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ABSTRACT 

A theory of the layer formation due to surface processes is presented, which is more 
general than that used in the preceding paper I. Convection due to heating at depth 
and cooling at the surface is included, as well as the mechanical stirring due to wind 
action. The theory is applicable to arbitrary forms of heating, including intermittent 
or continuous processes, and could be used to investigate diurnal as well aa seasonal 
effects. A detailed application is made to the case treated approximately in I, for which 
a solution is now obtained in analytic form. 

The results obtained allow a quantitative, as well as qualitative, comparison with 
the ocean. It is found that reasonable layer depths are predicted using measured 
heating rates, and a value of the turbulent kinetic energy input to the water deduced 
from the mean surface stress. The effects of heating at depth can be comparable with 
wind stirring, even when the temperature of the upper layer is increasing. During the 
winter, convection due to surface cooling dominates the processes which deepen the 
layer. 

1. Introduction 
Among the various recent theories of the 

well-mixed surface layer of the ocean there are 
two which are one-dimensional in nature. Both 
KITAICORODSKI (1960) and KRAUS & ROOTH 
(1961) consider steady-state models which 
imply different kinds of balances in the vertical. 
Kitaigorodski computes the depth of the stirred 
layer from a balance between the mean work of 
the wind stress and the work needed to mix heat 
downward from the surface. This theory breaks 
down when there is an upward flux of heat-at 
night or during autumn, for example. It also 
ignores changes in layer temperature, which 
cannot remain constant with a constant positive 
heat input and invariant depths. 

Kraus and Rooth, on the other hand, con- 
sider the effect of a net heat loss from the surface 
by evaporation, conduction and infrared radia- 
tion. This can be compensated by the absorp- 
tion of visible solar radiation through a finite 
depth, so there will be an upward convective 
heat flux between the compensation level and 
the surface. Kinetic energy generated by this 
upward flux of heat can be transformed into 
potential energy by penetrative convection, that 

is, by the overshooting of sinking water parcels 
below the compensation level, causing a down- 
ward flux of heat between that level and the 
bottom of the stirred layer. It should also cause 
an increase in layer depth due to entrainment 
as described in the preceding paper by TURNER 
& Kraus (1966), which will be referred to here 
as paper I. The process is analogous to the rise 
of atmospheric inversions due to surface heating, 
as discuased by BALL (1960). Kraus & Rooth 
keep the layer depth steady by stipulating that 
there should be a balance between the tendency 
for the layer thickness to increase and the up- 
welling of cold water from below. 

This theory has features which one must 
retain in a more general treatment, but it too 
is not applicable realistically to a wide range of 
conditions. The model takes no account of 
mechanical stirring and of the (relatively rare) 
occasions when heat flows downwards from the 
surface. Because of the assumption of upwelling 
it is generally inapplicable to ponds, lakes, or to 
those regions of the oceans where no upwelling 
takes place. Upwelling will not be considered 
in the following treatment. It can undoubtedly 
influence the depth and temperature of daily 
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A ONE-DIMENSION& MODEL OF THE SEASON& THERMOCLINE. I1 99 

or seasonal thermoclines, but it is not essential 
for their formation and persistence aa is the 
case for the main thermocline. (This latter 
clearly could not persist throughout the year 
without a cold upwelling, for then penetrative 
convection would gradually extend the depth 
of the mixed layer down to the sea bottom.) 

The most important omission from both these 
earlier models is any discussion of time dependerrt 
processes. It seems that fluctuations in time do 
play an essential role in the formation and 
maintenance of thermoclines. Radiational heat 
losses during the night or during autumn will be 
associated with penetrative convection which 
mixes heat from near the surface into lower 
layers. The depth of the thermocline can be 
influenced by the amplitude of daily, synoptic 
and seasonal fluctuations of cooling and heating 
at the surface, as well as by variations of wind 
stirring. 

The following treatment deals with the time 
dependent case of the one-dimensional model. 
It will appear that the formulation suggested 
by Kitaigorodski is just a special case of this 
time-dependent theory. The theory is also 
applied to the laboratory experiments described 
in paper I. 

