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ABSTRACT

Until recently, measurements below the ocean surface have tended to confirm “law of the wall” behavior,
in which the velocity profile is logarithmic, and energy dissipation decays inversely with depth. Recent mea-
surements, however, show a sublayer, within meters of the surface, in which turbulence is enhanced by the
action of surface waves. In this layer, dissipation appears to decay with inverse depth raised to a power estimated
between 3 and 4.6. The present study shows that a conventional model, employing a “level 212 turbulence
closure schemc, predicts near-surface dissipation decaying as inverse depth to the power 3.4. The model shows
agreement in detail with measured profiles of dissipation. This is despite the fact that empirical constants in the
model are determined for situations very different from this near-surface application. The action of breaking
waves is modeled by a turbulent kinetic energy input at the surface. In the wave-enhanced layer, the downward
flux of turbulent kinetic energy balances its dissipation. The mode! produces analytic descriptions for the depth
of the layer, and for profiles of velocity, turbulent kinetic energy, and dissipation. The surface roughness length
(in the water) is a critical parameter in the solutions. There are indications of a relationship between the
roughness length and surface wave parameters, such as the amplitude or inverse wavenumber. Roughness

VOLUME 24

Iengths at least up to | m appear to be feasible.

1. Introduction

At the ocean surface, momentum from the wind
transfers to the water, driving the ocean’s current sys-
tems. The momentum enters first the surface wave field
and is transmitted to the surface current field mainly
by wave breaking (e.g., Phillips 1977b). There is an
attendant enhancement of turbulent kinetic energy
close to the sea surface (e.g., Drennan et al. 1992); this
turbulence is responsible for mixing the momentum
down through the water, thus determining the shape
of the near-surface current profile. The current profile
in turn controls, for example, the movement of buoyant
material such as fish larvae and contaminants and,
from a more pragmatic perspective, determines the
overturning moment on offshore structures such as oil
platforms. However, measurement of currents, and
other parameters, in the wave-affected layer is clearly
difficult. Without measurement, models of the near-
surface dynamics are, at best, tentative.

The classic model of wind-driven currents in the
(rotating) ocean is that due to Ekman (1905). His so-
lution assumes a constant eddy viscosity and predicts
currents that decay exponentially with depth away from
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the surface. The constant eddy-viscosity model predicts
a similar exponential boundary layer near the seabed.
In the bottom boundary layer, measurements are more
straightforward and, at least within a meter or so of
the boundary, do not support the concept of exponen-
tial structure. Here, the widely accepted current profile
is logarithmic (e.g., Gill 1982).

The concept of the logarithmic bottom boundary
layer was originally based on laboratory tank obser-
vations. It is consistent with an eddy viscosity that var-
ies linearly with distance above the boundary (e.g.,
Prandtl 1952). Such an eddy viscosity can be justified
by mixing length arguments: the mixing length itself
is assumed to increase linearly as

I=«(lz]| + z), (1)

where « is von KArman’s constant (~0.4), z is the
vertical distance from the boundary, and z, is the
“roughness length,” representing the minimum scale
of the turbulence. The eddy viscosity then has the form

A4 = kuy(|z] + 20), (2)

where u, is the friction velocity (the square root of the
shear stress per unit mass). In the boundary layer, the
shear stress is constant, and the velocity profile is given,
to within an additive constant, by
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u

u=7*log(lzl + zg). 3)
By dimensional arguments, dissipation due to turbulent
motion () scales as the cube of the turbulent velocity
(g) divided by the length scale /(e.g., Batchelor 1953).
That is,

q3

=EZ’

where B is a constant of proportionality. In the bound-
ary layer, ¢ may be assumed to scale as u,. Thus, ina
constant stress layer, e decreases inversely with the dis-
tance from the seabed. In boundary-layer studies, a
region characterized by constant stress and a logarith-
mic velocity profile is commonly referred to as a “wall
layer.” Measurements of dissipation showing inverse
proportionality with depth are regarded as evidence, if
not proof, of “the law of the wall.”

In environmental modeling, a linear eddy viscosity
(2) and logarithmic velocity profile (3) have been ac-
cepted for many years as a description of the bottom
boundary layer, both in the atmosphere (e.g., Ellison
1956) and ocean (e.g., Bowden et al. 1959). For ocean
models that do not resolve the bottom boundary layer,
the common quadratic and linear drag laws represent
approximate conditions immediately at the top of the
log layer. For the ocean surface, where observations
are less reliable, the assumption of a log layer does not
have such a long tradition (e.g., Madsen 1977). (See
also Jenter and Madsen 1989, and Craig et al. 1993
for discussions of the modeling implications of log lay-
ers at both top and bottom boundaries.) There are now,
however, a number of observations that appear to con-
firm the presence of such a surface layer. Among the
more frequently quoted reports are those of Shemdin
(1972, 1973) and Wu (1975) in tanks, Churchill and
Csanady (1983) and Csanady (1984) in lakes, and
Richman et al. (1987) in the ocean. We also note, in
this context, observations by Jones (1985) that indicate
log-layer structure to within five wave amplitudes of
the surface, at winds of up to 15 m s™! in Bass Strait.

The complication at the ocean surface, relative to
the ocean floor, is surface waves, which have the po-
tential to modify the dynamics in at least three different
ways. The first, and best understood, is through Stokes
drift (e.g., Phillips 1977a, section 3.3). Of the mea-
surements cited in the previous paragraph, all but the
final two sets were based on observation of drifters and
will therefore be affected by Stokes drift. Bye (1988)
suggests that the current profile for Stokes drift is also
likely to be logarithmic. In this case, a logarithmic ve-
locity profile may not necessarily indicate law-of-the-
wall behavior.

The second influence of waves is mentioned for
completeness. Waves that are not perfectly irrotational
will generate a Reynolds stress on the mean motion
(e.g., Phillips 1977a, section 3.4). Cheung and Street

€
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(1988) demonstrated and discussed this effect in their
Case II experithent with wind-ruffled, mechanically
generated waves in a tank. The resultant mean current
profile (this time measured in an Eulerian frame) was
again logarithmic, but with « in (3) taking an appar-
ently larger value than 0.4.

