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Chapter 10
ONE-DIMENSIONAL MODELS OF
THE UPPER OCEAN

P. P. Niilerand E. B. Kraus
10.1 Introduction

The present paper has profited from many presentations and discussions b
members of the 'one-dimensional working group' in Urbino. These contributors
were too numerous for active participation in the writing; their names are
marked by asterisks in the text.

One-dimensional models of the upper ocean can be useful because bulk
temperatures or salinities tend to vary more along a vertical distance of a
hundred meters than along a horizontal distance of a thousand kilometers.
This holds true over many parts of the world's oceans and, where it is the
case, vertical exchange processes between the air and the sea, as well as
vertical mixing within the water column, are likely to affect local condition:
much more rapidly and effectively than horizontal advection and horizontal
mixing. It follows that it is permissible, for many purposes, to treat the
upper ocean layers as being statistically homogeneous along the horizontal.
This approximation is applied consistently in all models presented in this
paper. It means that horizontal derivatives can be omitted in the mathemati-
cal treatment and only changes along the vertical are being considered.

It follows from the discussion in the Introduction (Chapter 1)} that the
prediction of the temperature is probably the most important function of
upper ocean models. Temperature variations have a crucial effect on the
climate, the local biological environment, and acoustic propagation. Next to
temperature, we are concerned with current velocities in the upper ocean for
shipping purposes, fish migration, and also for the modelling of the oceanic
general circulation, However, for most of these purposes one wants to know
not only the local current velocities but also their horizontal variations.
The one-dimensional models are therefore generally less useful for the
processing of velocity information than they are for temperature.

The temperature and velocity fields interact with each other and with the
oceanic density field, which in turn is a function not only of temperature bu
also of salinity. In our models we have to deal therefore with the evolution
of each of these properties. In the present context, this evolution can be
described by a set of one-dimensional conservation equations. In particular
the one-dimensional momentum equation can be reduced to the form:
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where y is the averaged horizontal current velocity, f the Coriolis parameter
and 5 a unit vector along the vertical z direction., Primes are being used

here to denote turbulent deviations from the bulk velocities W and z. Their

averaged product represents the vertical flux of horizontal momentum, known
as the Reynolds stress. The averages can be derived from time series segments
of a few hours in the oceanic cases; shorter for laboratory experiments,
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Because of the assumed horizontal uniformity w/az = -vH.z = 0.

The conservation of sensible heat or enthalpy leads to the equation:

T, 2 orer. L2l
-5-{"' 3z w1l = oC 92 (10.2)

(T=bulk temperature, p=density, c=specific heat, I=penetrating component of
solar radiation). The fluctuating part of the temperature is denoted by T',
The last term in Eq. (10.2) is associated with a source of heat due to the
absorption of solar radiation within the watei columm, As indicated by
Ivanoff (Chapter 4), about 55 per cent of the incoming solar radiation is
absorbed in the uppermost meter; the remainder penetrates deeper and is
absorbed more or less exponentially with an attenuation coefficient y which
varies between about 0.03 m~! in clear Mediterranean water and 0.3 m~* in
dirty coastal water. A value of y - 0.04 m-!, corresponding to a scale depth
of about 25 meters or slightly less, appears to characterize much of the open
tropical and sub-tropical oceans.

The equation for the salinity S is

S, 2T,
2+ 2 ST = 0. (10.3)

Finally we shall require an equation which specifies mass conservation.
However, as density fluctuations appear in the following equations always
multiplied by the gravitational acceleration g, it is convenient to introduce
an expression for the buoyancy

b= -g —— = g{a(T-T,) - 8(S-S,)}-

The subscript * denotes constant reference values of the density, temperature
and salinity; the coefficients c and 8 describe the logarithmic expansion of
o as functions of T and S respectively. The last identity can be used to
derive a buoyancy conservation equation from the thermal and salinity

equations:

EB—- —-a— IEI ._9_9__3_1_ 0.4
3t Tz " pC 32’ (a0.4)

with b' denoting the fluctuating part of b, Below we shall assume p=p.,
except where the difference p=p, is needed for the specification of

the buoyancy (Boussinesq approximation).

To solve the set of equations (10.1)-(10.4),one has to find explicit
expressions for the turbulent fluxes, This has been at;empted in a variety
of ways which are listed below.

a) Deterministic solutions: Basically this approach avoids the problem
by a direct determination of the fluctuating velocities from the
primitive equations. This requires specifications of the initial
condition on a very fine space scale and computation of their
evolution with a correspondingly high time resolution., This process
has been used by Deardorff (1970) but it is too expensive and time
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consuming to be utilized directly for routine oceanographic
modelling and prediction.

b) Turbulence closure models: As discussed briefly in the following
section, these models involve the so-called Reynolds flux equations
which express the evolution of the averaged products in Eqs. (10.1)-
(10.4) as a function of higher order moments - that is, of averaged
triple products - of the fluctuating quantities. These higher moment
have to be parameterized in terms of empirical coefficients and
computable quantities. This parameterization introduces some
uncertainties and the equations are cumbersome.

¢) Eddy coefficient and mixing length hypothesis: This classical
method, which is based on analogy with molecular transports, assumes
that the turbulent fluxes can be expressed by the gradient of the
transported quantity multiplied by an appropriate eddy diffusion
coefficient:
T = 37 . _gTT = o
Wy KMV-B_Z_-! s =W T -Kvs-z-;
and so forth, Developed more than fifty years ago, the method is
still widely used (see, e.g., Holland, Chapter 2), though its physica
basis is precarious. The main trouble is that the eddy transport
coefficients are complicated functions of space and local stability
conditions, which functions have to be determined empirically. This
method breaks down when gradients vanish or when coupled fluxes of
two conservative quantities transport one of them against its own
gradient.

d) Mixed layer models: Observations show that the top layer of the
ocean is usually mixed rather thoroughly. The vertical distribution
of temperature, salinity and horizontal velocity within this mixed
layer is - if not uniform - at least very much smaller than the
variations across the layer boundaries or variations within the
thermocline below. Allowance for a uniform mixed layer permits
vertical integration of Eqs. (10.1)-(10.4). This yields expressions
for the turbulent transports in terms of the mean quantities and the
external inputs. If 3I/2z=0, all transports within the mixed layer
are linear functions of z. The turbulence energy equation (see next
section) is used to obtain an expression for the evolution of the
layer depth which is needed for closure.

The following section of this paper deals briefly with the turbulence
closure schemes. The whole remainder is concerned with one-dimensional mixed
layer models. At this stage of the art, these provide probably the most
effective tool, particularly for the prediction of sea surface temperature and
upper ocean heat storage over a relatively wide range of time scales.

10.2 Turbulence closure schemes

The full governing equations for the Reynolds stress tensor can be found
for example, in a paper by Mellor (1973). Allowing for the here stipulated
conditions of horizontal homogeneity and with neglect of the vertical
component of the Coriolis force which cannot have any significant effect on
the turbulent motion, these equations can be reduced to two separate
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equations: one for the mean specific turbulence kinetic energy nggTI;sz;r
b4

and a second one for the vertical transport of specific horizontal momentum
W'
4

In the present case the turbulence kinetic energy equation has the form
(Kraus, 1972):

v .
13 2. _mT 2 =rer. 1 3 + o=lw'p"] - 0
53t 9 WY ot W b E'az[" (w'5+!'5) p=-lw'p'] - €. (10.5)

The first term on the right-hand side represents the work of the stress w'x'

on the mean shearing flow. As the kinetic energy of a shear flow is always
larger than the kinetic energy of a uniform flow with the same average
momentum, any reduction of the mean shear by mixing must generate an equivalent
amount of eddy kinetic energy. The next term represents the rate of working of
the buoyancy force. It is positive if relatively dense fluid parcels move
downward while the lighter ones move upward. The following term deals with
the convergence of the turbulent vertical flux which carries the energy of the
turbulent velocity and turbulent pressure fluctuations, Finally, the last term
represents the rate of viscous dissipation of turbulence energy. Explicit
expressions for this dissipation, as found in textbooks of hydrodynamics, show
that it involves also horizontal derivatives of the velocity fluctuations.
However, these occur all in the form of squares and products, the averages of
which do not disappear.

