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ABSTRACT

A theory of the layer formation due to surface processes is presented, which is more
general than that used in the preceding paper I. Convection due to heating at depth
and cooling at the surface is included, as well as the mechanical stirring due to wind
action. The theory is applicable to arbitrary forms of heating, including intermittent
or continuous processes, and could be used to investigate diurnal as well as seasonal
effects. A detailed application is made to the case treated approximately in I, for which
a solution is now obtained in analytic form.

The results obtained allow a quantitative, as well ag qualitative, comparison with
the ocean. It is found that reasonable layer depths are predicted using measured
heating rates, and a value of the turbulent kinetic energy input to the water deduced
from the mean surface stress. The effects of heating at depth can be comparable with
wind stirring, even when the temperature of the upper layer is increasing. During the
winter, convection due to surface cooling dominates the processes which deepen the

layer.

1. Introduction

Among the various recent theories of the
well-mixed surface layer of the ocean there are
two which are one-dimensional in nature. Both
Kitaicoropsgir (1960) and Kraus & Rootn
(1961) consider steady-state models which
imply different kinds of balances in the vertical.
Kitaigorodski computes the depth of the stirred
layer from a balance between the mean work of
the wind stress and the work needed to mix heat
downward from the surface. This theory breaks
down when there is an upward flux of heat—at
night or during autumn, for example. It also
ignores changes in layer temperature, which
cannot remain constant with a constant positive
heat input and invariant depths.

Kraus and Rooth, on the other hand, con-
sider the effect of a net heat loss from the surface
by evaporation, conduction and infrared radia-
tion. This can be compensated by the absorp-
tion of visible solar radiation through a finite
depth, so there will be an upward convective
heat flux between the compensation level and
the surface. Kinetic energy generated by this
upward flux of heat can be transformed into
potential energy by penetrative convection, that

is, by the overshooting of sinking water parcels
below the compensation level, causing a down-
ward flux of heat between that level and the
bottom of the stirred layer. It should also cause
an increase in layer depth due to entrainment
as described in the preceding paper by TURNER
& Kraus (1966), which will be referred to here
as paper 1. The process is analogous to the rise
of atmospheric inversions due to surface heating,
as discussed by Barr (1960). Kraus & Rooth
keep the layer depth steady by stipulating that
there should be a balance between the tendency
for the layer thickness to increase and the up-
welling of cold water from below.

This theory has features which one must
retain in a more general treatment, but it too
i8 not applicable realistically to a wide range of
conditions. The model takes no account of
mechanical stirring and of the (relatively rare)
occasions when heat flows downwards from the
surface. Because of the assumption of upwelling
it is generally inapplicable to ponds, lakes, or to
those regions of the oceans where no upwelling
takes place. Upwelling will not be considered
in the following treatment. It can undoubtedly
influence the depth and temperature of daily
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or seasonal thermoclines, but it is not essential
for their formation and persistence as is the
cage for the main thermocline. (This latter
clearly could not persist throughout the year
without a cold upwelling, for then penetrative
convection would gradually extend the depth
of the mixed layer down to the sea bottom.)

The most important omission from both these
earlier models is any discussion of time dependent
processes. It seems that fluctuations in time do
play an essential role in the formation and
maintenance of thermoclines. Radiational heat
losses during the night or during autumn will be
associated with penetrative convection which
mixes heat from near the surface into lower
layers. The depth of the thermocline can be
influenced by the amplitude of daily, synoptic
and seasonal fluctuations of cooling and heating
at the surface, as well as by variations of wind
stirring.

The following treatment deals with the time
dependent case of the one-dimensional model.
It will appear that the formulation suggested
by Kitaigorodski is just a special case of this
time-dependent theory. The theory is also
applied to the laboratory experiments described
in paper I.

2. The energy relations

The non-adiabatic heating at a depth z below
the sea surface can be described by the expres-
sion

Q*-pS*e P+ 2B*8 (2). (1)

The first term on the right represents the con-
vergence of the penetrating component S* of
solar radiation. Below a depth of some ten
centimeters, the absorption of this radiation be-
comes approximately isotropic and exponential,
with a scale length - of about 10 to 20 meters
in the open sub-tropical ocean. The last term
in (1) accounts for heat exchanges associated
with the flux B* due to infrared radiation, sens-
ible heat and evaporation. Numerical values for
this quantity were presented by KRravs &
Roorr (1961). The Dirac delta function d(z)
expresses the fact that these processes are con-
centrated at the surface. Its integral is

h
f 6(z)dz=1}

0

for all values of % >0.
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It is convenient to use new variables in the
further computations, defined by the substitu-
tions

Q*, S*, B*=9c(Q, S B).

