss matching of our results with those
for the atmospheric surface layer.

In section 3, we extend our analysis to top-down/
bottom-up diffusion (Wyngaard and Brost 1984) in
which the impact on the diffusion of scalar fluxes at
the surface and at the top of the CABL are distin-
guished. In previous studies it has been found that the
eddy diffusivity of the bottom-up diffusion has a sin-
gularity in the midpart of the CABL, while the top-
down diffusivity is well behaved (Moeng and Wyngaard
1984; Wyngaard 1987; Schumann 1989). Using a
countergradient correction for the bottom-up diffusion
of a scalar similar to the one for heat, we obtain a well-
behaved diffusivity for the bottom-up field. Conse-
quently, we are able to generalize our findings to the
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transport of any scalar, such as the specific humidity
(g) or any other conservative species (C).

Both for heat and scalar diffusion, our findings com-
bine local gradient transport and nonlocal countergra-
dient transport. As such, they are easy to apply into
(large-scale) atmospheric and diffusion models. Our
results become a generalization of the proposals by
Priestley and Swinbank (1947) and Troen and Mahrt
(1986).

2. Transport of heat
a. The heat-flux equation

Under horizontally homogeneous conditions, the
equation for the heat flux wé reads in the Boussinesq
approximation as (¢.g., Deardorff 1972)

— — 168p
w229 4 g0 - =22
po 9z

(1)

where 4 is the potential temperature fluctuation, © is
the mean value of the potential temperature, w is the
vertical-velocity fluctuation, z is height, Bg is the buoy-
ancy parameter, po is density of air at the reference
state, p is the pressure fluctuation, and overbars denote
ensemble averages. The terms on the right-hand side
(rhs) of (1) are, in order, the turbulent transport term
(denoted below by T'), the mean-gradient production
(M), the buoyant production (B), and the pressure
covariance (P). Here we have included the minus signs
in the definitions of 7', M and P.

Figure 1, adopted from Moeng and Wyngaard
(1989), shows the vertical profiles of the terms at the
rhs of (1). The terms are normalized with the height
of the CABL, z;, the convective velocity scale, w,, and
the convective temperature scale, 6,., where

Wy = (Bgwloz;)'"?, (2)
W
* = W* s (3)

and w, is the kinematic surface heat flux. The statistics
shown here are from (96)3, wave-cutofT filtered sim-
ulations over a 5 km X 5 km X 2 km numerical do-
main. They are averaged over the horizontal plane and
over about three large eddy turnover times z;/w,. In
the LES we have wl, ~ 0.24 mK s™!, z; ~ 1000 m,
Wy ~2ms™, 6, ~ 0.12 K, and the friction velocity
U, ~ 06ms™!,

The transport term 7 of (1) is not small in com-
parison with the other terms. In many cases (i.e., Dear-
dorff 1972), however, this term is neglected. In second-
order closure modeling, T is often modeled with the
downgradient diffusion assumption, but the latter is
inappropriate owing to the dominant buoyancy effect
(Moeng and Wyngaard 1989). The mean gradient term
M changes sign in the mid CABL, where the buoyancy

A. A. M. HOLTSLAG AND CHIN-HOH MOENG

1.0

--------

N
T

08 -

04

0
-0 10

BUOYANCY FLUX BUDGET (Normalized by wZ6,/z;)

FIG. 1. The normalized terms at the rhs of the heat-flux equation
(1), as a function of relative height (adopted from Moeng and Wyn-
gaard 1989). The terms are defined in the text of section 2a.

flux wé is positive, indicating the countergradient
transport.