2. The energy relations 

The non-adiabatic heating a t  a depth z below 
the sea surface can be described by the expres- 
sion 

Q* = @S*eC8' + 2B*6 (2). (1) 

The f i r s t  term on the right represents the con- 
vergence of the penetrating component s* of 
solar radiation. Below a depth of some ten 
centimeters, the absorption of this radiation be- 
comes approximately isotropic and exponential, 
with a scale length @-I of about 10 to 20 meters 
in the open sub-tropical ocean. The last term 
in (1) accounta for heat exchanges associated 
with the flux B* due to infrared radiation, sens- 
ible heat and evaporation. Numerical values for 
this quantity were presented by KRAUS & 
ROOTH (1961). The Dirac delta function 6 ( z )  
expresses the fact that these processes are con- 
centrated at the surface. Its integral is 

/ o h 6 ( z ) d z = +  

for all values of h > 0. 

It is convenient to use new variables in the 
further computations, defined by the substitu- 
tions 

Q*, S*, B*=ec(Q, S B) .  

As the density e of sea water and the specific 
heat c are both close to unity by definition, the 
new variables are nearly identical numerically 
with the old ones, though they do have different 
dimensions. 

From (1) it follows that a surface heat loss 
should give rise to a convective upward flux of 
heat through a depth of the order 

d = @ - 1 l n ( l +  B/S). (2) 

With T representing the horizontal mean of 
the temperature, !l" the deviation from the 
mean and W' the corresponding vertical velocity, 
the thermal energy equation can be written in 
the form 

d T  a - 
dt az 

- + - ( W ' T ' ) = Q  (3) 

Within the stirred surface layer, the tempera- 
ture Ts is nearly constant with depth. Integra- 
tion of (3) with the use of (1) gives therefore 

d T ,  - 
- z + ( W T ) ,  = S +  B-SeCBL. (4) dt 

The isothermal layer will become shallower if 
the penetrative convection does not reach down 
through its full depth h. On the other hand it 
will get thicker by entrainment of water from 
below if the downward heat flux is greater than 
zero at the level h. The entrained water will 
then be heated from its temperature Th below 
the layer to the temperature T, of the layer. 
Formally: 

- d h  
( r T ' ) h  =A(Ts- T h )  &, ( 5 )  

where A is the Heaviside unit function, defined 
to be 

A = A g ) - o  1 for dh - 2 0 .  
dt 

The application of (4) to the whole layer depth 
h gives therefore 

dTS dh 
dt dt 

h -  +A(T,-Th)- - S + B - S e C B h w S + B ,  

Tellus XIX (1967). 1 
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100 E. B. KRAUS AND J. S. TURNER 

the final step being possible because the pene- 
tration of radiation below the level h is likely 
to be small (Bh > 1). Precipitation and evapora- 
tion do produce changes in salinity, but the 
resulting density variations are relatively small. 
I f  they are neglected, the transformation of 
potential energy into kinetic energy by convec- 
tion within the layer is given by 

Ph 

w*= - 9  ae I W'T'dz,  (7) 
J o  

where u is the coefficient of expansion 

a = e - ' d ~ / d T .  

Let D* denote the dissipation within the layer 
and G* the kinetic energy input from the wind. 
The mechanical energy balance is then expres- 
sed by 

W* +G* - D* = O .  (8) 

From equations (4) and (6 )  we obtain: 

1 dT, S 

2 dt B 
= - - h * - ( ( S + B ) h +  ~ 

The introduction of (9) into (8) gives, after divi- 
sion by gee and rearrangement, a mechanical 
energy equation of the form 

1dTs B dh s 
2 dt dt 8 '  _ _  h + A ( T s - T h ) h - = G - D + -  (10) 

where G -  @ / g q  and D=D*/gue .  (11)  

The first term in (10) represents the potential 
energy change associated with the change in 
temperature of the layer, and the second the 
potential energy change due to entrainment, 
when this exists. The terms on the right hand 
side are related to the mechanical stirring, dissi- 
pation, and convection due to internal heating. 

The two equations (6) for the thermal energy 
balance and (10) for the mechanical energy 
permit the computation of layer depth h and 
temperature T, as a function of time for quite 
general external energy inputs, provided the dis- 
sipation is known. In  the following section we 

will explore some general properties of these 
solutions before specializing further to a par- 
ticular example. 