As the density ¢ of sea water and the specific
heat ¢ are both close to unity by definition, the
new variables are nearly identical numerically
with the old ones, though they do have different
dimensions.

From (1) it follows that a surface heat loss
should give rise to a convective upward flux of
heat through a depth of the order

d =B-1In(1 + B/S). (@)

With T representing the horizontal mean of
the temperature, 7" the deviation from the
mean and W’ the corresponding vertical velocity,
the thermal energy equation can be written in
the form

dT 8 ——
—+t— (W1 =Q. 3
2 0 (FT)=Q 3)

Within the stirred surface layer, the tempera-
ture 7', is nearly constant with depth. Integra-
tion of (3) with the use of (1) gives therefore

a7, ——
-dt—‘ z+(WT"),=S8+B-S8e . (4)

The isothermal layer will become shallower if
the penetrative convection does not reach down
through its full depth h. On the other hand it
will get thicker by entrainment of water from
below if the downward heat flux is greater than
zero at the level h. The entrained water will
then be heated from its temperature 7', below
the layer to the temperature T, of the layer.
Formally:

N dh
(W’T’),,=A(T,—Th)£, (5)

where A is the Heaviside unit function, defined

to be
aea (™l e a0
=Aa) "o o a3

The application of (4) to the whole layer depth
h gives therefore

T dh
A+ A(T,—T,,)C—E =S+B-Se xS+ B,

de
(8)
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the final step being possible because the pene-
tration of radiation below the level % is likely
to be small (8k >1). Precipitation and evapora-
tion do produce changes in salinity, but the
resulting density variations are relatively small.
If they are neglected, the transformation of
poatential energy into kinetic energy by convec-
tion within the layer is given by

h
W* = —gap f WT dz, (7
0

where « is the coefficient of expansion
a=p 'dp/dT.

Let D* denote the dissipation within the layer
and G* the kinetic energy input from the wind.
The mechanical energy balance is then expres-
sed by

W* +G* - D*=0. (8)

From equations (4) and (6) we obtain:

W4~———J‘Wsz
s ey S
2 dt vBIh T
N AL 9
o q AT TR G, g

The introduction of (9) into (8) gives, after divi-
sion by gep and rearrangement, a mechanical
energy equation of the form

1dT,

B4 A(T,— T)h@—G p+d (10)
Zdt ( h ﬁ’

where G=G*/gep and D=D"/gag.  (11)

The first term in (10) represents the potential
energy change associated with the change in
temperature of the layer, and the second the
potential energy change due to entrainment,
when this exists. The terms on the right hand
side are related to the mechanical stirring, dissi-
pation, and convection due to internal heating.

The two equations (8) for the thermal energy
balance and (10) for the mechanical energy
permit the computation of layer depth k and
temperature T'; as a function of time for quite
general external energy inputs, provided the dis-
sipation is known. In the following section we

will explore some general properties of these
solutions before specializing further to a par-
ticular example.

3. Calculation of layer depth and

temperature

Following the arguments presented in paper I,
it will be assumed that vertical mixing within
the thermocline region is weak, and that it
has no significant effect on the daily or seasonal
temperature structure below the stirred surface
layer. This means that strata of fluid will be
heated to a temperature T,(z) as the depth of
the mixed layer decreases during the heating
season, and then left behind unchanged until
the stirred layer reaches them again. The tem-
perature T',(z) therefore corresponds to the sur-
face temperature 7T'; at the time when the stirred
layer reached down to the level z.

With this assumption we have

th dh h
f T, —dt= f T,dh
t dt o0

173 dh h
and fThhd—tdt:f T, hdh.

te oo

(12)

The first expression is proportional to the inter-
nal energy and the second to the potential
energy of the water below the stirred layer at a
time ¢, when the depth of the layer is given by
any specific k. At the beginning of the heating
when t=f, the layer depth A, =00, and the
temperature is taken to be T, =0 by definition.

When the interface is descending again
(dh/dt > 0), the integrals of equations (6) and
{10) can therefore be written

0 th
Tsh+f T,Jh:f (S + B)dt (67)
h

to

and
o0 (7%

VN +f Thhdh=f (G-D+8/p)dt. (107)
h to

These equations simply express the facts that
the internal and potential energies of the whole
water column are equal to the integrated heat
and mechanical energy inputs in the past, and
they could have been written down directly in
this form. The use of these equations, with D
and S/p neglected, is implicit in the step-by-step
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calculation described in paper I, and they will
be used again for the corresponding computa-
tions in this paper.