Figure 1 suggests that 7 is larger than P by a nearly -
constant value throughout most of the CABL (i.e., 0.1
< z/z; < 0.8). We, therefore, empirically parameterize
the transport term T as

2
(/]
TzP-i—va‘t.‘—*',

i

where b =~ 2. Lenschow et al. (1980; their Fig. 17) and
Adrian et al. (1986; their Fig. 19) provide experimental
data on T and P, which can be used for comparison.
We have to realize, however, that both T and P are
very hard to measure due to sampling problems.
Moreover, in the cited studies the pressure term P is
obtained as a residual term, which makes the outcome
very sensitive for measuring errors. Nevertheless, T as
obtained by Lenschow et al, and Adrian et al. is qual-
itatively similar to 7 in our Fig. 1. Our T is also in fair
agreement with the large-eddy simulations of Schmidt
(1988, his Fig. 184, p. 75). Regarding the experimental
uncertainty, we can not give a more detailed compar-
ison at this moment. We realize that (4) is a very simple
means to parameterize the transport term 7, but we
will accept it as a convenient closure assumption.

The pressure covariance term P can be modeled as
(e.g., Crow 1968; Moeng and Wyngaard 1986)

(4)

()

where 7 is a return-to-isotropy time scale, and a is a
constant. For isotropic turbulence, a = 1/3. For tur-
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bulence within the CABL, Moeng and Wyngaard
{1986) obtained a =~ 1. Above the mixed layer, a
may depend on the stability and structure of the in-
version layer. Often, only the second term on the rhs
of (5) is taken into account; it is known as the Rotta
return-to-isotropy hypothesis. The first term on the rhs
of (5) shows that P is directly related to the buoyant
production rate 8gf%. When (4) and (5) are substi-
tuted into (1), we obtain

b _ s 00 wo + b_wfﬁt

—— = —w? =+ (1 — 2a)Bg0? ~ 2 —
at Wiyt T 2mbe T z

(6)

By adopting a = 1/> of Moeng and Wyngaard (1986),
the buoyant production term 8g#° disappears from (6).
Then, in quasi-steady states, (6) becomes

p) 2
— s — w- 6__9 + _b_ Mﬁ . (7)

T 29z 2 z
For a # 1/ we obtain an additional term at the rhs of
(7), which is given by (1/2 — a)8g6?. In such cases the
description for the heat flux is no longer as simple as
we present here. Therefore (7) is restricted to turbu-
lence within the CABL for which g ~ /5.

Although (7) is partly based on the simple empirical
parameterization of (4), it is physically appealing. It
shows that the heat flux depends on a local downgra-
dient transport (first term on the rhs) and a nonlocal
convective transport (second term on rhs). Therefore,
the form of (7) is closely related to the original proposal
by Priestley and Swinbank (1947), who found from
mixing-length arguments that the heat-flux expression
should contain a convective part in addition to the
usual downgradient part. We note that the convective
part of (7) arises from the turbulent transport term
and that it is proportional to the surface heat flux w,f,
[see (3)]. Recently, Wyngaard and Weil (1991) ob-
tained a very similar resuit as (7) through a kinematic
derivation. Comparison of their findings with (7) sug-
gests that the parameter & is proportional to the skew-
ness S of the vertical turbulent velocity field (S
= w3/w? ). In the CABL the skewness is positive
due to fast rising updrafts and slow descending down-
drafts. In the absence of skewness (e.g., & = 0), it is
seen that (7) reduces to the usual downgradient dif-
fusion concept.

b. Eddy diffusivities and countergradient terms

To facilitate a comparison with the previous results
by Deardorff (1966, 1972), it is convenient to write
(7) as

W)= "KH(QQ“‘W), (8)

0z
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where in our case K and v, are given by

Ky = Vv‘-;-, (9a)
and
2
9
Yo =b ii;—i . (9b)
w*Z;

Here K and v, can be interpreted as an eddy diffusivity
and a countergradient term, respectively.

Deardorft (1972) obtained (8) by neglecting the
transport term T in the heat-flux equation (1) and using
(5) with @ = 0. This means that he makes use of P
= —wf/7p, where 7 is a time scale related to the tur-
bulence energy and a mixing length. In that case, Ky
and v, are given by

KH = WZTD (103)
and
62
Yo = ﬁgﬁ- (10b)

The physical interpretation of the countergradient
terms by (9b) and (10b) is very different. Equation
(10b) comes from the buoyancy production term, while
(9b) arises from the turbulent transport term by (4).
We note that in Deardorft’s (1966) paper a proper
discussion of 4, in terms of the transport term in the
temperature variance equation is given (see also Schu-
mann 1987). We show here that the third-moment
transport term in the heat-flux equation is also respon-
sible for the countergradient term.