Cheung and Street (1988) briefly reviewed labora-
tory experiments and some field measurements set up
to examine the influence of wind waves. They noted
that most near-surface measurements tend to show
agreement with the law of the wall, but with occasional
evidence of excess downward momentum fluxes due
to the presence of surface waves. Their own Case 1
experiment, with purely wind-driven waves, again
confirmed the logarithmic velocity profile, but again
indicated increased values of «, this time with increasing
wind speed and wave height.

The third influence of surface waves is the focus of
the present paper. As waves begin to break, they release
turbulent kinetic energy that is available to be mixed
down into the surface layer. Recent innovative field
techniques have allowed measurement well into the
(breaking ) wave-affected surface layer of lakes and the
ocean. Kitaigorodskii et al. (1983) reported measure-
ments using “drag spheres” mounted on a tower in
Lake Ontario. These showed a region of enhanced tur-
bulence down to about 10 times the wave amplitude,
with “law-of-the-wall” behavior below that. Thorpe
(1984) reported similar conclusions based on inter-
pretation of acoustic reflections from bubbles in Loch
Ness. Thorpe (1992) reiterated these observations,
suggesting a wave-affected layer of depth approximately
0.2 of the surface wavelength. An elaborate, but fore-
shortened, experiment conducted by Osborn et al.
(1992) used upward-looking acoustic equipment and
shear probes mounted on a submarine in the Pacific
Ocean. Their short records again show qualitative be-
havior consistent with the results of Thorpe (1984)
and Kitaigorodskii et al. (1983).

Below the wave-enhanced zone, energy dissipation
measurements (e.g., Osborn et al. 1992) and current
measurements (e.g., Richman et al. 1987) show quan-
titative agreement with the law of the wall. For the
wave zone, there are few fully quantitative results. From
vertical-profiler measurements, however, Gargett
(1989) inferred a dissipation rate decaying as the in-
verse fourth power of distance below the surface, sub-
stantially faster than the first-power decay predicted by
the law of the wall. Further work on the Lake Ontario
tower data (Drennan et al. 1992; Agrawal et al. 1992)
has also provided quantitative results. Drennan et al.
(1992) note that their dissipation rates also appear to
decay with a power law close to —4 (in fact, in the
range —3.0 to —4.6).

Anis and Moum (1992) present a very well-defined
profile of dissipation, measured in the equatorial Pacific
with a free-falling “Rapid-Sampling Vertical Profiler.”
Their profile again shows strong intensification of dis-
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sipation, extending down to a depth of about 25 m,
under winds of around 8 m s~'. Plotted in log-log co-
ordinates (not done in their paper), the data again ex-
hibit power-law decay, with an exponent close to —3.

Drennan et al. (1992) compared their results with
those from grid-stirring experiments conducted, for
example, by Thompson and Turner (1975) and Hop-
finger and Toly (1976). These experiments were an
attempt to understand mixed-layer dynamics: mixing
of stratified water in a tank is induced by oscillating a
solid grid just below the surface of the water. Thompson
and Turner (1975) suggested that the grid oscillation
may be a reasonable analogy for breaking surface
waves. Both sets of experiments appear to show tur-
bulent velocities decaying as z ™!, that is, inversely with
depth below the grid. By (4), this turbulence structure
implies energy dissipation decaying as z™*. In other
words, recent measurements of wave-enhanced tur-
bulence and earlier experiments designed to simulate
the same dynamics appear to give similar behavior.

As noted by Cheung and Street (1988), many tank
and lake observations of logarithmic velocity profiles
have also revealed a sublayer, between the surface and
the log layer, in which the velocity varies linearly with
depth. We shall show in the present study that velocity
variation as z (to be contrasted with the turbulent ve-
locity variation of z7!) is also consistent with dissipa-
tion of z™*. The sublayer may thus be indicative of the
appearance of whitecapping, as suggested by Csanady
(1984). Bye (1988) has demonstrated that a linear-
velocity layer may also occur in Stoke’s drift, but the
typical thickness of such a layer (for uy ~ 0.01 ms™")
is much less than 0.01 m. ’

Thompson and Turner (1975) derived support for
the power-law behavior of the energy dissipation from
a very simple model of the turbulent kinetic energy
balance. The actual value of the power was derived
empirically from the data. [For future reference, we
note that their empirical constant « in (1) takes a value
smaller than von Karman’s, in contrast with the con-
clusion of Cheung and Street (1988).] As discussed in
more detail in the following section, the Thompson
and Turner model may be regarded as a forerunner of
more complicated formulations, based on the turbulent
kinetic energy equation, to assess the influence of
breaking waves on the mean near-surface currents.

Another form of model (e.g., Jenkins 1986, 1987;
Weber 1983; and Weber and Melson 1993a) incor-
porates both wave and current dynamics, allowing ex-
plicit representation of the Reynolds stresses due to the
wave motion. These models assume an algebraic for-
mulation for the (nonwave) eddy viscosity and do not
specifically simulate the effect of wave breaking on the
turbulence. Weber and Melson (1993b), however, have
recently experimented with a parameterization of the
momentum transfer from breaking waves to the mean
motion for inclusion in such models. Another approach
is the adoption of eddy viscosity formulations that at-
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tempt to account for the action of breaking surface
waves. Thus, Weber (1981, using the formulation of
Kitaigorodskii, 1961), and Davies (e.g., 1985, 1986,

" 1987) have tested eddy viscosities specified as a func-

tion of the wind and wave conditions. Interestingly,
Jenkins (1987) specified an eddy viscosity according
to (2) to within 10 wave amplitudes of the surface
[based on Thorpe’s (1984 ) results] but then constant
over the surface layer. A z™* dissipation implies, by
(4), that u, varies as z~*, which in turn by (2) implies
that the eddy viscosity is indeed constant in the wave-
affected zone.

In a model that includes solution of (some form of)
the turbulent kinetic energy equation, the eddy vis-
cosity may be represented (on dimensional grounds)
as the product of a turbulent velocity and length scale:
this is, in fact, its form in (2). With the turbulent energy
explicitly represented, the influence of breaking waves
may be incorporated inito a model as a source of energy
at the surface. The energy input is usually assumed,
again on dimensional grounds, to be proportional to
the cube of the friction velocity. This is the approach
to be adopted in the present study (see section.2).