For a more general discussion, it is convenient
to transform (6) and (10) into

ar, 2 ~ 8
E—h,[(SJrB)h (G—Daﬁ)] (13)

and
dh 1 S
Ag @, Tk [2 (G"D+ E) ) (S“”h]'

(14)

When the thermocline is rising, A =0 and the
numerator of the right hand side of (14) must
also be zero. During such periods it therefore
follows that

_oG-D+S/8
2 (15)

The introduction of (15) into (13) then gives

aT,

dT, G-D+S/g 1 (S+B)*
dt

K 2G-D+8/°

2 (16)

Differentiation of (15), with the reasonable
assumption that the daily or seasonal variations
of the solar radiation S are significantly larger
than the corresponding variations of the other
variables on the right hand side, results in

dh _L(g_h)d_s 17
dt~(S+B)\p dt’ (7)

For most seasonal thermoclines k >2/8, so (17)
shows immediately that A and -8 are in
phase, and the layer depth is decreasing while
the heating rate is increasing. The layer depth &
therefore has a minimum at the time of the
summer solstice when dS/dt =0. Equation (16)
shows however that the temperature is still in-
creasing at that time, and that in fact the warm-
ing should be most rapid when A is close to its
minimum. The surface temperature 7', attains
its maximum later in the season.

After the summer solstice the layer begins to
deepen. As can be seen from equation (14) this
implies

2(@ = D +8/B) —(S + B)h > 0. (14)
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At first the deepening must be slow, because
(S + B) remains positive during summer and
the difference between the first and the second
terms in (14’) will remain relatively small. The
temperature contrast at the bottom of the layer
is steepest after the heating maximum so the
term (T,—-7T,) in the denominator of (14) is
large and this also will contribute to keeping
dh/dt relatively small during that period.

When the heat input becomes negative ((S +
B) <0) later in the season, say after the equinox,
both terms in (14') will contribute to an increase
of layer depth, which therefore should deepen
rapidly during autumn.

These general predictions from the theory are
clearly in agreement with the oceanic observa-
tions and with the results of the experiments
described in paper I (see especially Figs. 2 and
4 in paper I).

4. Application of the theory to the experi-
ment with constant stirring and a saw-
tooth heating function

In this section we will specialize further, and
treat in more detail an example which corre-
sponds closely to the case considered in paper I.
That is, we put D =0 and 8 = oo, and suppose
that the net heating at the surface (S + B) fol-
lows a symmetrical saw-tooth form described by

Ki 0<t<P/4
S+B={ K(P/2-t) when Pj4<t<3P/4
K(t— P) 3P/4<t<P.
(18)

The beginning of the heating has been taken as
the zero of time, and P is the period of the
heating and cooling cycle. We will also assume
that the rate of mechanical working or G is
constant throughout the cycle.

During the period of increasing heating, we
have from (15) and (18)

h = 2G/Kt. (19)

Introduction of the explicit heating function
(18) into (16) and integration gives

1K°
=>4 (20)

To=Thmsg
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1[# % G, P and the maximum rate of heating (S +
P a. HEATING RlATE B)pax =R say (where R=3} KP for the saw
o 5 >4 L tooth form used here). In terms of these and
cooune corresponding dimensionless variables T, T,,
" va b » e 7 h,; and ¢,, the physical variables are:
T

b. DEPTH

006 i

¢ TEMPERATURE |

Tiooa .

T ]

2002 i
1 1

o] 1/4 172 3/4 1

1

Fig. 1. The theoretical calculation of the time-
dependent mixed layer behaviour, using constant
stirring and continuous heat input. This plot is in
non-dimensional form. (@) The assumed saw-tooth
heating function. (b) Depth of the well-mixed sur-
face layer. (¢) Temperature of the well-mixed layer.
These curves are directly comparable (except for a
change of seale) with those deduced in Fig. 7 of
paper I by a step-by-step calculation.

When (19) is substituted in (20) we obtain T,
as a function of depth
4G
Ty=—-—h"*=ah™® say, 21
h 3K y (21)
where a is a constant.

Equation (21) is the starting point for the cal-
culations involving the descending interface.
The integral heat and energy balance equations
(6’) and (10’) now become

L
Tsh+;ah‘2=f (S + B)dt (22)
0

and 1T 2 +ah~' =Gt (23)

The right hand side of (22) is a known function
of ¢ which can be written down from (18).