In Fig. 2, we compare the magnitudes of (9b) and
(10b), where we have normalized vy, with 0, /z; and
where all the turbulent quantities are obtained from
the (resolved) LES data of Moeng and Wyngaard
(1989). It is seen that the magnitude of the two expres-
sions differs by a factor of two near z/z; =~ 0.7 (or
even more for z/z; < 0.2), but that their general be-
havior is very similar despite the different physics. [ Al-
though, strictly speaking, our results on the basis of
(4) apply only to 0.1 < z/2z; < 0.8, we have extended
the range in all figures below for illustration purposes.]

Figure 3 shows a comparison of the (normalized)
eddy diffusivity obtained from (8) as

Ky _ —w8/wb,
wyz;  (00/0z ~ v0)zi /04 ’

(11)

utilizing the LES data for d0/9z, wé (both resolved
and subgrid contributions) and using (9b) for v, (see
curve a). Also, the result of (9a) is given for comparison
(curve b), where 7 is directly calculated from the rur-
bulence-turbulence component in the LES data (see
Moeng and Wyngaard 1986). It is seen that the mag-
nitudes of the Ky values by both calculations are of
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1.0 With (12a) and (13a), we can write (9a) as
Z—Z_ Ky =~ 0.1w,z;. (13b)
o8l The value of the eddy diffusivity by (13b) is on the
order of the expected value for a diffusivity based on
integral properties (e.g., Tennekes and Lumley 1972).
The value is also consistent with the results in Fig. 3
081~ from (9a), and (11) with (9b).
With (12a, b), we can write both (9b) and (10b) as
wh,
o4l Yo = C4 w;’ , (14a)
where ¢, = b/¢; = 5 for (9b), and ¢4 = ¢/¢; =~ 2.5
0.2 for (10b). Using the values in the LES as typical values
for wl (~0.24 mK s™'), z; (=~ 1000 m), and w,, (=2
m s~'), we obtain
0O Yo~ 0.6 X 102 Km™! (14b)

FIG. 2. Plot of the nondimensional countergradient term for heat,
according to a: (9b), b: (10b), and c: (9b) with (15a).

the order of 0.1 in the mid part of the ABL. The result
by (9a) shows an unexpected peak near z/z; ~ 0.1
that is probably due to uncertainties in the calculation
of 7 near that height. Overall, Fig. 3 shows that (9a) is
fairly consistent with the results of (11) and (9b).

In Fig. 3 (curve ¢), we have also shown the result
for Ky, if (11) is combined with Deardorff’s expression
by (10b). It is seen that a singularity appears near z/
z; == 0.7, showing that the countergradient correction
by (10b) is not sufficient to obtain a well-behaved pro-
file for K (see also Fig. 2).

It is also illustrating to estimate the values of K;; and
e in the central part of the CABL directly, where we
may utilize

w2 ~ cwl (12a)

and
02 ~ c,02. (12b)

Here we estimate ¢; ~ 0.4 and ¢; ~ 1 for z/z; =~ 0.4,
as can be seen in Figs. 2 and 13 of Moeng and Wyn-
gaard (1989) and Figs. 3 and 5 of Schmidt and Schu-
mann (1989). Their figures are based on the results of
large-eddy simulations, the AMTEX experiment
(Lenshow et al. 1980), and convection tank experi-
ments (Deardorff and Willis 1985) (see also Fig. 4
below).