3. Calculation of layer depth and 
temperature 

Following the arguments presented in paper I, 
it will be assumed that vertical mixing within 
the thermocline region is weak, and that it 
has no significant effect on the daily or seasonal 
temperature structure below the stirred surface 
layer. This means that strata of fluid will be 
heated to a temperature T h ( z )  as the depth of 
the mixed layer decreases during the heating 
season, and then left behind unchanged until 
the stirred layer reaches them again. The tem- 
perature Th(z)  therefore corresponds to the sur- 
face temperature T ,  a t  the time when the stirred 
layer reached down to the level z. 

With this assumption we have 

The first expression is proportional to the inter- 
nal energy and the second to the potential 
energy of the u-ater below the stirred layer at a 
time th when the depth of the layer is given by 
any specific h. At the beginning of the heating 
when t = t e  the layer depth h, = M, and the 
temperature is taken to be To = 0 by definition. 

When the interface is descending again 
(dh/dt > 0 ) ,  the integrals of equations (6) and 
(10) can therefore be written 

T , h +  IhW Thdh= It: ( S + B ) d t  (6') 

and 

&Tsha + jhWThhdh-  j : : ( G - D + S / B ) d t .  (10') 

These equations simply express the facts that 
the internal and potential energies of the whole 
water column are equal to the integrated heat 
and mechanical energy inputs in the past, and 
they could have been written down directly in 
this form. The use of these equations, with D 
and S/B neglected, is implicit in the step-by-step 

Tellus XIX (1987), 1 
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A ONE-DIMENSIONAL MODEL OF THE SEASONAL THERMOCLINE. I1 101 

calculation described in paper I, and they will 
be used again for the corresponding computa- 
tions in this paper. 

For a more general discussion, it is convenient 
to transform (6) and (10) into 

dTs=2 dt ha [ ( S + B ) h -  ( c f - D + $ ]  (13) 

and 

A - =  dh dt (TP,-Th)h [ z ( c f - D +  ;)- (S+/?)h] 

When the thermocline is rising, A = O  and the 
numerator of the right hand side of (14) must 
also be zero. During such periods it therefore 
follows that 

G - D + S/ /?  h=2 --. 
S + B  

The introduction of (15) into (13) then gives 

dT,- 2G-D+S/B 1 (S+B)'  
dt ha 2 c f  - D +S/@' (16) - _ -  - - ____ 

Differentiation of (15), with the reasonable 
assumption that the daily or seasonal variations 
of the solar radiation S are significantly larger 
than the corresponding variations of the other 
variables on the right hand side, results in 

For most seasonal thermoclines h > 2//?, so (17) 
shows immediately that h and -S  are in 
phase, and the layer depth is decreasing while 
the heating rate is increasing. The layer depth h 
therefore has a minimum a t  the time of the 
summer solstice when dS/dt = 0. Equation (16) 
shows however that the temperature is still in- 
creasing at that time, and that in fact the warm- 
ing should be most rapid when h is close to its 
minimum. The surface temperature Ts attains 
its maximum later in the season. 

After the summer solstice the layer begins to 
deepen. As can be seen from equation (14) this 
implies 

2(cf - D +SIP) - (S  + B)h > O .  (14') 

Tellus XIX (1967), I 

At f i r s t  the deepening must be slow, because 
(8 + B )  remains positive during summer and 
the difference between the first and the second 
terms in (14') will remain relatively small. The 
temperature contrast at the bottom of the layer 
is steepest after the heating maximum so the 
term (T ,  - Th) in the denominator of (14) is 
large and this also will contribute to keeping 
dh/& relatively small during that period. 

When the heat input becomes negative (( S + 
B )  < 0) later in the season, say after the equinox, 
both terms in (14') will contribute to an increase 
of layer depth, which therefore should deepen 
rapidly during autumn. 

These general predictions from the theory are 
clearly in agreement with the oceanic observa- 
tions and with the results of the experiments 
described in paper I (see especially Figs. 2 and 
4 in paper I). 

4. Application of the theory to the experi- 
ment with constant stirring and a saw- 
tooth heating function 

In  this section we will specialize further, and 
treat in more detail an example which corre- 
sponds closely to the case considered in paper I. 
That is, we put D = O  and /? = 00, and suppose 
that the net heating at the surface (8 + B )  fol- 
lows a symmetrical saw-tooth form described by 

O c t c P / 4  

3 P / 4 <  t <  P .  

The beginning of the heating has been taken as 
the zero of time, and P is the period of the 
heating and cooling cycle. We will also assume 
that the rate of mechanical working or (2 is 
constant throughout the cycle. 