In early examples of this approach (Kundu 1980;
Klein and Coantic 1981), the inclusion of waves was
almost incidental to a broader investigation of mixed
layer deepening. Both studies led to the conclusion that,
while velocity profiles within meters of the surface were

‘affected by the inclusion of breaking waves, properties

deeper in the water, and particularly the depth of the
mixed layer, were unaffected. In a more theoretical
study, Ly (1986, 1990) directed his attention specifi-
cally at the wave-affected zone. In this case, the wave
layer was represented as a surface of both mean and
turbulent energy discontinuity bétween the atmosphere
and ocean. The discontinuity was expressed in pro-
portionality to #3 but not explicitly related to wave
conditions nor given strong physical justification.
The turbulence closure schemes employed in each
of the previous three studies are similar in concept but
different in detail. In the present study, we adopt the
scheme attributed to Mellor and Yamada (1974,
1982), based on the “Rotta” and “Kolmogorov” ap-
proximations to the equations for turbulent kinetic en-
ergy and Reynolds stresses. At the so-called level 2Y,
the scheme is highly empirical, requiring the assump-
tion of a fundamental length scale and the specification
of six numerical constants. The constants have been
determined principally from observations of scenarios
in which shear production of turbulence balances dis-
sipation and in which the fundamental length scale
can be safely specified as in (1) (Mellor and Yamada
1982). These are flows near solid boundaries in which
the turbulence schemes asymptote to the law of the
wall as the boundary is approached. However, the con-
stants appear to be valid across a range of situations,
including atmospheric boundary layer flows, penetra-
tive convection and ocean mixed layer establishment
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(e.g., Mellor and Yamada 1982; Rodi 1987; Chen et
al. 1988; Wang et al. 1990).

We show in the present paper that the level-2%:
scheme appears also to give reasonable results, given
the present state of knowledge, in the wave-affected
surface layer of the ocean. This is an unexpected result
since the empirical constants are determined for a quite
different dynamical regime. In the presence of breaking
waves, shear production and dissipation of turbulence
no longer balance, and the law of the wall no longer
applies. For well-mixed water, as the surface layer will
be, the level-2%2 closure scheme requires only three
empirical constants. These three appear to be consistent
with recent observations of surface dynamics.

2. The model

We will work with a one-dimensional ocean model,
equivalent to that described by Ekman (1905). The
momentum equations are expressed in terms of the
two horizontal velocity components # and v as

ou 0 ou

E—a—Z(A&)—fv (5)
and

v 4 i)

5 5( &) = —fu, (6)

in which z is the vertical coordinate, measured positive
upward from the seabed, z = —H, to the surface, z
= (. Time is represented by ¢, fis the Coriolis param-
eter, and A is the eddy viscosity. As foreshadowed in
the previous section, 4 is to be determined with a level-
2'% turbulence scheme (Mellor and Yamada 1982). In
this scheme, A is expressed as

A= IQSM, (7)

where /(z) is the turbulent length scale, as before, and
g, the turbulent velocity scale, is formally defined as
the square root of twice the turbulent kinetic energy
density b (i.e., g> = 2b). The parameter Sy, in (7) is
generally expressed as an algebraic function of the
Richardson number. For unstratified water, however,
it is an empirical constant. The equation for the tur-
bulent kinetic energy is

b J ab ou\? dv\2 2qb
G5 (s ) = s (52) +(52) ) -7
(8)

in which S, and B are also empirical constants. [ Note
that g and b in (8) in reality represent the same variable.
The distinction is maintained for convenience.] In (8),
the first term is the time rate of change of the energy,
the next term represents its vertical diffusion, the first
term on the right-hand side represents energy genera-
tion by velocity shear, and the final term is the dissi-
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pation, expressed exactly as in (4). The equation is
clearly a highly approximate form of the turbulent ki-
netic energy balance. In a somewhat convoluted man-
ner, for example, the energy is assumed to diffuse ac-
cording to an eddy diffusion relationship, while the
dissipation is based on (steady state) dimensional ar-
guments presented, for example, by Batchelor (1953).

As an aside, we note that the full level-2}» scheme
usually includes advective terms on the left-hand side,
while the level-2 scheme neglects the left-hand side
completely, assuming a strict balance between shear
generation and dissipation of turbulence.

To finalize the set of equations, the last requirement
is a specification of the turbulent length scale /. As
noted by Mellor and Yamada ( 1982), the need for this
length scale is perhaps a major weakness of the closure
models. The simplest model for /is probably the mixed
layer depth (e.g., Mellor and Durbin 1975), which in
the case of unstratified water becomes the full water
depth. The most complex model for / is possibly its
specification using a differential equation similar to that
for b (Mellor and Yamada 1982). There are numerous
suggestions and ongoing discussion in the literature as
to the best form for / (e.g., Blackadar 1962; Lobocki
1992). One feature common to most of the formula-
tions for / is that they asymptote to the boundary layer
form (1). As we shall see, the empirical constants in
(8) are usually chosen so that the full turbulence model
asymptotes to the law of the wall in this case. In the
present formulation, we will assume that / behaves like
(1) near both the top and bottom boundaries. The
simplest way to do this is to specify a “bilinear” rep-
resentation as follows:

Il=k(zo—2z), —(H—2z0+ zou)/2<z<0

= K(H‘I' Zog + Z), —H<z< _(H— zo + Z()H)/z
(9)
(e.g., Jenter and Madsen 1989; Craig et al. 1993), where
2y and zyy are roughness lengths for the top and bottom
boundaries, respectively, both assumed invariant in
time. The bottom roughness is a relatively well under-
stood physical parameter (e.g., Jenter and Madsen
1989), and its significance for surface currents is doc-
umented (Craig et al. 1993). For notational simplicity,
we set Zoy = Zp in our formulae and fix zoy = 0.1 m
for specific calculations. Its role as a free parameter is
henceforth ignored. For the surface roughness length
Zo a subsidiary model may have to be introduced but,
for the present, it is assumed to be a known constant.
The full model, less boundary conditions, is now
stated in Egs. (5)-(9). The empirical constants to be
specified are Sy, S;, and B in the turbulence model
itself and « and z, in the length-scale model. According
to Mellor and Yamada (1982), appropriate values (in
their context) for the first three constants are

(Sars Sy, B) = (0.39, 0.2, 16.6),
with von Karman’s constant x = 0.4.