The corresponding one-dimensional equation for the Reynolds stress is:

oy —T

2w DAl (v WV PN
TNyt W'z = WIZyT - (Y55 WP (10.6)
The physical interpretation of the individual terms in this equation is less
clear than in Eq. (10.5). The first right-hand term could be viewed as an
averaged interaction between the perturbation vertical velocity and transient
changes in the bulk current which are thenselves produced by the vertical
displacenents. The second term clearly deals with the convergence of a
turbulent vertical flux of Reynolds stress. The last term involves again the
pressure correlations, Following an argument first made by Rotta (1951) this
term can be expressed as a function of the double and triple velocity moments.
It can be shown in this way that the principal effect of this term is to
redistribute the energy between its components by conversion of the anisotropic
dist. rbances associated with the shear and the buoyancy, into a more nearly
homogeneous isotropic state. This has been discussed in more detail also by
Lumley and Khajeh-Nouri (1974) and by Garwood *(1976).

An exact presentation of the turbulence energy and Reynolds stress
equations would include also terms for a viscous transport of energy and of
Reynolds stress, as well as a term involving the vertical component of the
Coriolis force. These terms are exceedingly small and quite irrelevant in the
present context, though they can_be found in Mellor's (1973) paper. That paper
also contains the equations for b'2 and w'bT which correspond to Eqs. (10.5)

and (10.6).

The set of equations (10.1)-(10.6) together with those for B2 and w'D'
is still not closed, because third order moments, like w'i'i and Y'W'4, have

NGNS i 55 1 ¢

10: ONE-DIMENSIONAL MODELS 147

been introduced as new unknowns., It would be possible, in principle, to
represent the evolution of these third order moments by another set of equa-
tions which contain fourth order moments and so forth. As an alternative to
such a rather futile exercise, one can try to close the system by a number of
simplifying assumptions which approximate the third order moments as a function
of the bulk variables, the second order moments and 2 variety of empirical
constants. The mathematical treatment can be Teduced further by assuming that
the generation of the second order moments is in balance with their dissipation,
that is, by omission of the time differentials and triple correlations in Egs.
(10.5) and (10.6). Mellor and Yamada (1974) have presented this whole process
as a hierarchy of turbulence closure models which involve increasingly sweep-
ing simplification. They show that it leads, at the lowest level, to the
classical representation by eddy coefficients which are expressed as functions
of a mixing length 1 and of the root mean square turbulent velocity Qq:

—rr % A
Swy s KMV 32 z lqsKM 37° (10.7)
- w'B':gaKv gi ga]qSK—g—;E. (10.8)

The factors SKM and SK represent the influence of the static stability on the

eddy coefficients, As illustrated in Fig. 10.1
functions of the Richardson number

Qi = ,3D/32 N_\2
23253252 av/ez)

The figure shows how widely estimates by various authors differ from each other.
Munk and Anderson (1948) in particular assumed 1q=const. When the number

Ri>0, work has to be done by the shear stress to mix a stably stratified fluid.
Mellor's approach indicates that SKM and SK become zero for Ri=0.23; this means

that there can be no turbulent vertical transports of momentum or heat if Ri
exceeds this critical value. In conditions of instability, the factors become
infinite in the Munk and Anderson model. In Mellor's model they seem to
approach asymptotically some limiting large value as -Ri becomes large.

they are decreasing

(10.9)

The most obscure and uncertain part of the formulation (10.7) and (10.8)
is the concept of the mixing length 1., At present there is no sound physical

basis for a stipulation of this length as a function of the depth z. Mellor
and Yamada (loc. cit.) use the interpolation formula
1 = X2
Twez/T_ (10.10)

(x=0.4; von Karmin's constant). In this formulation 1 "ﬂ.. as Z+t=, with
L] )
e azdz/ [ adz),
0 0

where ™ is another empirical constant. Other possible formulations of 1_

are listed by Kraus (1972), including one in terms of the Coriolis force and
the gradient wind velocity by Blackadar who originally suggested the
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Fig. 10.1 - The stability factors SKM and SKH (see Eqs. 10.7-10.9) as a

function of the Richardson number Ri. The full lines are based on M?lloF and
Durbin (1975.; the dashed lines represent the corresponding parameterization

by Munk and Anderson (1948),

expression (10.10) and a somewhat different one in terms of the Coriolis force
and the friction velocity by Lettau. All these formulations are rather
arbitrary until they can be justified pragmatically.

If 1 is stipulated, the quantity q which also enters the expression for
the K's in Eqs. (10.7) and (10.8) can be obtained from the balanced turbulence
energy equation (d/dt=0), if the triple and pressure correlations are neglected
and the dissipation is set equal to m_q3/1. Equation (10.5) then assumes the
form ¢

v .
) | e TRT = = -
Wyl e =W =e= mt1 q3

(10.11)

In the last term, me is yet another empirically determined proportionality
constant.

Equations (10.1), (10.4), (10.5), (10.7), (10.8), (10.11), together with
the corresponding equation for b'2, form a closed system which can be solved
to yield the evolution of a velocity and temperature profile as a function of
the atmospheric inputs and of the initial conditions. Pandolfo and Jacobs
(1972) and Mellor and Durbin (1975) have carried out numerical experiments on
this basis. These experiments do in fact develop reasonably realistic profiles

]
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including mixed layers. However, apart from involving some rather arbitrary
assumptions and at least three different empirical constants, the approach
also requires a relatively complex computational scheme.

10.3 Mixed layer models

a. General considerations and assumptions

Vertically more or less uniform mixed layers can be found almost every-
where immediately below the ocean surface. We do not need a model to prove
this fact. Its a priori acceptance greatly facilitates any modelling of the
upper ocean. Mellor has pointed out that the resulting models are discon-
nected to some extent from the information which is available through general
boundary layer theory, but this is compensated by the physical insight and
simplieity which comes from their being tailored specifically for oceanic
(and atmospheric) application.

An essential difference between the simplified equilibrium turbulence
closure models and the layer models lies in the different physical importance
which they assign to the transport of turbulence kinetic energy. To the
extent that the equilibrium closure models omit all triple correlations, they
arbitrarily set the flux of mechanical energy equal to zero. This leads to
the reduced form (10,11) of the turbulence energy equation (10.5). On the
other hand in the mixed layer models, turbulence energy which may have been
supplied or generated indirectly by the wind near the surface is used to work
against gravity at the bottom of the layer where dense water is entrained from
below. The existence of a flux of turbulence energy is therefore essential to
the mixed layer models, In the second order turbulence closure models, layer
deepening can occur only if there is a "local" supply of energy because of a
mean shearing motion at the bottom of the mixed layer,

The first mixed layer or bulk layer model developed by Keith Ball (1960)
for the atmosphere above heated land did not in fact involve any mean
horizontal motion. The approach was extended and modified for oceanic use by
Kraus and Turner (1967). References to the following further development of
mixed layer models, including consideration of horizontal shearing motions and
observational evaluations, are listed in papers by Niiler (1975) and by Gill
and Turner (1976).

It may be useful here to list explicitly the assumptions which have been
made in most mixed layer models:

i. The mean temperature, salinity and horizontal velocity are
assumed to be quasi-uniform within the layer.

ii. On the depth and time scales of the model, a quasi-discontinuous
distribution can be envisaged for the same variables across the
sea surface and across the lower mixed layer boundary.

211, The rate at which the mean square turbulent velocity (velocity
variance) changes locally is assumed small compared to the
turbulence generating and dissipating effects.

iv. Temperature changes associated with frictional dissipation and
with changes in salinity (chemical potential) are neglected.
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-

The first two assumptions are characteristic for mixed layer models, The
two others have also been made - explicitly or implicitly - in most turbulence
closure or eddy coefficient schemes which have been used for oceanic modelling
purposes (for an exception, see Weatherly, 1974},

Assumption (i), in particular allows us to integrate Egqs. (10.1)-(10.4)
individually from the bottom of the mixed layer at a depth Z==h to the surface
at z=0. This pe;mits representation of the bulk horizontal velocity ¥,

temperature To and salinity So of the layer as a function of exchanges with

the air above and with the interior ocean below. The system is not closed,

because the time-dependent depth h has been introduced as a new variable. In
the absence of a mean vertical velocity (w=0), any deepening of the layer must
be equal to the rate We with which water is entrained from the interior below.