During the period of increasing heating, we 
have from (15) and (18) 

h = 2cf/Kt. (19) 

Introduction of the explicit heating function 
(18) into (16) and integration gives 
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102 E. B. KRAUS AND J. 9. TURNER 

G, P and the maximum rate of heating ( S +  
B),,=R say (where R = f  KP for the saw 
tooth form used here). In  terms of these and 
corresponding dimensionless variables T, ,  T , ,  
h, and t,, the physical variables are: 

T , ,  T ,  = (a--IRaP) T, ,  T, ,  h = GR-'h,, t = Pt,. 

( 2 4 )  

The equations (19) and ( 2 0 )  describing the 
rising interface become 

FIQ. 1. The theoretical calculation of the time- 
dependent mixed layer beheviour, using constant 
stirring and continuous heat input. This plot is in 
non-dimensional form. (a) The assumed saw-tooth 
heating function. ( b )  Depth of the well-mixed sur- 
face layer. ( c )  Temperature of the well-mixed layer. 
These curve8 are directly comparable (except for a 
change of scale) with those deduced in Fig. 7 of 
paper I by a step-by-step calculation. 

When (19) is substituted in ( 2 0 )  we obtain Th 
as a function of depth 

where a is a constant. 
Equation ( 2 1 )  is the starting point for the cal- 

culations involving the descending interface. 
The integral heat and energy balance equations 
(6') and (10') now become 

T,h + &ah-' = I0' (S  + B)dt ( 2 2 )  

and fT&Z +ah-' =Gt. ( 2 3 )  

The right hand side of ( 2 2 )  is a known function 
of t which can be written down from (18). 

It will be convenient to put the equations 
(19), ( 2 0 ) ,  ( 2 2 )  and ( 2 3 )  into non-dimensional 
form before they are solved. A suitable set of 
parameters with which to effect this consists of 

For the descending interface, the introduction 
of (24) into ( 2 2 )  and ( 2 3 )  gives after some re- 
arrangement: 

4t, = h;' + fFh ,  

4 T ,  = Fh;'- 3hl-3.  (23' )  

( 2 2 ' )  

Here F is a function of the non-dimensional 
time which can be shown using (18) to be 

F -  -1+8t1-8t:  when ) < t , < p  

or F = 8 - 1 6 t 1 + 8 t T  when p < t , < l .  (25) 

For this special form of heating function, the 
behaviour of the upper mixed layer as a func- 
tion of time has therefore been reduced to the 
solution of a set of algebraic equations. The solu- 
tion curves are shown in Figs. 1 and 2, where h, 
and T are plotted first against time and then 
against each other. These correspond precisely 
to Figs. 7 and 6 of paper I. This comparison 
between the two methods of calculation, one 
based on a step-by-step procedure corresponding 
to intermittent heating and the other on a con- 
tinuous model shows that there is no essential 
difference, a t  least on a seasonal time scale and 
with surface heating. Both methods in effect use 
the same integral heat and energy equations. 

With these exact forms of h, and T now 
available, we should emphasize again the quali- 
tative features which are believed to be sig- 
nificant, and in good agreement with observa- 
tion. There is a rising interface, with a minimum 
depth at the time of maximum heating, followed 
by a slow and then a much faster deepening. 
The phase relationships are realistic too; the 
maximum heating and minimum depth occur 
first (at 0 . 2 5 P ) ,  then the time of maximum 

Tellus XIX (1967), 1 
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A ONE-DIMENSIONAL MODEL OF THE SEASONAL THERMOCLINE. II 103 

temperature at 0.40P, and zero cooling at 
0.50P. A similar calculation for sinusoidal 
heating (which will not be presented in detail 
here) provides few surprises. The only differ- 
ences are that the layer spends longer with a 
shallow depth and hence becomes warmer for a 
given total heat input, and its temperature is an 
even more symmetrical function of time, with 
the maximum later at 0.44 P .  