(10)
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TaBLE 1. Set of parameter values assumed for
illustrative model solutions.

Parameter Symbol Value
Wind speed 9ms!
Friction velocity Uy 001l ms™
Wave energy factor o 100
Surface roughness Zo 0.1 m
Bottom roughness ZoH 0.lm
Water depth H 100 m
Coriolis parameter f 1074 57!
Vertical discretization 41 points
Numerical time step 3600 s
von Karman’s constant K 0.4
Model constant Sy 0.39
Model constant Sy 0.2
Model constant B 16.6

Boundary conditions for the velocity components
are straightforward. At the water surface the stress is
set equal to the wind stress, represented by the friction
velocity u, . Again following Ekman (1905), we specify
a constant wind directed in the u direction, so that

d
H_w2 at z=0 (11)
0z
d
4Z-0 a z=o. (12)
- 9z
At the seabed, zero-slip requires that
u=v=0, z=-H. (13)

The surface boundary condition on g allows us to
introduce the influence of surface waves. Here, we
specify an input of turbulent kinetic energy, assumed
to result from breaking waves of all scales. However,
while the level of the momentum flux from the at-
mosphere to the ocean is believed to be close to the
total wind stress (e.g., Donelan 1979), as assumed in
(11), there is apparently no such consensus in the lit-
erature on the turbulent kinetic energy flux. Typically,
as noted in section 1, this quantity has been parame-
terized as proportional to the cube of the friction ve-
locity in air or water, where the proportionality con-
stant is not well known. In the absence of direct mea-
surements, most authors leave the constant unresolved
(e.g., Phillips 1985). According to Drennan et al.
(1992), however, the kinematic turbulent kinetic en-
ergy input can be represented by u3C, where C, is the
phase speed of the peak of the slope spectrum of the
surface displacement field..

More recently, Banner (personal communication)
has proposed a.model for estimating the contribution
from air-flow separation over breaking waves to the
atmospheric drag coeficient of the sea surface. This
calculation produces a prediction of the spectral dis-
tribution of breaking wave-induced stress on the water
column. The product of this stress with the intrinsic
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phase speed ¢ of the breaking regions, integrated over
the spectrum, in turn provides a prediction for the ki-
netic energy input as a function of u, and sea state.
The perceived merit of this approach is that the energy
flux from the wind to the wave field very closely
matches that transferred from the wave field to the
water column by wave breaking; this criterion is not
fulfilled by previous parameterizations. The additional
kinetic energy input from tangential stresses appears
to be of secondary importance, in view of the estimated
shear stress magnitude and the relatively small asso-
ciated (wind plus wave drift) velocity [estimated here
as U, from the work of Wu (1983)].

Surprisingly, it is found with this model that the tur-
bulent kinetic energy flux is relatively insensitive to the
sea state and is well approximated by aul, with «
~ 100 for wave ages embracing very young wind seas
to fully developed situations. The surface condition on
g or b is thus stated as

[qu—a—Z =auj at z=0. (14)

The parameter « will be described as the “wave energy

factor,” assumed in model calculations to take a con-
stant value of 100.

At the seabed, we assume zero flux of turbulent en-

ergy:
ob

—=0, z=-H. 15
% (15)
The implications of these equations, and particularly

(14), are examined in the following sections.

Numerical solution

Numerical solution of the set of equations (5)-(15)
is complicated by the need to resolve the surface and
bottom boundary layers. This problem may be over-
come by transforming the vertical coordinate according
to

*dz’
o I(z)

The transformation slightly simplifies the equations,
in the sense that all instances of /(z)d/dz are replaced
by d/dy. Its major advantage, however, is that it ex-
pands the near-boundary regions, where / is small, rel-
ative to the interior part of the water column. Loga-
rithmic velocity layers in z are replaced by layers in
which the velocity varies linearly with y.

For the present paper, the set of equations (5)-(15)
is expressed in terms of y rather than z, then solved by
finite differences in both y and ¢. In space, the y domain
is discretized into equally spaced intervals, and the dif-
ferentials expressed in standard, second-order accurate,
centrally differenced form. Each of 4 (or g), 4, and v
are collocated. In time, the equations are forward time-

y= (16)
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FiG. 1. Analytic solution for g and u as a function of depth for the
nonrotating situation, with a strict balance between shear generation
and dissipation in the turbulent kinetic energy equation.

stepped, and the vertical second derivatives solved im-
plicitly. In (8), b in the dissipation term is also eval-
uated at the new time step. In each equation, variables
not being integrated, including ¢, take their current
values. This implicit time integration is very stable.

In the time integrations the forcing, specified through
boundary conditions (11) and ( 14), is applied impul-
sively at ¢ = 0. The velocity components were set to
zero at t = 0. The surface value of g was set att = 0
to the analytic surface solution for a shear production—
dissipation balance (see section 3), with deeper values
set to Y0 of the surface value. The preset surface value
improved the stability of the model.

For examples to be presented in the following sec-
tions, assumed parameter values are listed in Table 1.

3. Shear production balancing dissipation

In this section, we will look in some detail at the
“usual” boundary-layer balance between the shear
production and dissipation of turbulent kinetic energy.
This is the situation that ieads to classical logarithmic
boundary layers. Although the numerical equations are
time stepped, we will concentrate in this paper on the
steady solutions. We comment briefly on time scales
required to establish steadiness at the end of the present
section.

The relevant steady equations are (5) and (6), with
the d/4t terms eliminated, and (8), with the left-hand
side replaced by zero. The two terms on the right-hand
side represent the required shear production and dis-
sipation, respectively.

The surface boundary condition is (11), which, by
(8), immediately gives

B 1/4
q=u*( ) at z=0. (17)

Shr
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With values for B and Sy, given in (10),

B 1/4
— = 2.55. 18
(s) (18)
Now, by (7) and (9),
A= (S3yB)"*kuyzo = 1.00kuyzo at z=0, (19)

in agreement with (2). Of course, the constants are
chosen to ensure this agreement ( Mellor and Yamada
1982).