In the CABL we have for z/z; ~ 0.4, 0/0z =~ 0
(see Fig. 1 where M =~ O for the latter height), and
wé/w,l, ~ 0.5, resulting with (7) and b =~ 2 in

7~ 0.5z /wy. (13a)

from (14a) with ¢; = 5. This value of v, is close to the
original value of 0.7 X 10~ K m™! for the countergra-
dient term used by Deardorff (1966, 1972). Troen and
Mahrt (1986) use (14a) for heat (and a similar one
for moisture) with ¢, = 10 for z/z; = 0.1; but Fig. 2
shows that v, varies with height, and the coefficient ¢,
= 10 seems too large by a factor of two in the mid part
of the CABL.

¢. Parameterizations and matching to the surface layer

For_application of the present results, we parame-
terize w” and our results in Fig. 3 for K};. The vertical-

0 K T '
: .::'.:~
z; ’}
08 =‘_—_” '." —
= ol
y
a b /’,C
P
0.4} ) |
S
7,
s
4
Vi L
02 i ,, ".-_ —
/
’ .
, .......
V) esmesmeeretettt
1l
L L
e 0 0.1 02 o5
Ky
Wy Z;

FIG. 3. Plot of the nondimensional eddy diffusivity for heat, ac-
cording to a: (11) with (9b), b: (9a), and c: (11) with (10b).
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F1G. 4. The nondimensional vertical-velocity variance of (15a)
(solid curve) in comparison with the (96)° LES data (shaded area;
Moeng and Wyngaard 1989), the AMTEX data (circles; Lenschow
et al. 1980), and convection tank experiments (squares; Deardorff
and Willis 1985).

velocity variance is scaled by w3 for the buoyancy-
driven turbulence and by u3 for the shear-driven tur-

bulence. We, therefore, parameterize w? as

(W2 = [1.61&(1 - 5)]3/2

2

3/2
+ 1.2wi(i)(1 ~ 09 ;Z-) (15a)

2y i

for 0 < z/z; < 1. The first term of (15a) reflects shear-
driven turbulence, while the second term is for buoy-
ancy-driven turbulence. Equation (15a) is based on
the AMTEX field observations (Lenschow et al. 1980)
and LES simulations (Moeng and Wyngaard 1989)
for the buoyancy-dominated case. Equation (15a) is
shown in Fig. 4 for u, /w, = 0.3, the value in the large
eddy simulations. The latter is also close to the average
value of u, /W, =~ 0.25 in AMTEX. Note that the LES
results do not contain the subgrid contributions that
are apparently significant for z/z; < 0.2. It can be
shown that (15a) also agrees reasonably with the LES
data of Schmidt and Schumann (1989) for zero wind
speed.

At the top of the surface layer (z/z; = 0.1), we have
with (15a)
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. Z\2/3
wl = 1.44ui(1 - 1.5 Z) , (15b)
where L is the Monin~Obukhov length scale. The form
of (15b) is consistent with the expression proposed by
Panofsky et al. (1977), but the coefficients are in better
agreement with the results by Hejstrup (1982).

We have used (15a) in combination with (9b) to
derive the countergradient term +,, and the result is
also given in Fig. 2. Since (15a) includes subgrid scale
contributions, the resulting v, is different from the LES -
result near the top and the surface. In Fig. 5 we show
the K profile (curve b) that follows from (11), (9b),
and the parameterized profile for w? by (15a). The
profile of curve a in Fig. 3 is given for reference (curve
a). A curve fit to Ky (curve ¢) is given in Fig. 5 as

4/3 2
Ku =(5) (1—3)(1+R,,-3) (16a)
WxZ; ] Z Zi

for 0 < z/z; < 1. Here Ry is the ratio of entrainment
flux to the surface flux for heat. In Fig. 5 we have taken
Ry = —0.2 for curve ¢, which is the value of the LES
data. Note that (16a) obeys the free-convection limit
in the surface layer; e.g., Ky oc z*/3 for small z/ z; (e.g.,

Panofsky and Dutton 1984). In (16a), we have ne-

glected the small contribution of shear production for
simplicity. This means that (16a) is limited to con-
vective cases for which ~z;/L = 5 or u,/w, < 0.43

(Holtslag and Nieuwstadt 1986).