We can also obtain important information 
about the system by examining the scaling 
equations (24). Several features described in the 
preceding section can now be exhibited more 
clearly using this specific example, and are 
worth further comment. The temperature of the 
layer is proportional to the aquare of the maxi- 
mum rate of heating, and increases linearly 
with the period over which heating occurs. It 
is inversely proportional to the rate of kinetic 
energy input from the wind. The depth of the 
layer, on the other hand, is directly proportional 
to the mechanical stirring rate and inversely 
proportional to the heating. The depth scale 
does not depend a t  all on the period, though 
of course both the depth and temperature 
depend on time through the solutions presented 
in Fig. 1. 

5. The comparison with oceanic observa- 
tions 

Finally we will compare some numerical de- 
ductiona from this theory with the observations. 
The data presented by TABATA t GIOVANDO 
(1963) for Ocean Weather Station P show a 
mixed layer depth of about 2 0  meters during 
the height of summer. Similarly, Fig. 2 in paper 
I shows minimum layer depths of 20-50 meters. 
The seasonal ocean surface temperature range 
in middle latitudes is about 6-10°C. To be valid, 
a theory hes to account for these values in 
terms of realistic inputs of mechanical and 
thermal energy. It will be shown that the effects 
of mechanical stirring and of convection result- 
ing from distributed heating may each be im- 
portant at different times; neither can be n e g  
lected at the expense of the other. 

We must first obtain an estimate of the 
kinetic energy input to the water due to a sur- 
face stress z. The stress T of the wind works 
on all the fluid below a level z at a rate tu,, 
where u, is the mean velocity at this level. At 
the top of the viscous sublayer in the air, the 
mean wind velocity is of order (t/ea)* =u*, 

Tellus XIX (1967), 1 

T 

16 ' I I 
i 

FIG. 2. The layer depth plotted against its tempera- 
ture for the theoretical results of Fig. 1. Marked 
on the curve are values of the non-dimensional time 
t , ,  or fractions of the total heating and cooling 
period. 

where ea is the air density, so the work done by 
the mean stress at this level is approximately 
rue. Most of this energy input is not transmitted 
to the body of the water below, however; it is 
dissipated within a double viscous sublayer, on 
both sides of the interface. I n  exactly the same 
way, a friction velocity v* say, can be defined 
for the water, which is characteristic of the 
water velocity a t  the edge of the sublayer in the 
water. As the stress is constant across the 
interfacial region we have 

t = eaui = evi 
and therefore 

V ,  = u,,l/eale- 0 * 0 3 5 ~ , .  (26) 

The mechanical energy input into the water 
below the viscous sublayer is then of order 

and for the quantity B defined 
obtain: 

by (11) we 

(27) 

The introduction of (26) into (15) with the 
assumption D = 0, @ = 00 gives 
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104 E. B. KRAUS AND J. S. TURNER 

This is essentially the same formula as the 
one derived by Kitaigorodski on the basis of 
dimensional reasoning. It is of interest to note 
that Kitaigorodski found empirically a propor- 
tionality constant 2.0 for his dimensional for- 
mula, which agrees exactly, though perhaps 
fortuitously, with the theoretically derived fac- 
tor 2 on the right hand side of (28). Formula 
(28) is not applicable to periods when the 
thermocline deepens. From equation (16) it fol- 
lows also that it must be associated with an 
increasing surface temperature T,. These con- 
sequences are not apparent in Kitaigorodski's 
approach. 

Numerical values typical of conditions over 
the ocean can be found as follows. The drag 
coefficient C,, a t  the ten meter level over water, 
by definition given by 

= c,, G o ,  (29) 

can be computed from Sheppard's (1958) rela- 
tion 

C,, = (0.80 + 0.00114 Ulo) (30) 

Figures presented by KRAUS (1959) suggest a 
geometric mean wind velocity (G)& of about 
8 m/sec at anemometer height over the oceans 
at latitudes less than 30". Weathemhips indicate 
more frequent strong winds in higher latitudes, 
but the value of (2)' exceeds 12 m/sec only in 
very restricted areas. During the summer heat- 
ing season values of about 7-8 m/sec are widely 
prevalent. From (30) we obtain Clo = 1.7 x 

for U,, = 800 cmlsec. This may be compared 
with values in a table of C,, over water pub- 
lished by ROLL (1965). He quotes results derived 
in different ways by various authors, ranging 
mostly between 1.0 x 10-3 and 2.5 x 10-3, so the 
figure we have derived using (30) falls in the 
middle of this range. 