If, for the moment, we ignore rotation so that the
right-hand side of (5) is zero, then v = 0 and, by (8),
g is constant, taking the value given by (17) throughout
the water column; u can be determined analytically as

(=+3)
Zo+—)
Y og ’ “H <o
u=9 x(SYB)'* °zy(z0—z)’ 2 7T
Uy zot+H+z H
1 —H<z<-7=.
(SLB) AT, TH<zs—5
(20)

The logarithmic form of u at both top and bottom
boundaries is explicit in this solution, which is plotted
in Fig. 1. The analytic result provides a test for the
numerical solution, and the two are in fact indistin-
guishable on the scale of the figure.

With rotation reintroduced, the solution is no longer
so amenable to analytic solution. Steady numerical so-
lutions for u, v, and g are shown in Fig. 2. Very close
to the top and bottom boundaries, there are layers in
which g and v are strictly constant and u varies loga-
rithmically. The velocity now spirals to the right with

z (m)

-s0f
60
70t
80}

90F

%2

N N . "
-0.05 0 0.05 0.1 0.15 0.2
u,v,q (m/s)

0.15 -0.1

FIG. 2. Profiles of g and u (solid lines) and v (dashed line) for the
case of a balance between the shear generation and dissipation of
turbulent kinetic energy. Surface values are marked with an “X” for
clarity.
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depth (for positive /), in classic Ekman fashion. Surface
velocities are considerably reduced, but the surface
value of g is unchanged from that in the irrotational
situation. For future reference, we note that the velocity
profile in the log layer may be expressed analytically
as

u=U

log(zo— z),  (21)

Usx

«(SyB)'"*
in which U is an additive constant velocity that must
be determined from the full solution.

By (19), the eddy viscosity (=/gS,,) may be scaled
as ki | z|, the form of the viscosity assumed by Craig
et al. (1993), so that their conclusions are valid in the
present context. In particular, the dynamical vertical
length scale is approximately «u,/f (in fact, an over-
estimate since now ¢S, decreases through the water
from a maximum value of u, at the surface). The log-
layer depth will be small relative to xu/f, and the
amount of turning and decay in magnitude of the cur-
rents with depth will increase if xu, / f decreases relative
to the water depth. For water depths greater than xu /
Jthe solutions are not sensitive to boundary conditions
at the bottom. In Fig. 2, xu,/ftakes a value of 44 m.
As an indication of the depth of the log layer in this
case, the ¥ component of the velocity agrees with the
logarithmic solution (21) to within 0.2% at 0.4 m, and
7% at 4.4 m depth.’

At this stage, we can make a passing comment about
timescales. If the eddy viscosity in (5) or (6) is again
represented by «u, | z|, then the spinup time estimated
from the left-hand side of either equation (using either
analogy with the constant viscosity case or a Bessel
function solution) is of the order wH/2«xu,. For the
parameters from Table 1, this scale is approximately
10 hours. Thus, the steady solutions of Figs. 1 and 2
are established on timescales that are the same or
shorter than those associated with propagating weather
patterns. However, a long-duration (many days) in-
ertial oscillation is set up in the velocities (but not in
the solution for g). The inertial oscillation is damped
from the bottom boundary, a very much slower process,
since the value of g, and thus the eddy viscosity, is
much smaller near the bottom (rather than the top)
boundary (see Fig. 2).

4. Diffusion balancing dissipation

The situation of more importance in the present
context is that in which turbulent Kinetic energy is pro-
duced at the surface according to (14). To examine
this phenomenon in more detail, we will again simplify
the equations, once more considering the steady state,
but now eliminating the shear production term from

.(8). The turbulent kinetic energy equation now rep-
resents a balance between the downward diffusion of
energy injected at the surface and its dissipation.

Equation (8) can now be re-expressed as
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(22)

1, , @ aq? q*
—_ B — —_ —_—] =
3°% Pz <(ZO ?) 9z ) Zo

in the upper half of the water column, with an equiv-
alent form in the lower half. Equation (22) is very
similar to the energy balance invoked by Thompson
and Turner (1975). The right-hand side is identical,
being based on the same model for dissipation. In their
case, however, the left-hand side contained only a first
derivative in z, being a representation of the vertical
advection of turbulent energy. The solution to (22) is

H

ci(zg— 2"+ c(zg—2)", — > <z<0

=< di(zo+H+z2)'+d (zo+ H+2z)™",
_H< 7z — H
L = = 2 N
(23)

where
3 1/2
= =24

n (S,,KZB) 2 (24)

and ¢, ¢c_, d;, and d_ are constants to be determined
(analytically ) from boundary conditions (14) and (15)
and the continuity of g and d¢g/dz at z = —H /2.

The c_ term in (23 ) represents decay away from the
surface, and we expect this to dominate the c, term,
which represents reflected energy from the bottom. (For
the selected model parameters, c. is, in fact, zero to
within numerical accuracy.) Near the surface then, g
1s described by

q=C(z— z)™"?, (25)
1/3

where C = ¢2/°. With constants evaluated from (10),
the exponent #/3 in (25) takes a value 0.8. According
to (4), the dissipation therefore varies as

C3(ZO_ Z)—n—l )
€ B , (26)
that is, as z to the power of —3.4. Significantly, this
power is close to the values reported in studies in section
1. It lies well within the range —3.0 to —4.6 reported
by Drennan et al. (1992) and is similar to the —3 power
of the Anis and Moum (1992) data.

If we assume that (25) is the solution for ¢ (i.e., that
c; 1s exactly zero), then C can be determined from
boundary condition (14) to give, in the upper half of
the water column,

o wat 3B (2o V"
* S, p—z)

With g expressed in this form, it is clear that the vertical
length scale for the decay of both g and e is zy so that

(27)
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F1G. 3. Profiles of g, u, and v for the case of a strict balance between
the downward diffusion of turbulent kinetic energy from a surface
source and its dissipation.

(27) is indeed likely to be a very accurate approxi-
mation of (23). There will be effectively no turbulent
kinetic energy reaching even middepth if the water
depth is large compared with z,. It is also clear from
(27) that g is not a strong function of the wave energy
factor «, varying only as its 1/3 power. [ As noted in
section 2, we have chosen « to be constant, while
Drennan et al. (1992) equate it to the wave age.] The
constant factor in (27) evaluates, by (10), to

B 1/6
(3—) =2.51.