The profile of (16a) can be compared with the
expression by Troen and Mahrt (1986) showing
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FIG. 5. Plot of the nondimensional eddy diffusivity for heat, ac-
cording to a: as curve a in Fig. 3, b: (11) with (9b) and (13a), c:
(16a) with Ry = —0.2.
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Here ¢ is a coefficient that depends on the Prandtl
number (see Troen and Mahrt 1986; and Holtslag et
al. 1990). It is seen that this equation does not obey
the free-convection limit of the surface layer and that
it is independent of the entrainment flux.

As a check of the above findings, we compare the
outcome of ( 16a) with the results of surface-layer the-
ory at the top of the surface layer. According to the
latter theory, we may write (e.g., Dyer 1974; Hogstrom
1988)

Ku
W*Zi

(16b)

30  wh,
- = N 17
9z kuyz n (178)
where ¢, is obtained from observations as
1 .
b (17b)

T (1= 162/L)'7
for 0 < —z/L < 2. As a result, we have with (3)

—_———= W*/u*
0, 0z k(z/z)(1 — 16Z/L)'/2’ (17¢)

For z/z; = 0.1 (the top of the surface layer) and u,/
wy = 0.3 (the value in the LES), we obtain that —z/
L ~ 1.5. With (11) and (17¢) this results in Ky /w,z;
=~ 0.037, where we have calculated v,z;/6, with (9b)
and (15b) and used wé/wly, = 0.9. It appears that
direct application of (16a) for z/z; = 0.1 and Ry
= —0.2 provides the same value for Ky/w,z;. This
indicates that (16a) matches with the previously used
¢» function of (17b) (at least for the present value of
Ue/Wy).

3. Scalar transport
a. Top-down and bottom-up diffusion

In the previous section, we have presented an eddy-
diffusivity profile and a countergradient term for heat.
A useful framework for further analysis of the results
is to consider so-called top-down and bottom-up scalars
(Wyngaard and Brost 1984; Moeng and Wyngaard
1984; 1989). Here top-down diffusion is driven by the
entrainment flux, with a zero surface flux for the scalar
flux; and the bottom-up diffusion is driven by the sur-
face flux, with a zero entrainment flux for the scalar
involved. Similarly with (8), we write for the bottom-
up case

IC;

we = —k, [9Ce

WCp b( Y ‘Yb) , (18a)
and for the top-down case

—_ aC,

we, = — K, ('5;""%), (18b)
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where in analogy with (9b) we write

Yo = by s (19a)
and
= b= (19b)
wZ;

Here C, and C, are the mean concentrations of the
bottom-up and top-down scalar, wc, is the surface flux
of the bottom-up scalar, and w¢, is the entrainment
flux of the top-down scalar. Since in quasi-steady con-
ditions the top-down and bottom-up fluxes are linear
in height, ie., we, = (1 — z/z))wc, and W
= (z/z;)wc; (Wyngaard 1987), we have with (18) and
(19)

K o U-ziz) (20a)
Wy Z; &+ b[,Wi/W2

and
K __za (20b)

WaZ; g + b,wi/;v—5

for 0 < z/z; < 1. The gradient functions g, and g,
are the vertical gradients of C, and C, normalized by
—WCo/ Wez; and —Wc¢, / w,z; , respectively.

The top-down flux budgets given by Moeng and
Wyngaard (1984, Fig. 7) suggest that the turbulent
transport and pressure-covariance terms in the top-
down flux budgets, i.e., the equivalence of the first and
the fourth terms at the rhs of (1) for the top-down
scalar, are about the same in most of the PBL. There-
fore, we empirically set b, = 0. For the bottom-up flux
budget, the transport term is larger than the pressure
term by a factor close to that shown in (4). Thus, we
empirically set b, = b (~2). Note that due to the term
byw?/w? in the denominator of (20a), our definition
of K, differs from the one in previous studies by Wyn-
gaard and Brost (1984), Moeng and Wyngaard (1984),
and Schumann (1989), while the result of (20b) for
K, with b, = 0 is the same.