With this numerical value, C,, = 1.7 x 
we get from (26), (27) and (29) 

u* =33 cmlsec, w* = 1.2 cm/sec, 

t = 1.3 dyne/cm2, 

and so G = 6.0 cm2 sec-l "K (31) 

for the mechanical energy parameter. 
Next, we must consider a typical heat balance. 

We will assume a reIatively small mean heat 
loss B* - -200 cal cm-z/day, and neglect the 
wind dependence of this quantity in our ap- 

proximate calculation. Under extremely favor- 
able conditions, on a cloudless, clear summer 
day, the penetrating component of the solar 
radiation may be as high as S* -600 cal cm-Z/ 
day. This gives a maximum net heat input of 
(S* + B*)m,x -400 cal cni-2/day, corresponding 
to 

R = (S  + B),,x =4.6 x cm sec-1 "K. (32) 

From the numerical values in (31) and (32) we 
can derive a minimum thermocline depth of 

(33) 

If we approximate actual conditions by the 
results of the model with saw-tooth heating, we 
obt,ain from (24) and Fig. 1 

hmin = 2G/R = 26 metres. 

T,,, = 0.08 R2P/G = 9" K. (34) 

The results (33) and (34) both lie in the observed 
range. 

As KRAUS & ROOTK (1961) noted, there is a 
high information content of these thermocline 
theories. Realistic values for h and T, can be 
obtained only from a narrow range of energy 
inputs. For example, we would still have ob- 
tained reasonably plausible values had we used 
half or double the mechanical stirring rate; but 
we could not change this rate by an order of 
magnitude, or even a factor of three, without 
deriving values for h and T, which are not 
observed in nature. 

Consider now the effect of the penetrating 
radiation. With j3-' = 2 0  m and the value of S* 
given above, 

S/p =S* /ecD - 14 cm2 sec-' "K, (35) 

which is more than twice as large as G in (31) so 
it certainly cannot be neglected. This would 
yield a layer depth 

c f  + SIB hmi, = 2 __- = 87 metres, 
R 

considerably in excess of the observed summer 
minimum thermocline depth. If we had used a 
lower value of j3-l = 10 m, so that the terms (31) 
and (35) are comparable in magnitude, we 
would still have an unusually deep layer of 57 
metres. A lower assumed value of S would not 
change this result a great deal, because it would 
affect also the value of R in the denominator. 
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We conclude therefore that the penetrative 
radiation produces convective mixing at a rate 
which is of the same order as that produced by 
mechanical stirring and that during the height 
of summer the radiation effect is likely to be 
predominant. These conclusions, however, intro- 
duce another difficulty; the results (33) and 
(34) are realistic with wind stirring alone, but 
the two effects together result in too deep a 
seasonal thermocline on the basis of the above 
assumptions. There remains the possibility that 
it is not permissible to neglect dissipation in 
( la ) ,  and that the actual stirring rate must be 
leas than waa assumed above. 

Dissipation will affect both the energy pro- 
duced by mechanical stirring and that produced 
by convection. However, the characteristic 
length scale of the convection is likely to be of 
the same order aa the depth h. It was argued 
by BALL (1960) that dissipation has little signifi- 
cant effect on turbulence at such a scale. The 
mechanical energy input on the other hand is 
likely to cover a broad spectrum. The high wave 
number part of this spectrum must be dissipated 
at a short distance from the surface. Only the 
larger eddies, that is a fraction of the total 
mechanically induced turbulence, can reach 
deep enough to affect the thermocline. 

During the colder season of the year changes 
in mixed layer depth and temperature are 
controlled predominantly by surface cooling; 

wind stirring or penetrative radiation have rela- 
tively little effect a t  that time. This result could 
readily have been deduced earlier from equa- 
tions (13) and (la), but it is appropriate to do 
it now. The depth h is large during winter, and 
the product (S + B)h will always exceed the 
stirring terms in the square braekets of (13) and 
(14). Since (S + B) is negative, this product will 
account for most of the rates of incream of 
layer depth and decrease of its temperature. 

In  the preceding discussion we have treated 
the seasonal heating as a smooth function. The 
consideration of daily heating and nocturnal 
cooling is unlikely to produce significantly 
different seasonal changes, though this would 
have the effect of an additional stirring which i t  
would be interesting to investigate in a future 
numerical study. This should at the same time 
include the effects of variable wind stirring. 
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