S, (28)

The multiplicative constantsin (17) and (27) agree to
within 2%. We will denote their ratio by

B 1/4 S 1/6
r=l=—| (=] ,
(5 (53)
which takes a value of 1.0.
In the constant stress layer near the surface [in which

the right-hand side of (5) may be neglected], u will
vary with depth as the positive power n/ 3. Specifically,

Zyp — Z)n/3
s

(29)

(30)

u=U-=3r*u,a™'’3?
<0

in which U is an additive constant similar to, but taking
a different value from that in (21).

The solution for g [ from Eq. (23)], using the set of
parameters from Table 1, is shown in Fig. 3, together
with the numerical solution for ¥ and v. (Again, the
numerical and analytic solutions for g are virtually in-
distinguishable on the scale of the figure.) With g of
the form (27), the eddy viscosity varies vertically as
(zo — z)'7"/3. That is, A4 is close to constant with depth
so that the profiles for # and v in Fig. 3 closely resemble
the classic Ekman (1905) solution. Obvious manifes-
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tations of this resemblance are the near linearity of the
velocity (30) in the constant stress layer and the near
equality in magnitude of u and v at the water surface.

5. The full model

Figure 4 shows the steady solutions for ¢, u, and v
for the full model, including the effects of both diffusion
and shear generation of turbulent kinetic energy. The
solution for g is replotted on an expanded vertical scale
in Fig. 5a, highlighting the surface layer. The figure
also shows the solutions from Figs. 2 and 3. It is im-
mediately apparent from these curves that g follows
the diffusion—dissipation model of section 4 in the near-
surface layer but then changes, over a relatively small
depth, to the shear-generation solution of section 3.
For convenience, we will refer to the near-surface as
“the wave-enhanced layer,” and the deeper water as
“the shear layer.”

We can estimate the depth of the transition from
the wave-enhanced to the shear layers as follows. In
the diffusive near-surface region the solution for g is
given by (27), while in the shear-dominated region it
takes the constant value (17). Given that the multi-
plicative constants in the two formulae agree, the sur-
face value of the diffusive g of (27) is bigger than the
shear-generated g of (17) by a factor of '/3. By equat-
ing (27) and (17), we get the depth at which the two
are equal to be

z, = zo(1 — r=3/"a )y, (31)

in which, by (24), the exponent 1/x has a value of 0.4.
In other words, the transition depth is proportional to
the roughness length and weakly dependent on the fac-
tor «. For a = 100 used in Fig. 5, z, = —6zy = —0.6
m. The actual crossover point for the shear and dif-
fusive curves in Fig. 5a is almost exactly 0.6 m, while
the full transition occurs between 0.2 and 2 m.

20F

-30F

-40F

z (m)

-50r
-60F
-70+
80+

90k

%3

—

0.05 0.1 0.15 0.2

-0.15 -0.1 -0.05 0
u,v,q (m/s)

FIG. 4. Profiles of ¢, u, and v for the full model, with a surface flux
of turbulent kinetic energy, shear generation, and dissipation.
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The full (steady) solution for u is similarly replotted
in Fig. 5b, again with the solutions from sections 3 and
4. As s to be expected from Fig. 5a, there is a transition
from diffusion-dominated to shear-dominated behavior
near z,. The horizontal displacement of the diffusive-
u curve in Fig. 5 is simply due to the change in con-
ditions below z,, corresponding to a different additive
constant in (30).

Below the transition depth, the velocity profile is the
same as that for the shear generation—dissipation bal-
ance. In the surface layer, the influence of the enhanced

turbulence is to reduce the velocities below those an-
ticipated for strictly log-layer behavior. We can estimate
the magnitude of the velocity deficit as follows. We
assume the transition takes place within the constant
shear layer and set the velocities (21) and (30) equal
at z = z,. The velocity deficit in the surface layer is

now given by
log(

Zyg — Z

Uy 20— Z

— + 3rfual3
K(S3B) "7 a) *<

(-2 e

For parameter values relevant to Fig. 5, (32) gives a
reduction in surface velocity, due to the presence of
the wave-enhanced layer, of 0.024 m s~' compared
with the exact value of 0.029 in the figure.

It is also straightforward to estimate the enhance-
ment of dissipation due to the wave energy input. This
simply requires integration of the dissipation, estimated
from (17) and (27), from z, to the surface. For (17),
the integrated dissipation is given by

ou = —

Zp

20— 4

Zo 2o

0
f edz = r3ul loga, (33)

while for (27),

0
fe¢=uua—n, (34)

which evaluate to 6 X 1076 and 1.3 X 10™* m?s73,
respectively, for the parameters in Table 1. The near-
surface dissipation due to the influence of waves dom-
inates that due to shear in both the surface and deeper
layers by a factor of about 20, which is independent
of u,.

The principal formulae of this section, those for the
transition depth (31), the surface velocity deficit (32),
and the wave-enhanced dissipation (34), are only ac-
curate if the wave-enhanced layer is no deeper than
the log layer, that is, z, < k1, / f. In pictorial form, once
the intersection of the diffusive and shear curves on
Fig. 5a falls below the vertical part of the shear curve,
the accuracy of the formulae will begin to decline.

As has already been noted, the roughness length z,
defines the vertical scale for the wave-enhanced layer.
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FI1G. 5. Near-surface profiles of (a) ¢ and (b) u, showing the full
solution (solid line), the diffusion—dissipation balance (dashed line),
and the shear—dissipation balance (dotted line).

This is apparent in the formulae for the turbulent ki-
netic energy (27), the velocity (30), and the layer depth
(31). For a given u, and «, however, the value of z,
does not affect the surface value of ¢, the velocity deficit
du (although it does affect the absolute value of u), or
the total energy dissipation in the surface layer.

The effects of changes in zo are demonstrated in Fig.
6, showing profiles of ¢ and u for zy values of 0.1, 0.5,
and 1.0 m. (In all cases, the bottom roughness was
kept at 0.1 m.) Anticipated, and readily apparent, con-
sequences of increasing z, are the deepening of the
wave-enhanced layer, increases in subsurface turbulent
energy, and reduction of near-surface velocities.