The physics of this entrainment has been discussed by Phillips (Chapter 7),
including the fact that the entrainment flow can only be directed towards the
more turbulent fluid region, that is, upwards in the present case. Entrain-
ment is therefore associated with layer deepening. At times when the layer
becomes shallower the entrainment must cease. Symbolically:

e dh/dt for dh/dt > 03
(10.12)

for dh/dt < 0.

w

We 2 0

To close the system, the entrainment velocity L is calculated from the

vertical integral of the turbulence-energy equation (10.5) in its balanced
form (d/dt=0). To evaluate the integrals of Eqs. (10.1)-(10.5) one has to
know the flux boundary conditions at the surface (z=0) and at the bottom
interface (z=-h).

b. Flux boundary conditions at the sea surface

The surface fluxes of sensible heat, salinity and the derived flux of
buoyancy can be specified in most cases with reasonably good approximation by
bulk aerodynamical formulae (Busch, Chapter 6) as functions of the existing
atmospheric and mixed layer conditions:

=TT = - - - N
pC W Tzlo = RO-I°+H°+ACOO Ry I°+paCaua{Cp[To T,0+ Ac[r,(To) ryl}; (10.13)
pwWS) = (Po-oo)so; (10.14)
z=0
wbT) = glow'T') - gW'S') } = B, (10.15)
z=0 2=0 z=0

The subscript 0 refers to conditions at the water surface, the subscript a
refers to conditions in the air at some predetermined reference level z=a
(usually, a=10 m). Most of the symbols have been explained in connection
with Eqs.(10.1)-(10.4); the remaining ones have the following meanings:

R0 = surface flux of solar and terrestrial radiant energy per unit area;

1 SHTEIX TN R
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surface flux of penetrating solar radiation (~45% of total solar
radiation)};

Ho = surface flux of sensible heat;

00 = surface flux of water vapor (evaporation);
Ac = Jlatent heat of evaporation;

Ca = surface drag coefficient;

u, = wind speed;

P° = precipitation rate;

specific humidity;
saturation specific humidity.

The surface flux function B° specifies the rate at which buoyancy is

removed from the water column (or available potential energy is supplied) by
surface cooling and salinity changes:

: 4 (YR - - oA
B, = o (R, 1,#H,)-8P So+(Eoct 85,)Q, ). (10.16)
All fluxes are considered positive when directed upwards from the water

into the air. (This means that I° is always negative.) Because the heat

capacity and density of water are very much larger than those of air,
significant gradients can be sustained only in the atmosphere above the sea
surface and not in the water. It is therefore permissible, for all intents
and purposes, to equate the surface temperature and salinity with the bulk
mixed layer values of these quantities.

In conditions of horizontal homogeneity, that is, on a fully developed
sea, the magnitude of the downward flux of momentum from the surface is equal

to the wind stress Ty As such, it can be expressed in a variety of ways:

o
& c.u.2,

2 ‘ala (10.17)

l—l'_i'l -l’_ u2=
-> 0 *

where u, is known as the friction velocity. When the wind blows with a speed

u,=8m s-1 at a height of 10 meters above the surface,u,=~1.0 cm s=l. The
corresponding value of U, in the air would be about 28 em s-1. The direction

of the stress is equal to the wind dirsction close over the surface.

Finally we shall need an expression for the flux of the turbulent velocity
and pressure fluctuations, given by the term in square brackets in Eq. (10.5).
Near the sea surface, this flux must be equal to the rate of working by the
wind. This means that it has to be equal to the stress multiplied by a wind
velocity. The trouble is that one cannot measure this wind velocity without
ambiguity at any particular height. The wind stress works on waves at heights
which are different for waves of different length. Through tangential fric-
tion it also works directly on the surface (see Phillips, Chapter 12). In the
circumstances it is inconvenient to be too specific at this stage. We shall
describe the rate of working by the general relation:
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[-iw'(w'2+l'2j + p-lw'p'])0= my iy (10.18)
z=

leaving consideration of the proportionality factor m; for discussion below.

¢. Flux boundary conditions at the bottom of the mixed layor

We shall neglect the effect of diffusion across the stable interface at
the bottom of the mixed layer and assume that all mixing processes are
associated with the entrainment of the lower fluid into the mixed layer. The
boundary conditions for the flux of heat, salinity, and buoyancy assume then

the forms:

W)
=-h

wsh) +NeAS =0

z=-h "

wib")

z==h

+ weAT =0

(10.19)

+ weAb =0

The symbols AT, AS and Ab represent the qugsi-discontinuous changes of
these three quantities across the base of the mixed layer.

In the absence of entrainment, all the turbulent fluxes become zero at
z=-h. In physical terms, this means that there is just not enpugh turbulence
energy available in this case to overcome the stable stratification at the

i The mixed
base of the layer and to produce any mixing with the lower water,
layer becomes then effectively decoupled from the ocean interior. In the
model presented here, this decoupling is assumed to be absolute.
As dis-

The momentum flux boundary condition is not quite as simple.
cussed by Pollard and Millard (1970), internal waves can radiate momentumi
downwards through stable layers even in conditions of horizontal homogene tys
Integrated over some time, the resulting bottom drag on the mixed layer can be
of the same order as the acceleration produced by the wind. It may contribute
to the relatively fast attenuation of the inertial oscillation which Ean be
produced in the mixed layer by sudden wind changes. Following Crepon®, we
shall parameterize this radiation stress by the square of ¥, multiplied by a

i ici he particular
eneralized drag coefficient C, which should be a function of t
gensity stratification in th; fluid below the mixed layer. This parameter-
jization is rather crude; fortunately it will be seen below that it has little
effect on the features with which our model is primarily concerned. The
momentum flux boundary conditions, as derived from this argument, becomes

V' v = Cv]Y] (10.20)

Wiy Y cylyl.

Finally, the boundary condition for the flux of mechanical energy can be
established similarly in the form

[%w'(w'2+x'2) +o‘1w'p'])h+ iweq2 = (. (10.21)

z=-

ol hemew el b
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The second term represents here the rate at which turbulence energy has to be
supplied by the downward flux to make the entrained (initially quiescent)
water as agitated as the mixed layer water.

d. The integral relations

To obtain explicit expressions for the mixed layer momentum, temperature,
salinity, and buoyancy, one integrates Eqs. (10.1)-(10.4) along the vertical.
The integration is easy because the bulk variables are independent of 2z
within the mixed layer, To deal with the effect of penetrating solar radia-
tion we set

I = 1 exp(yz),

as discussed in Section 10.1.
the equation

The mixed layer temperature must then satisfy

dr w_AT

0. e __1 -vh
dt h sch (R°+H3ACQ°-I°e ).

(10.22)
The first term on the right hand side represents the temperature decrease in
the layer which is caused by the entrainment of water with a temperature that
is AT lower than T.. The term in brackets represents the flux of heat through
the sea surface migus the penetrating solar radiation which passes, through
the layer into the deeper water below the level z=~h, In the following
computations it will be assumed that yhsl, and that exp(-vh) is therefore
negligibly small,

The equation for the salinity has the form

ds waS S
Po.te2 20 g .
="t an Qo) (10.22")

The corresponding integral equation§ for the buoyancy b and the mean
momentum py can be written down without difficulty,

To close the system, one needs an expression for We This can be

obtained from an integral of the turbulence energy equation (10.5) in its
balanced form (d/dt=0). An integral of the vertical buoyvancy flux Wb’ which
occurs in Eq. (10.5) can be obtained by integrating Eq. (10.4) from a depth

Z to the surface and again from the depth -h to the surface. The time
derivative dbo/dt can then be eliminated between these two integrals. After

‘rearrangement one gets:

TTRT = z a ga _aYZ
Wb = B + 7 (BoweAb+§E- 1) + & 1,(1-e). (10.23)

; ga
For simplicity, we set Jo'pclo

the layer z=-h to the surface z=0, obtaining

and integrate Eq. (10.23) from the bottom of

Thidz = - -1 h_1
fw b'dz hBo weAbh + Jo(2 Y).

(10.24)
A 2 2 .
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<t equation represents the rate of potential energy change associated
I?:hlihe lgfting or gowering of the center of gravity of the water column by
convection. The first term on the right hand side is the contribution of the
surface flux to the potential energy change. This contribution is positive
when the surface is cooled (BO>0). The second term represents the reduction

of potential energy caused by the lifting of the dense entrained water. The
product

Abh = C%, (10.25)

where ¢4 is the velocity of the long internal waves at the bottom interface

i hich is due to the
z=-h. Finally, the last term represents the change w
absorption of solar radiation in depth and to the redistribution of the
resulting heat increase by convection. This redist{ibution increases the
potential energy if the penetration scale length y-! exceeds the half depth

of the mixed layer, and vice versa.