It will be convenient to put the equations
(19), (20), (22) and (23) into non-dimensional
form before they are solved. A suitable set of
parameters with which to effect this consists of

T,, T,=(G-'R*P)T,, T,, h=GR-‘h,, ¢t=Pt,
(24)

The equations (19) and (20) describing the
rising interface become

hy=(2t,)7" (19)
and T,=84. (209

For the descending interface, the introduction
of (24) into (22) and (23) gives after some re-
arrangement:

at,=h;'+3 Fh, (229

4T,= Fhi'—$h, . (23%)

Here F is a function of the non-dimensional
time which can be shown using (18) to be

F=—1+8t -8 when }<t,<3%
or F=8-16¢ +8f; when #<t,<1. (25)

For this special form of heating function, the
behaviour of the upper mixed layer as a func-
tion of time has therefore been reduced to the
solution of a set of algebraic equations. The solu-
tion curves are shown in Figs. 1 and 2, where h,
and T are plotted first against time and then
against each other. These correspond precisely
to Figs. 7 and 6 of paper I. This comparison
between the two methods of calculation, one
based on a step-by-step procedure corresponding
to intermittent heating and the other on a con-
tinuous model shows that there is no essential
difference, at least on a seasonal time scale and
with surface heating. Both methods in effect use
the same integral heat and energy equations.

With these exact forms of h, and T now
available, we should emphasize again the quali-
tative features which are believed to be sig-
nificant, and in good agreement with observa-
tion. There is a rising interface, with a minimum
depth at the time of maximum heating, followed
by a slow and then a much faster deepening.
The phase relationships are realistic too; the
maximum heating and minimum depth occur
first (at 0.25 P), then the time of maximum
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A ONE-DIMENSIONAL MODEL OF THE SEASONAL THERMOCLINE. IT 103

temperature at 0.40 P, and zero cooling at
0.50 P. A similar calculation for sinusoidal
heating (which will not be presented in detail
here) provides few surprises. The only differ-
ences are that the layer spends longer with a
shallow depth and hence becomes warmer for a
given total heat input, and its temperature is an
even more symmetrical function of time, with
the maximum later at 0.44 P.

We can also obtain important information
about the system by examining the scaling
equations (24). Several features described in the
preceding section can now be exhibited more
clearly using this specific example, and are
worth further comment. The temperature of the
layer is proportional to the square of the maxi-
mum rate of heating, and increases linearly
with the period over which heating occurs. It
is inversely proportional to the rate of kinetic
energy input from the wind. The depth of the
layer, on the other hand, is directly proportional
to the mechanical stirring rate and inversely
proportional to the heating. The depth scale
does not depend at all on the period, though
of course both the depth and temperature
depend on time through the solutions presented
in Fig. 1.

5. The comparison with oceanic observa-
tions

Finally we will compare some numerical de-
ductions from this theory with the observations.
The data presented by Tasara & Giovanpo
(1963) for Ocean Weather Station P show a
mixed layer depth of about 20 meters during
the height of summer. Similarly, Fig. 2 in paper
I shows minimum layer depths of 20-50 meters.
The seasonal ocean surface temperature range
in middle latitudes is about 6-10°C. To be valid,
a theory has to account for these values in
terms of realistic inputs of mechanical and
thermal energy. It will be shown that the effects
of mechanical stirring and of convection result-
ing from distributed heating may each be im-
portant at different times; neither can be neg-
lected at the expense of the other.

We must first obtain an estimate of the
kinetic energy input to the water due to a sur-
face stress 7. The stress 7 of the wind works
on all the fluid below a level z at a rate Tu,,
where u, is the mean velocity at this level. At
the top of the viscous sublayer in the air, the
mean wind velocity is of order (r/g.,)* = Uy

Tellus XIX (1967), 1
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Fic. 2. The layer depth plotted against its tempera-
ture for the theoretical results of Fig. 1. Marked
on the curve are values of the non-dimensional time
t,, or fractions of the total heating and cooling
period.

where g, is the air density, so the work done by
the mean stress at this level is approximately
Tu,. Most of this energy input is not transmitted
to the body of the water below, however; it is
dissipated within a double viscous sublayer, on
both sides of the interface. In exactly the same
way, & friction velocity v, say, can be defined
for the water, which is characteristic of the
water velocity at the edge of the sublayer in the
water. As the stress is constant across the
interfacial region we have