6. Comparison with data

The turbulence closure model appears to successfully
reproduce two recently observed features of the influ-
ence of waves on subsurface dynamics: appropriate
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FIG. 6. Profiles of (a) g and (b) u for a roughness lengths of 0.1,
0.5, and 1.0 m. Curves near the surface move from right to left with
increasing z, for g, but from left to right for u.

power-law behavior immediately below the surface and
preservation of log-layer behavior deeper in the water.
In this section, we pursue a more quantitative com-
parison of the model with published data. As we shall
see, this comparison leads to questions about appro-
priate choices for the surface roughness length z,.

On the basis of their Lake Ontario data, Drennan
et al. (1992) postulated an empirical dissipation law
in the surface layer given by

€= 1.84ulak™3(—z)*, (35)

in which k is the wavenumber of the peak of the slope
spectrum. This formula bears strong similarity to that
derived from (27), that is,

€ =24udazl(zy— z)™"!,

(36)

provided z, takes a value similar to k~!. Both the al-
gebraic form of the formulae and the empirical constant
are in close agreement. In (35), « is specifically iden-
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tified as the wave age, whereas, as discussed in section
2, we have preferred to keep it as a constant. For a u,
of 0.011 ms™}, as used in examples in the present
study, the wave age (the ratio of the phase speed of the
steepest waves to u, ) 1s estimated (by the wave model
of Banner, see section 2) to take values between 183
and 396, from young to old seas, with a corresponding
k range of 1.86-0.46 m™'.

As noted in section 1, and in particular by Cheung
and Street (1988), many measurements showing log-
arithmic near-surface velocity profiles have also re-
vealed a linear profile even closer to the surface. Ac-
cording to (30), in the wave-enhanced layer the velocity
should vary as z%%, very close to linear. Interpolating
their measured linear profiles to the surface, Churchill
and Csanady (1983) and Csanady (1984) calculated
an observed surface Reynolds number, defined by

_ 30zouy _ 30zy(0u/dz) at

A Uy

Re z=0. (37)

The parameter Re appeared to be independent of
both 1, and z,, with values ranging between 17 and
27 but averaging about 22. For the theoretical loga-
rithmic velocity profile (21)

N
K(S3B)"*

while, for a wave-enhanced “linear” profile (30),
Re = 30nr*a™'? = 16. (39)

Both solutions (38) and (39) are indeed independent
of u, and zy, but the wave-enhanced solution gives a
surface Reynolds number much more compatible with
the observations. For the Stokes drift profile (Bye
1988), the surface Reynolds number takes a value of
86, of similar order to the log-profile value.

Some of the data on which (35) is based were pub-
lished by Agrawal et al. (1992). Figure 7 shows a com-
parison between model results and the Agrawal et al.
data, plotted in their coordinates, with ¢ nondimen-
sionalized by u}/«z, and depth by u%/g. While the
data are for a range of conditions, the model results in
Fig. 7 are for the parameter values listed in Table 1
(including a fixed u, of 0.011 m s™') but for two z,
values, 0.1 and 1.0 m. The resulting pair of solutions
envelope most of the near-surface dissipation values.
There are, however, some high values that are not ac-
counted for by this set of parameters. The law-of-the-
wall solution is shown as a dotted line on Fig. 7.

The Osborn et al. (1992) data, discussed in section
1, allow for similar comparison. Figure 8 shows model
results, again for z; values of 0.1 and 1.0 m, plotted
against data from the Osborn et al. Figs. 9b and 9d. In
this case, the model was run with a u, of 0.007 m s ™!
(from their Table 1), and a water depth of 200 m. This
water depth is much greater than the depth scale xu, /
/, so the bottom conditions should not influence the

Re 75 (38)
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F1G. 7. Comparison of modeled dissipation profiles for z, = 0.1
and 1.0 m with data from Agrawal et al. (1992). Dissipation is non-
dimensionalized as exz/u3, and depth as zg/u%. The dotted line rep-
resents the conventional law-of-the-wall solution.

solutions. Again, the two model curves appear to en-
velope the data points near the surface. There is perhaps
some evidence of surface enhancement extending be-
yond the depth predicted by the model.

The data in Fig. 8 are from only two transects
through the surface layer. The dissipation curve pre-
sented by Anis and Moum (1992) (see section 1) is
an average of approximately 80 profiles collected
throughout a single night. As we have already noted,
the slope of their dissipation curve, —3, is very similar
to the —3.4 predicted by (36). However, an attempt
to fit the model to the data, using u, = 0.0087 ms™!,
f=0.00002 s7!, and H = 200 m (again, greater than
kU /f), required a zy of 8 m to produce a reasonable
fit (Fig. 9). This anomolously large value is probably
indicative of failure of the model, but the Anis and
Moum dataset, unlike others used here, was collected
in the presence of swell. It is possible that swell may
lead to dynamics, particularly the downward advection
of smaller scale turbulence not represented in the model
[Eq. (8)]. Vertical advection, deepening the wave-af-
fected layer, could also result from Langmuir circula-
tion.

We have, to this stage, avoided detailed discussion
of the surface roughness zy. The roughness of the sea
surface as felt by the atmosphere is a relatively well-
understood, but empirical, function of wind speed and
wave age (e.g., Donelan et al. 1993). In the atmosphere,
estimation of the roughness length is usually based on
extrapolation of the logarithmic velocity profile to the
sea surface. The roughness felt by the ocean, however,
is not well known or understood, essentially because
of the dearth of velocity measurements in the ocean
surface layer. While many authors acknowledge the
need for z, (e.g., Madsen 1977; Mellor and Yamada
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F1G. 8. Comparison of modeled dissipation profiles, for zo = 0.1
and 1.0 m, with data from Osborn et al. (1992). Data are from their
figures 9b (+) and 9d (X). The dotted line represents the solution for
a pure shear generation—dissipation balance.

1982; Jenter and Madsen 1989; Craig et al. 1993), most
seem reluctant to commit themselves to a value. Mad-
sen (1977), in fact, referred to the “rather unpleasant
problem of estimating” z,. He suggested an order of
107 m. Earlier, Shemdin (1972, 1973), on the basis
of wind-tunnel experiments, suggested 10 ™% m, similar
to the atmospheric value.