The derivation of an explicit expression for the flux and the generation
of turbulence kinetic energy is not as straight foryard, because the
generating term w'vlagyaz is obviously zero in the interior of the layer, if

-

he tran-
the layer moves indeed uniformly like a slab, On the other band int
sitionyzone at the bottom of the layer which is jillustrated in Fig. 10.2,
av/3z+« as (h'<h) + 0. From Eq. (10.20) we deduce that

-5

-h
3y 1,52 + Loy (10.26)
T B T T -
- ->
“h'

1b§0rbo -
Torb

Fig. 10.2 - Schematic of mixed layer model.
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Turbulence energy is also likely to be produced by the mixing of shear
flows near the surface, However, in reality this must always involve running

one can assume that the rate of generating of mean shearing motion near the
surface will be equal to the rate of its destruction by mixing. This makes
the turbulence production term proportional to the rate of working by the wind.
Its effect can be accounted for by an adjustment of the proportionality
constant in the relation (10.18).

On the basis of the preceding argument and with the assumption of a
discontinuous interface it is now possible to write the integrated turbulence
energy equation in the form

0
1 =2, 3,1 h 1 =
-z-we(q2+c$-x ) = mug + 5 hB, + (-Z--Y-)Jo - Cly|?® -J’edz. (10.27)
h
H

A BC D E F G

Equation (10.27) looks cumbersome; fortunately it can be very much simplified
in almost any particular case, because the individual terms tend to have
unequal magnitudes. Before this is shown below, it may be useful to reca-
pitulate once more the meaning of these terms:

A: rate of energy needed to agitate the entrained water (Eq. 10.21);

work per unit time needed to lift the dense entrained water and to
mix it through the layer (Eqs. 10.24 and 10.25);

C: rate at which energy of the mean velocity field is reduced by
mixing across the layer base (Eq. 10.26);

rate of working by the wind (Eq. 10.18);

rate of potential energy change produced by fluxes across the sea
surface;

F: rate of potential energy change produced by penetrating solar
radiation (Eq. 10.24);

G: rate of working of radiation stress associated with internal
waves (Eq. 10.20);

H: dissipation.
e. Parameterization of the dissipation

If the most arbitrary link in the second order turbulence closure models
has been the specification of a mixing length, the same might be said about
the dissipation in the integral or mixed layer models. From dimensional
arguments dissipation can be expected to be proportional to the third power
of the mean turbulence velocity. The turbulent agitation is most intense
¢lose to the regions where turbulence energy is generated; for example, when
t§° turbulence is due to wind stirring, its intensity tends to decrease with

Stance from the surface. The opposite holds when turbulence is caused by
Some interior shear. On the basis of such observations, it will be assumed
ere that the dissipation integral is composed of terms which are individually
Proportional to the active turbulence generating processes, that is, to the

waves, and if a sea is present it cannot be modelled analytically. Fortunately,
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terms C and D and also to E during periods of active cooling when Bo is
positive. Formally: :

’ 1 - 1 Bo+|Bol
Jedz = (mpemud + (1s) 2w, §2 ¢ (1m) F0 20 (0.28)
“h

The proportionality factors have been written in the particular forms
(my-m), (1-s),and (l-n) for the sake of convenience, because this simplifies
the expressions to follow. They are not necessarily constant and it will be
seen below that they may assume different numerical values which depend on
the layer depth and the magnitude of the forcing. Actual values have to be
established empirically from laboratory experiments and field observations.
The last term in Eq. (10.28) should differ from zero only when turbulence is
generated by surface cooling (Bo>0); this is the reason why it has been

written in the peculiar form shown. It may be appropriate to list here some
other proposed parameterization schemes., One, suggested by Niiler (1975) and
in a slightly different form by Kim* (1975) has the form

0
j edz = ccui exp (- -Hh;-) + coh,
-h

where Ce is another proportionality factor, £ is a "background" dissipation
rate, and ho is a decay scale for dissipation as a function of depth based on

field experiments by Grant, et al. (1969). This formulation relates the
dissipation only to the working of the wind and not to other turbulence
generating processes, It also will be seen below that even in the case of a
purely mechanical energy input, it is not supported by experimental results.

Another scheme by Garwood* (1976) introduces a dissipation rate which is
proportional to q3/h, This is in keeping with other turbulence studies. He
stipulates an entrainment rate of the form

where w, is the geometric mean of the vertical component of turbulent velocity

close to the layer bottom. The quantities w, and q have to be determined

separately. Readers are referred to the original paper for details of the

procedure.

At this stage of the art, the formulation (10.28) is preferred. Though
rather crude, it is relatively simple and it incorporates just about all that
can be said with any confidence about the underlying physical processes.
Introduction of Eq. (10.28) into Eq. (10.27) yields

53
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This expression can be simplified further, because the first and the last
terms are relatively small in most circumstances. In particular, the mean
square turbulent velocity g2 in the upper ocean is typically of order

10 cm? 572, It never exceeds 10 cm? s=2, On the other hand ¢} is of order

103 cm? 572 even if the layer is only 10 meters deep., It becomes larger as
the layer gets deeper. A layer depth of at least a few meters is assured by
the slightest amount of surface cooling or wind stirring (see Sections 10.4a
and 10.5a below)., It follows that almost invariably c%>>q2, allowing us to

neglect term (A) in all the considerations below.

In dealing with term (G) we are on weaker ground. This term is related
to the rate of working of the shear stress at the layer bottom, as indicated
by Eq. (10.26). Anticipating again the discussion below, one can say that
most of the time in the oceans, the rate of energy input by the wind through
the sea surface is likely to be very much larger than the rate of energy
production by the internal shear stress, However, this may not hold true
during certain stages of the development when le becomes relatively large.

We shall assume that when this happens term (G) remains relatively small
compared to term (C); that is w,>> Clyl. 1In physical terms this implies that

the energy which is generated by the working of the shear stress is either
dissipated locally or used to entrain dense water from below with relatively
little being radiated away, Following these considerations we shall assume
that the radiational drain of energy is small and that its effect can be
incorporated in the empirical factor s.

With these assumptions one can write the last equation in the form

- h 2
Wy (c3-sY?) = 2mui + % [(1+n)B - (1-n)[B |1 + (h=£)35.  (10.30)

B C D E F

The Roman letters have the same meaning as in Eq. (10.27), although the
relevant terms include now the effects of dissipation. Term (E) equals hB
when B°<0; it is equal to nhBo when B°>0. It is in the form (10.30) that

the turbulence energy equation will be applied below.

10,4 Mixed layer modelling of special cases and particular circumstances

The Eqs. (10.12), (10.16), (10.22), (10.22') and (10.30) form a closed
Ssystem for Bo, To’ So, h and L Another equation for the layer momentum ¥

Can be added.

To simplify evaluation we distinguish between periods when the
heating increases, and when it decreases or when cooling occurs.

During the
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. If there is no dissipation (n=1), one sets

I

Ro

former periods, the layer tends to become shallower (dh/dt<0); there is no ¥
entrainment in this case (we=0) because there is not enough energy available

to work against the increasing stability. The temperature and salinity will
vary continuously across the layer base, though there will be a discontinuity
in their gradient. Energetically, the layer is decoupled from the lower
water during these periods.

h =

EA LN

On the other hand, if all the convectively generated energy is dissipated
locally (n=g), the layer depth tends to become equal to double the penetration
During periods of decreasing heating or cooling, conditions depend scale lengt
crucially on the depth h. The terms (B) and (E) both tend to increase with
increasing layer depth. The other terms are either independent of h or they
decrease as the layer gets deeper. One can therefore expect a balance
between (B) and (E) in late fall, for example, when the layer is relatively
deep. Another controlling factor is the relative magnitude of the wind

To compute.the temperature rise, one eliminates h between Eqs. (10.22)
and (10.32). With the radiation flux through the base of the layer considered
very much smaller than the radiation balance at the surface, one gets, with

stirring and the thermal forcing, as expressed by the ratio W =
e
2u dT R
L* y n{R -1 )+I
z = 10.31 ~02-_.90 __ 0.0 o0 -
Boﬁ h ? : ( ) at oC 210 . (10.33)

where L* can be interpreted as a generalized Monin-Obukhov length. When L*/h
is large, the turbulence is dominated by wind stirring; thermal convection
becomes the dominant factor when the ratio is small and pesitive.