_ 2 2
T=Q0qUx = QVx

and therefore
vy =%V 0a /o~ 0" 035u,. (26)

The mechanical energy input into the water
below the viscous sublayer is then of order

"=~ Ty = Qaui V@a/@’
and for the quantity G defined by (11) we
obtain:
a* 4.3
G=_=(‘i') e 27)
e/ 9=

The introduction of (26) into (15) with the
assumption D=0, §=co gives

3 i
—9_ Y Qs
h 29a(S+B)(e) ) (28)
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104 E. B. KRAUS AND J. S. TURNER

This is essentially the same formula as the
one derived by Kitaigorodski on the basis of
dimensional reasoning. It is of interest to note
that Kitaigorodski found empirically a propor-
tionality constant 2.0 for his dimensional for-
mula, which agrees exactly, though perhaps
fortuitously, with the theoretically derived fac-
tor 2 on the right hand side of (28). Formula
(28) is not applicable to periods when the
thermocline deepens. From equation (16) it fol-
lows also that it must be associated with an
increasing surface temperature T,. These con-
sequences are not apparent in Kitaigorodski’s
approach.

Numerical values typical of conditions over
the ocean can be found as follows. The drag
coefficient C,, at the ten meter level over water,
by definition given by

u?ﬁ = 010 U?Oy (29)

can be computed from Sheppard’s (1958) rela-
tion
C,, =(0.80 +0.00114 U,,) 10-3. (30)

Figures presented by Kraus (1959) suggest a
geometric mean wind velocity (#%)! of about
8 m/sec at anemometer height over the oceans
at latitudes less than 30°. Weatherships indicate
more frequent strong winds in higher latitudes,
but the value of (u?)? exceeds 12 m/fsec only in
very restricted areas. During the summer heat-
ing season values of about 7-8 m/sec are widely
prevalent. From (30) we obtain Cy, =1.7 x 10-?
for U,, =800 cm/sec. This may be compared
with values in a table of C,, over water pub-
lished by RoLL (1965). He quotes results derived
in different ways by various authors, ranging
mostly between 1.0 x 10-3 and 2.5 x 103, so the
figure we have derived using (30) falls in the
middle of this range.

With this numerical value, C,,=1.7 x10-3,
we get from (26), (27) and (29)

u, =33 cm/sec, v, =1.2 em/sec,

t =1.3 dynefem?,
and so G =6.0 cm?sec! °K (31)

for the mechanical energy parameter.

Next, we must consider a typical heat balance.
We will assume a relatively small mean heat
loss B* ~ —200 cal cm—?/day, and neglect the
wind dependence of this guantity in our ap-

proximate calculation. Under extremely favor-
able conditions, on a cloudless, clear summer
day, the penetrating component of the solar
radiation may be as high as S* ~ 600 cal cm—2/
day. This gives a maximum net heat input of
(8* + B*)max ~400 cal cm-2/day, corresponding
to

R =(S + B)pax =4.6 x10-% cm sec—! °K.  (32)

From the numerical values in (31) and (32) we
can derive a minimum thermocline depth of

hnim =2G|R =26 metres. (33)

If we approximate actual conditions by the
results of the model with saw-tooth heating, we
obtain from (24) and Fig. 1

Tax = 0.08 R2P/G =9° K. (34)

The results (33) and (34) both lie in the observed
range.

As Kraus & Roorr (1961) noted, there is a
high information content of these thermocline
theories. Realistic values for A and 7', can be
obtained only from a narrow range of energy
inputs. For example, we would still have ob-
tained reasonably plausible values had we used
half or double the mechanical stirring rate; but
we could not change this rate by an order of
magnitude, or even a factor of three, without
deriving values for & and T, which are not
observed in nature.

Consider now the effect of the penetrating
radiation. With 8-! =20 m and the value of S*
given above,

S/ =S*[ocf ~ 14 crn® sec~! °K, (35)

which is more than twice as large as G in (31) so
it certainly cannot be neglected. This would
yield a layer depth

G+S8/B

hmin=2 — = 87 metres,

considerably in excess of the observed summer
minimum thermocline depth. If we had used a
lower value of -1 =10 m, so that the terms (31)
and (35) are comparable in magnitude, we
would still have an unusually deep layer of 57
metres. A lower assumed value of § would not
change this result a great deal, because it would
affect also the value of R in the denominator.
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We conclude therefore that the penetrative
radiation produces convective mixing at a rate
which is of the same order as that produced by
mechanical stirring and that during the height
of summer the radiation effect is likely to be
predominant. These conclusions, however, intro-
duce another difficulty; the results (33) and
(34) are realistic with wind stirring alone, but
the two effects together result in too deep a
seasonal thermocline on the basis of the above
assumptions. There remains the possibility that
it is not permissible to neglect dissipation in
(15), and that the actual stirring rate must be
less than was assumed above.