Churchill and Csanady (1983) and Csanady (1984)
applied the atmospheric approach to their sets of near-
surface drifter data collected in lakes. The observations
were taken under relatively light wind conditions (wind
velocities at 3 m less than 5 m s™!), with u, estimates

-20F

Depth (m)

230k

.50 . "
10° 10 10°
Dissipation (W/kg)

10°

F1G. 9. Comparison of modeled dissipation profiles (discontinuous
lines) with Anis and Moum (1992) data (solid line). The dotted and
dashed lines are the modeled dissipation with z; = 1 and 8 m, re-
spectively.
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generally less than 0.01 m s™!. Their estimates for z,
Iie in the range of 0.01-0.1 m (accounting for the fact
that their roughness parameter, “r” in their notation,
is 30 times zp).

In the absence of other representations, the most
popular approach to z, is probably adoption of the
“Charnock (1955) formula,”

, (40)

(in which a is a constant) justified by analogy with the
atmosphere (e.g., Ly 1990). As noted in section 1, Bye
(1988) interpreted near-surface log and linear velocity
profiles strictly in terms of Stokes drift. On this basis,
he proposed use of (40), with a of order 1400. For the
Csanady data, this formula again leads to z, values
around 0.01 m.

Observations of near-surface drifters are clearly not
taken under conditions of strong whitecapping or wave
breaking. From the present study, we are able to make
tentative statements about z, under more severe con-
ditions. As noted in section 1, Thorpe (1992) and oth-
ers suggested that the wave-affected layer has a depth
of order 10 times the wave amplitude. Equating this
depth to the transition depth of (31) suggests that z,
must then be of the same order as the wave amplitude.
However, this statement raises questions about the ap-
propriate wave amplitude to be used. While Thorpe’s
(1992) comment was based on the root-mean-square
wave height, he has recently (Thorpe 1993) conjectured
that high frequency waves, rather than the mean wave
field, are the major source of energy input to the upper
ocean. This conclusion also emerges from modeling
by Banner (see section 2). In their grid-stirring exper-
iments, Thompson and Turner (1975) equated z, to
the stroke of the grid motion. This may have some
analogy to the wave amplitude. We have noted above
that comparison between the model and the Drennan
et al. (1992) formula suggests z, to be of the order of
the inverse wavenumber of the steepest waves. Com-
parisons with the Agrawal et al. (1992) and Osborn et
al. (1992) data indicate values for z; between 0.1 and
1.0 m.

We note in passing that z, appears in most formulae
in the previous two sections as a product with «!/”.
Thus, changes in either of the two parameters will have
similar consequences.

Determination of z, will no doubt receive increasing
attention as more measurements near the sea surface
become available. In reality, the adoption of the
roughness length concept is an admission that our
mixing length models fail very close to the surface. For
the ocean, z, is no doubt a function, at least, of sea
state, swell, and Langmuir circulation. In the longer
term, we will hopefully develop a more dynamical, less
empirical, basis for surface roughness lengths relevant
10 both the ocean and atmosphere.

CRAIG AND BANNER

2557

7. Conclusions

The classical law of the wall description of the ocean
surface layer predicts dissipation decaying as z~! away
from the surface. However, recent measurements
(Gargett 1989; Drennan et al. 1992; Anis and Moum
1992) indicate much more rapid dissipation in the
range z °-z %5, presumably as a result of increased
turbulence due to surface waves. This dissipation is
similar to the z™ behavior observed in earlier grid-
stirring experiments (Thompson and Turner 1975;
Hopfinger and Toly 1976). Model results presented in
the present paper predict a decay rate of z734, well
within the range of the observations. The predicted
velocity profile associated with this dissipation varies
linearly with depth, consistent with drifter measure-
ments very close to the surface (e.g., Csanady, 1984).

The essential elements of the model are

1) a Prandtl-type (1952) mixing length specifica-
tion;

2) aturbulent kinetic energy equation representing
a balance between parameterized versions of diffusion,
dissipation, and shear generation;

3) an eddy viscosity proportional to the mixing
length and the turbulent kinetic energy; and

4) a surface turbulent kinetic energy input, due to
the waves, set proportional to the cube of the friction
velocity.

The three empirical constants (aside from von Kar-
man’s constant) used in the model were given values
recommended by Mellor and Yamada (1982). The
model not only predicts the form of the dissipation but
is able to reproduce reasonably well, given the data
scatter, dissipation measurements recently published
by Agrawal et al. (1992) and Osborn et al. (1992).

In the wave-enhanced layer, the model predicts dy-
namics that are a balance between the downward flux
of turbulent kinetic energy from the surface and its
dissipation. Beneath this layer, there is a relatively rapid
transition to classical law-of-the-wall behavior, in which
the shear generation of turbulent kinetic energy is bal-
anced by dissipation. The dynamics of the shear-gen-
eration layer are almost unaffected by the presence of
the wave-enhanced layer. For model studies in which
the very near-surface dynamics are of no interest, there
appears to be no need to include the surface injection
and subsurface diffusion of the turbulent kinetic energy.

The model makes specific predictions for the dy-
namical variables in the surface layer. On the assump-
tion that the wave-enhanced layer is shallower than the
log layer (i.e., that the wave-enhanced layer depth is
much smaller than «u, /f), these predictions can be
expressed analytically as functions of the friction ve-
locity, the surface roughness length, and the wave en-
ergy factor a. Specific formulae are (31) for the depth
of the layer, (34) for the (integrated) dissipation in the
layer, and (27), (30), and (36) for the profiles of tur-
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bulent kinetic energy, velocity, and dissipation, re-
spectively.

One tentative conclusion of the study is that the wa-
ter-side sea surface roughness length is much greater
than that for the atmosphere. Values at least up to 1
m seem feasible. There are indications that the rough-
ness length is related to, and of similar magnitude to,
a wave amplitude or an inverse wavenumber, such as
that of the steepest waves.

We make no claim to have produced the definitive
description of the near-surface dynamics of the ocean.
However, our study has shown that this conventional
and relatively simple model appears to do rather well
in reproducing our present knowledge of the wave-af-
fected zone. The model has produced predictions that
may be useful benchmarks for further measurement
programs. There is considerable scope for extending
the model as more extensive and reliable data become
available. Initially, this extension could focus on refin-
ing the empirical parameters before refinement of the
parameterizations themselves. We reiterate from sec-
tion 1, for example, conflicting comments about the
value of k by Cheung and Street (1988) and Thompson
and Turner (1975). There is a priority requirement
for realistic models of the sea surface roughness.
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