——— e

- The case represented by the Eqs. (10.32) and (10.33) was first modelled by

Kraus and Rooth (1961) who also list empirical expressions for R0 as a partial

. . function of To' Although Eq. (10.32) is a balance equation, h is not neces-

We shall now consider some of the various possibilities: . sarily constant, but changes with R° and therefore with T_. The temperature
0

change dT_/dt is always positive during the adjustment process (active

a. Increasing stability - no wind 3
heating).

On a calm morning or during windless spring days when the sea is being
heated by radiation (R°<0), the layer depth tends to decrease (dh/dts0).
There can be no entrainment in this case (we=0), and all the terms in Eq.

(10.30) except (E) and (F) are therefore zero., It follows that the depth h
and the flux function B° must adjust themselves in a way which make the sum

" b. Decreasing stability - no wind

During night I°=0; the convective energy generation minus dissipation

- which is represented by term (E) in Eq. (10.30) is balanced by the entrain-
* ment of dense water as represented by term (B). It follows that:

of these two terms also equal to zero, In the absence of wind, the evapora- nhB nB
tion and the turbulent flux of sensible heat from the sea surface are likely W =—-—2 a_29 (10.30"
to be small as well. The value of Bo in Eq. (10.16) is then determined e C% ab -30%)

approximately by radiation alone. e
PP y by ¥ith active entrainment, we=dh/dt>0 (see Eq, 10.12). The form of Bo is

* specified by Eq. (10.16). In the circumstances envisaged here,B° is
* dominated by infrared cooling (B =R

Two cases have to be distinguished depending on the sign of the surface

infrared radiation balance (RO-IO), which is also the sign of Bo' If (RO-IO),
ab=aT). The last equation is therefore

and therefore Bo’ is negative, the surface is being heated by infrared - equivalent to: 0™ o’
. . radiation. Without any heat sink within the water, the enthalpy flux and the p R
buoyancy flux must be directed downward (W'D'<0). The balanced turbulence _%.= J%._ﬁl_ (10.34)
p .

energy equation (10.5) can then not be satisfied, because there is no energy
source available to transport buoyancy downward. In other words there can be
no mixed layer present: h=0 if B°<0 and u,=0.

1f RO-I° and B0 are positive, one gets from the sum of the terms (E) and dTo R

< 1+ o
(F) after rearrangement dt T %pc R (10.35)

2 Yo 2 1o It & ;
h = (10.32) S easy to add the appropriate terms for the sensible heat loss and

- e PN — N : 3 b, >
Y nB°+J° Y n(Ro-I°)+I° : :‘Vaporat1on to R° on the right hand side of the Eqs. (10.34) and (10.35) if




these processes are significant. However, it should be noted, that even in When the surface is cooled (B,>0) in the presence of wind, the layer

the present simple case the pair of Eqs. (10.34) and (10.35) generally can
only be integrated numerically. In particular, R° is a nonlinear function of :

E tends to deepen (W % 0). This case will be discussed in Section 10.4e below.

T, and also depends on the atmospheric conditions; AT depends not only on T, f 4. The effect of inertial currents in the mixed layer

but implicitly also on the layer depth h and on the temperature gradient

below Any wind change generates inertial currents in the upper ocean. Their

' presence tends to produce a sharp velocity gradient at the layer bottom inter-

The argument leading to the expressions (10,34) and (10,35) was first face. When this happens, the term (C) in Eq. (10.30) must be considered.

developed by Ball (1960) in a model of atmospheric temperature changes over
 heated land. Instead of cooling at the upper surface of the fluid, the
forcing is brought about in his case by the convective heating from the
isolated land surface. Ball assumed that the resulting free convection is
carried by large eddies which are not affected at all by dissipation. With
our present terminology this would imply n=1,

E The contribution of shear stresses at the bottom of the layer, to the
- work of layer deepening was investigated first by Pollard, Rhines and

Thompson (1973). They argued that these stresses feed energy into finite-

amplitude perturbations, which break up the interface when the ratio of the

hydrostatic stability to the shear instability - that is the local Richardson

number - drops below ‘some critical value. The break-up speeds up the entrain-

pent process, causing an adjustment of the layer depth which prevents any

further increase of the velocity shear beyond its critical value. While the

deepening proceeds, the work of the shear stress is used mainly to lift the

B gdense water from below. Pollard, et al. equated the critical local Richardson
" pumber with the bulk Richardson number

The opposite extreme would be to assume that all the convectively gen-
erated energy is dissipated within the layer. This is tantamount to setting
n=0. There is then no energy available for entrainment and the rate of
temperature change dTO/dt is only half as fast as for n=l, However, as shown,

for example, by Lilly (1968), with somewhat different nomenclature for the

atmospheric case, the final mixed layer temperature which is established may ab h ¢y 2

not differ very much in the two cases. Ri, = = ={—]). (10.38)
v v
> -+

c. Increasing stability - with wind .
g Y " Using this expression to eliminate Cy from Eq. (10.30) one gets

We shall assume that the wind stirring is insufficient to produce -2 3 '
entrainment (we=0) in the presence of strong radiational heating. The layer ' "e(R‘*‘S)X = 2y + nhBo' (10.30"*")
For a given rate of surface forcing, a small value of the difference Ri,-S
mst be associated with large values of Wo and thérefore with rapid layer

deepening.

depth must then become shallower until h has decreased to a value which keeps
the right-hand side of Eq. (10.30) equal to zero.

For the case of surface heating (B°<0), one gets from Eq; (10.30)
For simplicity's sake, the solar heating term (F) has been omitted in

~2mu+2d /v : ) :
h = 0 (10.36) Eq. (10.30*'). It represents a process which is unlikely to be important
B°+3° : : during storm driven layer deepening. Retention of this term, when that is

desirable, does not involve any additional analytical difficulties, but it

During night or in heavy overcast conditions JO-O. Equation (10.30) then does make the resulting expressions longer and more cumbersome.

reduces - with consideration of the expression (10.31) - to To obtain an explicit expression for 22 one integrates Eq. (10.1) over

b= 2mug - N the layer depth with the boundary conditions (10.17), (10.20) and over time
= - 'E;‘ =mL*. (10.37) with the initial condition V=0 for t=0. The result in symbolical form is:

2
: 7l = ot (-1t Ly 59
This means that the layer should become stabilized when it has a depth which |X| 75 (€ -l}. (10.39)

corresponds to the Monin-Obukhov length. Kitaigorodskii (1960) suggested that
this should be the fundamental scale depth of the ocean mixed layer - one in
which just sufficient mechanical energy is available from the wind to mix the
heated surface water uniformly down to a depth h«l*,

The radiation term Cv2 which occurs in the boundary condition (10.20) has been
>
neglected in this derivation. The squared modulus of Eq. (10.39) is

2uk

- u
The layer temperature To and surface salinity S° can be evaluated by 27 = EI%} (1-cosft) = %%EF. (10.40)

introducing Eq. (10.36) or (10.37) into (10.22) and (10.22") with we=0 and

with an explicit expression for Bo as specified in Eq. (10.16). The last equality follows directly from (10.38). Rearrangement yields

Y e 4 RO osiioqit T gy e b SRR e AR
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2u, "
h = [Rl, 5577 (1-cosft)]t/3 (10.41)
In their original paper, Pollard, et al. assumed arbitrarily that
Ri, =1, (10.38")

-2
which is tantamount to setting v =c2, This restriction was abandoned in
later papers.

To evaluate Eq. (10.41) explicitly one has to use a second independent
relation which connects the two dependent variables h and Ab., Regardless of
this complication, the expression (10.41) would suggest that the layer reaches
a maximum limiting depth hf when t=r/f, that is, one half of a pendulum day

after the onset of the inertial oscillation., Inertial motions can only play
an important role in the deepening process if the initial depth h(t=0)<h..

e. The erosion of deep mixed layers

-2
As the layer deepens further, cf tends to increase with h while v
->

decreases in inverse proportion to h2. The contribution of the velocity shear
to the layer deepening tends therefore to become small as h increases beyond

hs. Omission of_-»: at this stage and division by ciz-hnb, changes Eq. (10.30'")
into

dh 2mu? nB

v -aF (10.30''")

This was the equation used by Kraus and Turner (1967) in their model of the

deepening layer.