Figures 6 and 7 plot the K profiles given by (20a, b)

using the (96)° LES results for g, g,, and w?/w3 cal-
culated by (15a). Due to the additional term
byw2 /w? in the denominator of (20a), the expression
for K}, is well behaved and has a smaller magnitude.
Neglecting the additional term leads to a K-profile that
has a singularity in the central part of the CABL and
becomes negative in the upper part of the CABL (see
Wyngaard 1987; and Schumann 1989). This is due to
g» —> 0 for z/z; ~ 0.4. Since we have set b, = 0 in
(20b) [and therefore also v, = 0 in (19b)], it appears
that our K, compares well with the LES data of Schu-
mann (1989, his Fig. 4) for 0.2 < z/z; < 1. It can be
seen that our modified K} is a factor of two smaller
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F1G. 6. Plot of the nondimensional eddy diffusivity for bottom-
. up transport, according to a: (20a), b: (21a).

than K|, which together with the different findings for
vy and v, illustrates the asymmetry in top-down and
bottom-up diffusion (e.g., Wyngaard 1987; Schumann
1989; Wyngaard and Weil 1991).

We can curve fit the K, and K, profiles of Figs. 6

and 7 as
. 4/3 2
Ko _ (i) (1 ~5) (21a)
WyZ; Z; Z;
and
2 3
K _ 7(3) (1 —5) (21b)
WeZ; Z; Z;

for 0 < z/z; < 1. We note that (21a) is consistent with
(16a) for Ry = 0, and that both (21a, b) peak at z/z;
= 0.4.

b. Generalization

In quasi-steady conditions, any scalar flux wc may
be written as a linear combination of the surface flux
and the entrainment flux (see Wyngaard 1987):

W=(1—3)Wco+iwa, (22)
Z; Z;

H ]

and the mean gradient dC/9z can be written in terms
of g, and g, as

8C _ —(wiogp + Wei 1)
oz WeZi

. (23)
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Writing
oC

e = —x[2€ _

we 5 %) , (24)
and using (19a), (22), and (23), we obtain the eddy
diffusivity for any scalar K as

K. (1 —z/z;)+ R.z/z;

= = (25a)
WeZi g, + R.g + bywi/w?

where R, = W¢,/Wcg is the entrainment-surface flux
ratio of the scalar C. Here we set b, = 0, as mentioned
in section 3a. Using (20a) and (20b), we then rewrite
(25a) as

_ (I—z/zi + Rez/z) KoK,
(1 —z/z)K, + R(z/z)K,

for0 < z/z; <1 and R, = 0. Unlike the K theory, our
eddy diffusivity profile depends on the ratio of the sur-
face and entrainment fluxes of C. We plot normalized
K, profiles by (25b) for different R, ratios in Fig. 8
[ using the parameterized profiles by (21a, b) as well]:
R, = 0 retains the bottom-up result, and R, = 0.5, 1.0,
1.5 are typical values for entrainment of moisture. For
comparison we have also included the top-down result
(21b), which follows from (25b) for R, = 0. Overall,
it is seen that the impact of the entrainment flux cannot
be neglected and that X, increases with increasing val-
ues of R.. ) :
For negative values of R, (e.g., heat transport), the
application of (25b) is restricted to cases for which the
relative height reads as z/z; < 1/(1 — R.) (=0.83 for

K.

(25b)
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FIG. 7. Plot of the nondimensional eddy diffusivity for top-down
transport, according to a: (20b), b: (21b).
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F1G. 8. Plot of the nondimensional eddy diffusivity for scalar
transport by (25b) with (21a, b), for varying values of the entrain-
ment-surface flux ratio R,, namely a: 0, b: 0.5, ¢: 1, d: 1.5, e: o0.

R, = —0.2). Therefore, we propose to use (16a) for
—1 < R, < 0 (in which case the subscript H is replaced
by the subscript ¢).