Dissipation will affect both the energy pro-
duced by mechanical stirring and that produced
by convection. However, the -characteristic
length scale of the convection is likely to be of
the same order as the depth h. It was argued
by BaLL (1960) that dissipation has little signifi-
cant effect on turbulence at such a scale. The
mechanical energy input on the other hand is
likely to cover a broad spectrum. The high wave
number part of this spectrum must be dissipated
at a short distance from the surface. Only the
larger eddies, that is a fraction of the total
mechanically induced turbulence, can reach
deep enough to affect the thermocline.

During the colder season of the year changes
in mixed layer depth and temperature are
controlled predominantly by surface cooling;

wind stirring or penetrative radiation have rela-
tively little effect at that time. This result could
readily have been deduced earlier from equa-
tions (13) and (14), but it is appropriate to do
it now. The depth % is large during winter, and
the product (S + B)k will always exceed the
stirring terms in the square brackets of (13) and
(14). Since (S + B) is negative, this product will
account for most of the rates of increase of
layer depth and decrease of its temperature.

In the preceding discussion we have treated
the seasonal heating as a smooth function. The
consideration of daily heating and nocturnal
cooling is unlikely to produce significantly
different seasonal changes, though this would
have the effect of an additional stirring which it
would be interesting to investigate in a future
numerical study. This should at the same time
include the effects of variable wind stirring.
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OJHOMEPHASA MOJEJb « CE3OHHON TEPMORJUHBD

I1. O6wasn meopus u ee caedcmeus

TIpu 6Gomee o6mMX npemmoNOKEHMAX, 4YeM B
npepuiecTByomeit crarbe (I) paccmorpena Teo-
pua ciaoA o0yCHaBIEHHON'0 NOBEPXHOCTHRIMHM
nponeccamMn. Temepb YYMTHBAeTCA KaK KOH-
BEHI(HA, BHIBBAHHA#A HAarpeBoM Ha ruayOHMHe M
OXJIQMACHMEM NOBEPXHOCTH TAK N MEXaHHMYECKO®
JIBM:KeHHe, BEIBBAHHOe fielicTBUeM BeTpa. Teopusa
NMpUMEHMMA [JA NPOU3BOJIBHHX (OPM HArpesa,
BHIIIOYAA HeNpPEPHBHHE WU HpepHBeCTHE Npo-
1leCCH, OHA MOKeT OHTH MCIOJb30BaHa AJA
MCCIef0BaHMA KAK CYTOYHHX TaK M CE30HHHX
BosgeticTBuit. [leTanbHO PpaccMOTpeH cayualt
u3yuasmmnitca npnbauseHHo B 1-olt cTaTbe; KA
HEero Tenephb NOJYYEHO pelleHHe B aHAJIMTHYE-
CcKolt popme.

ITosyuenHsle pe3yJbTaTH MOMKHO CPABHHTH
KaK KOJMYEeCTBEHHO TAK M KavyeCTBEHHO C JaH-
HEMM HaOuwopeHnit B okeaHe. Haiimeno, uro
pasyMHO omnpefelleHRAaA rayOMHA CIOA MOMKeT
OBITh IIpEACKAa3aHa C MCIOJIb30BAHNEM M3MEDEH-
HOI BeJIMYMHH TMOCTYNAIOWIEro Telja M IOCTY-
nmaomer B BOXY TypOyJeHTHOH KUHeTHYecKoi
BHepruM, OIpefiesiAeMOlf U3 CpegHero nosepx-
HOCTHOTO Hamnpsmenus. [HeficTB¥e Harpesa Ha
riayOuHe CPaBHMMO C IBHKEHHEM, BHBBAHHBIM
BeTPOM, Jame KOrga TeMIepaTypa B BepXHeM
cnoe ymeauumsaercs. B TeyeHuu smMHero mne-
p¥0Ja KOHBEHIMA, BHI3BBAHHAA OXJIOMICHHEM
MOBEPXHOCTH, YCHIMBAET MPOLECCH, yraybadAio-
e ciaoft.
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