Consider first the case when wind stirring predominates. In terms of
Eq. (10.31) one has then h<<L* which allows us to neglect the last term in
Eq. (10.30'''), We divide by u, and obtain then

TP SR
l_.l: m h—A'E— n Rl (10.42)

This equation is equivalent to Eq. (7.6) in Phillips' treatment of entrain-
ment, with Ri the bulk Richardson number as defined there. From the discus-
sion there - to be recapitulated below - it follows further that m is not
constant, but becomes smaller at high Richardson numbers. With m known
empirically from the laboratory experiments, one can again compute the chang-
ing layer depth and temperature by integration of Eqs. (10.22) and (10.42).

Continued deepening must ultimately cause the first term on the right-
hand side of Eq. (10.30''') to become small compared to the last one. In

éé
i
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other words, as h continues to grow it must become larger than L*. Wind
stirring then becomes irrelevant for further deepening, and the entrainment
equation assumes again the form (10.30') which as established in Section
10.4b for a shallow layer with no wind above:

B
r;limn (Ne) + n K%'
1f one sets n=l, the last expression approaches once more Ball's (1960) orig-
inal formulation. Gill and Turmer (1976) argue convincingly that this original
formulation cannot be representative at all times. They show that neglect of
dissipation during layer deepening - in our terms n=1 - would be associated
with an ever increasing potential energy. They propose, therefore, that at
this stage there is a balance between convective energy generation and
dissipation. Such a balance would imply that n=0, and as a discontinuity
could not be maintained in these circumstances, one also has ab=0., Below
it will be argued that n=1 and n=0 are extremes which are approached at dif-
ferent stages of the development with n+0 as h+e,

10.5 The proportionality factors - comparison with laboratory and field
experiments

The preceding analysis involved three proportionality factors m, N and s,
which have to be established empirically. Most of the experimental work so
far has concentrated on the determination of the factor m, Laboratory
experiments by Kato and Phillips (1969) suggested a value m=1.25. Later
experiments by Kantha® (1975) are described in Phillips' Chapter 7. They do
show that m is not constant, To compare the results with the present analy-
sis, one must consider that Bo was zero in Kantha's experiments. Equation
(10.42) is relevant in these circumstances. When this equation is compared
with the plot of Fig. 7.2, one finds that a line with a constant slope of
Jme2.5 coincides with the axis of the shaded area which represents Kato's and
Phillips’ original experiments. The later results indicate that m is rather
larger than originally estimated and that it is a decreasing function of the
ratio c%/u%=hAb/u%.

mszm (%%?0, (10.43)
*

When this ratio is of order one hundred, m is about 3.3. The experimentally
determined values of m become smaller as the ratio hab/u? increases.

For the interpretation of field observations, it is more convenient to
express the working of the wind not in terms of u, but in terms of the
actually measureable wind velocity u, at the level z=a above the surface.

Denman and Miyake (1973), for example, use the expression
3 = 1/2 3
mui = m,(p,C,/0) / ul.
They calculated that a value of ma=0.0015 corresponded to a value of m=1.25.

A slightly smaller value of ma=0.0012 gave a reasonably good fit for their
analysis of records from ocean weather station Papa (50°N, 145°W). The same
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value also fitted the results of Denman's (1973) idealized wind mixing
studies. On the other hand, Turner (1969) found that a considerably larger
value of ma-0.01, corresponding to m==8§ would be necessary to account for

rapid storm-induced deepening of the mixed layer which had been observed by
Stommel, et al. (1969) in the Sargasso Sea. In a similar way a rapid increase
in the mixed layer depth which had been reported by Halpern (1974b) to have
occurred in August off the west coast of N, America, could be interpreted as
due directly to wind mixing only if one were to stipulate a value of the
proportionality factor m which is much in excess of the laboratory éexperiments,

The contradiction between the laboratory experiments and some of the
oceanic observations - particularly those characterized by rapid deepening -
may be caused by the interface destabilization which is produced by the
working of the shear stress at the bottom of the mixed layer. This can be
associated in turn with transient shears produced by internal waves as
suggested in Kantha's note below, or with inertial currents in the mixed
layer. If allowance is made for these additional processes, which can be
important if h<hf initially, one is faced with the need to evalue the factor

s. Unfortunately we have hardly any experimental data for this purpose.

It is encouraging that Pollard and Millard (1970), Halpern (1974) and
Begis and Crepon* in the Mediterranean all found that during the first few
inertial oscillations after a storm passage, the mixed layer does in fact tend
to move like a slab with little vertical velocity shear, This means that all
the shearing motion is concentrated at the bottom of the layer and Eq. (10.40)
is applicable. The question is how much of the shear-produced energy release
remains available for entrainment?

Pollard and Wyatt* (1976) based a tentative answer on the assumption
mas~R1 = ab h/v;2 .
In the absence of surface cooling BO-IO, Eq. (10.39) assumes then the form

2
Yo | 2s (%
u, 1l-s v/

3
Equation (10.44) allows determination of $ as a function of time during periods
when the layer deepening is in fact dominated by the production of turbulence
kinetic energy from shearing motion at the lower layer boundary.

(10.44)

To carry out their assessment, Pollard and Wyatt used measurements of
dh/dt, u, and ¥ which had been obtained during the 1972 JASIN experiment in

the North Atlantic., The results suggest S<l, This is in agreement also with
the results of a study by Shonting and Goodman* in the Mediterranean. As of
present, the best series of observations were obtained probably by Price”,
Mooers, and Van Leer (1976) in the Gulf of Mexico. From silumtaneous meas-
urements of the temperature structure and of the inertial current velocity,
Price found that Sms0.7 gave the best fit. As mentioned above, the factor S
is affected not only by the dissipation but also by the drain of energy caused
by internal wave radiation downward from the mixed layer base., This being the

case, one would expect S to be a function not only of 27 but also of the sta-
bility in the water immediately below the depth z=-h.

As regards the factor n, several authors - starting with Ball - assumed

b4 16 AT VT I MRS R v A IR 1 2 R D MY T 1 SO e Y e R o .

n=l. This assumption was based on the rationale that the convect@vely
produced eddies are too large in size to be much affected by dissipation. On
the other hand, Gill and Turner found that n=0 gave a good fit to the data
presented here as Fig. 10.4 (below). Deardorff, Willis,and Lilly (1969)
carried out laboratory tank experiments which yielded n=0,015. Farmer (1975),
observing the deepening of a mixed layer under the ice of a frozen lake, found
values of 0.003<ng0.113 with a mean of n=0.036 for his series of twelve obser-
vations,

Tentatively, we suggest that the factor n exhibits a behavior wh@ch is
similar to that of m, and that it is a decreasing function of the ratio
between the relevant kinetic energy consuming and energy produc1ng'tergs. It
therefore should go towards zero as h becomes large. .This suggestion is
speculative. If it is thought acceptable, one has still to distinguish
between forced and free convection.

The case of forced convection is represented by Eq. (10.}0"'). In this
case W, can be scaled by u,, and n is then presumably a function of the form

_9_ 10.45)
n:-n(u*Ab). (

In the case of free convection (u,=0) which applies to the quoted observational
studies, one has to scale W, by a convective velocity which is proportional to

the cube root of (hBo). If n is to be a function of the work terms, it must
have: the form

NN (B°2/3h'1Ab'1). (10.46)

From the preceding discussion one would expect n to be 2 decreasing
function of its argument, that is n+0 as h+=, in analogy with the behavior
of the factor m, .

In view of the uncertainties about the factors m, 0 and S, it is rgther
fortunate that the one-dimensional mixed layer models are not very sensitive
to the actual value of these quantities. Particularly in those cases whgre a
new equilibrium is being developed by the model, as a rgsult 9f.ch§nges in the
forcing function, it will be the rate of approach to this equilibrium rather
than its final character which can be affected by the actual numerical value
of the proportionality factors.