Since we have set b, of (19b) to zero, we then write
the countergradient term . of (24) in a similar way
as (9b); e.g.,

W*W()

Ye=1b ; (26)

FZ,‘
where again b ~ 2. As expected, vy, vanishes in the
neutral limit (e.g., w, = 0) despite the value of the
scalar flux at the surface.

4. Discussion and summary

The vertical exchange of heat and scalars in the con-
vective, atmospheric boundary layer (CABL) is dom-
inated by fast rising updrafts and slower descending
downdrafts. To describe this nonlocal transport in the
stationary, horizontally homogeneous CABL, we pa-
rameterize the pressure-covariance terms (P) and the
transport terms (7°) in the heat-flux equation and in
the flux equations for the top-down and bottom-up
scalars. This leads directly to (modified) descriptions
for countergradient terms in the flux-gradient ap-
proach. As such, we extend the work by Deardorff
(1972), who derived the countergradient term for heat
from the buoyancy production term in the heat flux
equation. Since Deardorff neglected the transport term
in the heat-flux equation, our physical interpretation
of the countergradient term differs from his; our coun-
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tergradient term results from the third-moment trans-
port effect. However, in Deardorff (1966 ) a proper dis-
cussion of the countergradient term is given by con-
sidering the transport term in the temperature variance
equation. The outcome of our parameterization is
physically appealing and consistent with previous in-
dependent derivations ( Priestley and Swinbank 1947;
Wyngaard and Weil 1991).

Using data of the large-eddy simulation by Moeng
and Wyngaard (1989), we obtain expressions for the
eddy diffusivities of heat, and top-down and bottom-
up scalar diffusion. The expressions for the eddy dif-
fusivities of heat and bottom-up scalar diffusion are
well behaved due to the incorporation of the counter-
gradient correction terms in the flux-gradient approach.
However, it appears that the top-down scalar diffusivity
is well behaved without countergradient correction.
The latter is in agreement with independent LES data
of Schumann (1989). We also obtain that the diffu-
sivity for heat obeys the free convection limit in the
surface layer and that its numerical value at the top of
the surface layer is consistent with the usual surface-
layer similarity function for the temperature gradient.

We use our findings for top-down and bottom-up
scalar diffusion to generalize the description for scalar
transport. It appears that in the generalized formula
the eddy diffusivity depends on the entrainment-sur-
face flux ratio. Therefore, a different scalar field should
have a different eddy-diffusivity profile. As such, our
results are a generalization of those by Priestley and
Swinbank (1947) and Troen and Mahrt (1986). Our
findings are described as profile functions of dimen-
sionless height by applying the usual similarity param-
eters of the CABL (e.g., Holtslag and Nieuwstadt
1986). Consequently, our results can be used to de-
scribe the nonlocal convective exchange of heat and
scalars. They may serve as simple, as well as physical,
realistic alternatives to the transilient turbulence con-
cept (Stull 1984; Ebert et al 1989).

The present descriptions for the eddy diffusivities
and countergradient terms are suitable for application
in (large-scale) atmospheric and diffusion models. As
such we aim only at modeling of the mean quantities.
That such descriptions are useful has been demon-
strated by Holtslag et al. (1990). To derive the eddy
diffusivities for heat and scalar transport, we can use
(16a) and (25b). The corresponding countergradient
terms are given by (9b) and (26). A suitable formu-
lation for the boundary layer height z; is given by Troen
and Mahrt (1986).

The actual application of the present results and
comparison with field data is beyond the goal of this
paper and will be the subject of further study. We ex-
pect, however, that the present approach will result in
physically more realistic vertical profiles for heat and
scalars. For example, a model based on a local K ap-
proach without countergradient terms will lead to a
superadiabatic temperature profile over a deeper layer
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than typically observed. In such an approach this is
the only way to maintain the upward heat (and scalar)
transport from the surface. Consequently, the temper-
ature near the top of the CABL may be underestimated
by 1 K or more (see also Deardorff 1972), and the
scalar profiles will also be affected.
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