It is obvious that there is scope for further research on the functional
form of the factors m, n and §; or for the matter on the whole prgblem of
representing dissipation as a parametric function of the bulk variables. An
elucidation of these problems is most likely to come from furtber laboratory
experiments and from oceanic observations carried out over a wide range of
different circumstances. Work on the downward mixing of fresh water lenses
produced by tropical showers as illustrated by Fig. 10.3 and the studies of
mixed layer evolutions below ice covers as rePorte§ by McPhee* (1975) or
Farmer (loc.cit.) are of particular jnterest in this context.

10.6 Explicit simulation of time-dependent developments

The actual evolution of mixed layers and surface temperatures with time
depends on the vagaries of the wind, air temperature, radiation and so forth.
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Fig. 10.3 - Downward mixing of a fresh water lens after showers, based on
hourly sounding at about S°N, 21°W in July 1972, Showers are marked by the
conventional international symbol. Note the characteristic salinity maximum
below the mixed layer base., The figure has been kindly supplied by F.
Ostapoff. (See also Ostapoff, Tarbeyev and Worthem, 1973).

In other words, u,zu,(t) and the same applies to other forcing processes.

The rate of layer deepening depends in addition on the stratification in the
water below, Two special cases which have drawn particular attention are the
deepening of a mixed layer following the sudden onset of a storm and the
simulation of diurnal or annual cycles,

a. The deepening of a wind-stirred layer

A study of layer deepening as a function of time shows how the different
processes and equilibria, which were discussed in Section 10.4, necessarily
dominate the development. An orderly time sequence of separate physical
regimes becomes apparent. This separation allows us in principle to evaluate
the free model parameters (m, n, $) independently from different time
segments of a single record. ‘

) Following Niiler (1975) and de Szoeke®* and Rhines (1976) ‘we shall consider
a.hlghly simplified model, which is characterized initially by a fluid at rest
with a surface buoyancy b° and buoyancy gradient

b

2 =
2z N constant.

(10.47)

At a time t=0 a constant stress puZ and a constant cooling rate Bo are applied
to the surface. The penetration of solar radiation is neglected (y =),

The assumptions of a constant N and constant forcing after the initial

z
é
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- impulse represent a highly idealized state. Real oceanic conditions are never

quite as simple, For example, B° cannot remain constant, in general, when the

temperature of the deepening layer changes. In spite of its artificiality -
or perhaps because of it - the simplistic model with its constant forcing and
uniform initial lapse rate reveals rather clearly the succession of different
regimes.

Following the_beginning of the stirring process at t=0,a mixed layer with
constant buoyancy b is established. This leads to the establishment of a
density discontinuity at the bottom of the layer

ab =F - by, = b - by + hN2., (10.48)

The value of bh - the original buoyancy at the level h - is obtained from the

integral of Eq. (10.47). The mixed layer buoyancy must be equal to the mean
of the huoyancy which existed in the layer between z=0 and z=-h before mixing,
minus the time integral of the surface buoyancy flux 80. With Boassumed
constant, one gets:

5=-h
hb = 7 (by*by) =~ B,t.

Elimination of D between the last two equations yields:

1
2= R e 22_
cs abh 5 N¢h Bot.

(10.49)

We introduce Eqs. (10.40) and (10.49) into the turbulence energy equation
(10.29) with I =0, B >0 and with Cly|<<sw,. This equation then assumes the
form

[=%

(10.29")

[q2 + J h2N2 - Bt - 25utf"2h"2(1-cos ft)] = muj + 1 8.

1 dh
7 at

[=%

A B B! C D E

For a scale analysis, the magnitude of the external parameters has to be
specified. We shall use typical mid-latitude values of u,=1.5 cm s~

(corresponding to a fresh breeze with a velocity of about 12 m s-1y,
B =2x10-3 em? s-3 (corresponding to a surface heat loss of 0.01 cal em~2 s-1),

N222x10-% s-2 and f=10"% s-1,

Immediately after the onset of the stress, when h and t are both small,
term (D) can be balanced only by term (A}. At this stage the mixed layer is
of the same order or smaller than the depth of the constant stress layer and
therefore q2=u2, Integration of Eq. (10.29'), with only terms (A) and (D)
different from zero, yields

h = 2mu,t. (10.50)
The depth grows linearly with time at this state. This regime must continue
until term (B) becomes comparable to (A). This happens when the layer depth
has reached a value h; at which u%’ci. To compute h;, we introduce the value

of c% from Eq. (10.49) into this equality and substitute for t from Eq. (10.50).
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This yields expect a very rapid deepening of the mixed layer when the inertial current
Uy Bo Bo U, " velocity is of the same order as the internal wave velocity Ci. Exceptionally
z — — 2 - - - —_— s . . icar
M N 2 + emNug + 2 (ZMNUE) * 1~ N 2. (10.51) rapid deepening in such circumstances has indeed been observed by Price*, et

" al. (1976) in the Gulf of Mexico.

The last approximation is a consequence of the chosen numerical values of

Bo’ N and u,, with m>1. With these numerical values, the depth hy is only

about 1.5 meters, which shows that the mixed layer depth is indeed comparable
to the depth of the quasi-constant stress layer during the validity of this
regime, The layer reaches the depth h; within a time

The term (C) reaches its largest value after one-half pendulum day, that
ijs, at a time

ty = o/f. (10.56)

h
= = L i forth by Pollard, et al. (1973), the
t = e, om0 . If we accept the arguments which were put for y rd, e ,
' MU /2N (10.52) corresponding mixed layer depth can be computed by substituting Eqs. (10.49)

and (10.56) into Eq. (10.41). This yields:

i = 5 : N u
assuming m=1,25 at this state, one finds that t, is only about 40 seconds. hy = —:-(ZN/f)l/z s1/h, (10.57)
In laboratory experiments where N is usually larger than in nature the N

?
levelopnent proceeds even faster, For by the flrst tem in Bq. (10.29 ) For t>t3 the value of the term (C) becomes smaller again and the regime
corresponds then to the condition discussed in Section 10.4e. There will be a
renewed balance between terms (B) and (D) and continuing deepening with the
cube root of time until the layer depth exceeds the value of

becomes neglibibly small and this justifies the omission of this term in the
discussions presented in Section 10.4,

At the time t; the term (B) in Eq. (10.29") is large compared to (B').

2
By expanding cos(ft) it can be shown readily that it is also larger than (C) - L* = 2mus (10.58)
which becomes important only after a significant fraction of one inertial LI - nEo .

period has passed. Until that happens there must be a balance between terms
(B) and (D), which makes the ratio of dh/dt to u, proportional to the inverse

Richardson number (u*/ci)z. Integration of Eq. (10.29') with all terms except
(B) and (D) negligible yields:

Further deepening beyond h, would be described by an equation of the form
dh y2p2. = 10.59)
at (N2h Bot) 2nBoh. (

u* - .
h = N (12mNt)1/3, (10.53) At this depth, however, the assumption of a constant N becomes very unrealistic
indeed.

The layer deepe ow rate which i nal to the cube root of t. . - . .
yer deepens now at a rat ich 1s proportional r The successive dominance of different regimes is summarized in Table 10.1.

This cube root regime continues to prevail until either (C) or (E)
becomes relatively large. With the chosen numerical values of f and Bo the

former will occur first. Terms (B) and (C) become about equal when the layer
has expanded to a depth

TABLE 10.1

Range of transitional regimes in a deepening wind-stirred layer (the computa-
tion of particular transition depths and times is based on the followin

Ye specified values of the external and internal parameters: u,=l1.5 cm s™°,
hy = (6ms=1/2), (10.54) B =2x10~3 cm? s-3, N=1.4x10-2 s-!, £=10~% s~!, m=1.25, s=0.7, n=0.7, C=0.)
’ o
This occurs at a time _ Transition Time Transition Depth Regime
tz"‘,%' (18m2 s-3/2), (10.55) o 0
{ 1inear growth of h
It is int ti t t ition time t, is independent of u .
o; ;s interesting to note that the transition time t, P n * 1 (/7a)-1 (40 sec) %ﬁ (1.5 em) (n < c1/3
¥1(18m3-3/2) (1 hour) [ §*(ems=1/2) (10 m ereial decnenin
Gradually the mean flow, or inertial motion, accelerates to make term (C) P © nours) | S am ey 172s1/ PP {inertial deepening
comparable to term (B)., The sum in brackets then becomes very small. To > 23 gﬁ 3 {heet?
s . s z 1 . us Qe
achieve balance with the energy input from the wind, dh/dt has to become very 15wl 3. (10 days) | S5 {doep convective erosion

large, at least during some interval in this regime. In other words,we should

¢ e SN
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It should be noted that different values of the forcing parameters and
initial conditions would lead to different transition times and depths. In
the present model, the choice of a relatively small value for Bo allowed us

to ignore the term (B') in Eq. (10.29') through most of the development. This
will not always be the case. The internal wave radiation, which has been
neglected in our computation (C=0), must have some influence particularly on
the development of the inertial regime. Values of C could be derived possibly
from observations of the phase and amplitude of the inertial oscillations.
They cannot be derived directly from the present model. Lastly, the chosen
value of m is that based on the old Kato-Phillips experiments. The choice of
a larger, variable m would have stretched out the validity of the second and
fourth regimes in both time and depth.

b. Cyclical changes

In studies of the diurnal and seasonal mixed layer evolution, the forcing
functions Bo and u, cannot be constant; in fact, the former in particular has

necessarily a cyclical component, It is also inappropriate now to stipulate,
a priori, the density structure of the water column below the mixed layer.:
Instead, modellers have assumed usually that this structure was established
during the spring heating season,when the mixed layer reached down to the
relevant depth. As the heating increases, the layer becomes shallower as
indicated by the Eqs. (10.32) or (10.36) leaving a stably stratified fluid
below. During this process, the layer is decoupled from the lower water,
which remains more or less undisturbed, at the temperature which it had when
it was last directly in contact with the surface, The corresponding density
structure is conserved until it is again swallowed up by the deepening mixed
layer in the cooling season.

In the real ocean, conditions at depths below the mixed layer can
obviously not be exactly conserved. Diffusion tends to smooth out gradient
changes. More important even is the fact that the seasonal development is not
a smooth process, but one which is punctuated by storms which can mix surface
water down to considerable depths within a relatively short time. However,
this process can be included in models and if it is allowed for, the stipu-
lated conservation of conditions at depths below the mixed layer is in fact
reproduced, at least qualitatively, over many parts of the ocean. In general,
the analysis has to be carried out numerically unless one stipulates a very
special form of the surface heating B° as a function of time, Obviously, if

the ocean below the layer ''remembers' how its temperature structure was
established, the computer has to do the same. In other words, numbers for
the temperature distribution which had been established by the receding
mixed layer during the heating season, have to be stored in memory until the
deepening layer reaches again down to the same levels, The process has been
simulated in laboratory experiments (Turner and Kraus, 1967).

It is characteristic for the cyclical changes that the evolution of the
surface temperature is not in phase with the layer depth. This fact is well
simulated by the mixed layer models. For example, Eq. (10.36) shows that
during surface heating (B°<0) the layer depth reaches its smallest value when

the heating |B°l reaches its maximum - that is at the time of the summer

solstice for the seasonal case, or at noon for the diurnal evolution. At
that time weadh/dtr-o, but from Eq. (10.22) it can be seen that then dTO/dtﬁO;
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in fact, the surface temperature rise will tend to be largest at that time.
J(T - T, ) dz
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Fig. 10,4 - Heat content as a function of surface temperature at chan
Weather Station Echo (35°N, 48°W), The integral extends from a fixed depth
of 250 m to the surface. The reference temperature Tr represents the mean

of the temperature at 250 m and 275 m depth. (After Gill and Turnmer, 1976).

This out-of-phase relationship of To and h has been noted in many series

of lake and ocean observations (sce Kraus (1972) for diag?ams and'refe?ences).
Because of it, any plot of h against To or Bo as a function of time will

exhibit a hysteresis loop. Instead of plotting h against T° directly, one

can plot the total heat content (or the corresponding mass deficit) of a
water columm in the upper ocean against the surface temperature, Sucb a plot
is shown in Fig. 10.4 which is drawn from Gill and Turner (1976) and is based
on data from ocean station Echo (35°N, 48°W). It can be seen, for example,
that the surface temperature is much higher in August than in November, but tht
mixed layer is shallower in summer and the heat content of the water_column
in the two months is about the same, The existence of this hysteresis loop
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is, of course, simply a manifestation of the ocean's capacity to store heat
beyond the heating season. As such, it has an influence on the climate, and
indeed the livability of the planet, which cannot be overestimated. (See
also Holland, Figs. 2.6 and 2.15 for computer simulation of hysterisis loops.}

As mentioned above, the original models with forcing by a cyclical B
did not produce a completely cyclical response, Without suitable
parametrization of the dissipation, the convective layer becomes deeper and
the potential energy increases from cycle to cycle, This is due to the
continuing positive energy input by the wind (u3>0}. To model real cyclical

developments one has to let m and n both go to zero as the layer becomes deep,
All the input energy is then dissipated and none is available to increase the
potential energy of the water_column excessively, Alternatively one can allow
for a general slow upwelling W. Such a widespread upwelling is indeed needed
over much of the oceans, to compensate for the production of bottom water by
sinking in high latitudes.

10.7 Concluding remarks

One-dimensional mixed layer models may well become useful components in
more comprehensive ocean, climate and biological models. They have the
advantage of being relatively simple and of providing a rather direct physical
insight. They can yield reasonably realistic simulation of diurnal and of
seasonal temperature changes in lakes and in suitable chosen ocean areas where
horizontal advection is insignificant. The realism is improved if one chooses
some functional form for the factors m and n which causes them to go towards
zero as the layer becomes very deep. A zero value of these factors implies
a balance between turbulence generation and dissipation. It does not imply
an invariant layer depth, though it must cause the disappearance of the
discontinuity at the layer base.

The ability of the simple mixed layer model to simulate rapid changes
after storms is more questionable. They seem to work sometimes, but at other
times they do not simulate the actually observed oceanic development very
well, This may be due partly to-the dependence of the development on the
exact character of the dissipation and also to the fact that horizontal
variations may not be negligible in these circumstances,

We wish to thank once more all the contributors to the Urbino working group
on one-dimensional modelling. In preparing this report, we had the advantage
of support from the National Science Foundation under Grant No. NSF GA 33550X
and from the Office of Naval Research, Grant No. NO014-75-C-0299, NR083-31S.
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Chapter 10a
NOTE ON THE ROLE OF INTERNAL

WAVES IN THERMOCLINE EROSION
L. H. Kantha

In the preceding chapter by Niiler and Kraus, (referred to below as
N&K), the influence of intermal waves on entrainment processes has been
essentially ignored. There is reason to suspect, however, that their influ-
ence could be quite substantial, at least under some conditions., It is the
purpose of this note to discuss the possible effect of internal waves on the
entrainment rate and on the associated energy flux.

Internal waves can be generated locally by turbulence or externally by a
distant storm., Waves always radiate energy away from the area where they are
being generated. They can cause thus a local energy loss from the mixed layer
in the area below a storm. This tends to reduce entrainment, simply because
less energy is available for the lifting of the dense lower fluid into the
mixed layer., On the other hand, waves which propagate into the region can
make additional energy available, which might increase the rate of layer
deepening.

The energy radiated away by locally generated waves was parameterized in
the Eqs. (10.26) and (10.27) of N§K in the form E;/p= c|v|3 and lumped together

with the shear production of turbulence kinetic energy at the bottom of the
mixed layer. The term was subsequently dropped. However, in any case, this
parameterization is rather arbitrary. The energy supplied to the waves must
depend upon the amplitude and the length scale of the interface perturbations
and upon the stratification in the fluid below. If the region below the inter-
face is not stratified, internal waves propagating into the interior cannot be

generated., It follows that the energy loss might be expressed more appropri-
ately in the form:
E E
i_ i
T = ? (qzt ]ms N, ab),

with qz the root mean square vertical component of the turbulent velocity, ]m

the integral length scale of turbulence within the mixed layer; N is the
bouyancy frequency in the fluid below and Ab has the same meaning as in N&K.
Using dimensional analysis:

Ei,gAbh Na, Tm Joa1
a3 Z'T’h' (10a.1)
For brevity's sake we write qu/AbEG. With the interface treated as a sharp
discontinuity abh=c%; and with the integral scale length proportional to the

layer depth in fully developed mixed layer turbulence ] n® h, this allows Eq.
(10a.1) to be rewritten in the form:

Ei ¢y
= i
qu 91( z » 6). (10a.2)
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