

J.M.W. Turner 1805

What are waves?

- A wave transfers a disturbance / energy from one part of a material to another.
- The energy is propagated through the material without substantial overall motion of the material.
- The energy is propagated without any significant distortion of the wave form and at constant speed.
- Can be either on the surface or within the medium.

Types - Initial forcing

- Wind
- Gravity from astronomical bodies (Tides)
- Anything that causes a discontinuity in the ocean surface
	- Earthquakes
	- Landslides
	- Raindrops

Types - Restoring Force

- Restoring force acts on a water particle displaced from its equilibrium position.
- Restoring force causes the water particle to 'overshoot', setting up an oscillation.
- Two possible restoring forces for ocean surface waves:
	- 1. Surface tension (capillary waves)
	- 2. Gravity (surface gravity waves)

Types - Period

 $\overline{1}$

Gravity & Capillary Waves

Figure 23

This photograph was taken by William van Arx off Woods Hole dock nearly fifty years ago, and was reproduced in Munk (1955). I estimate that the distance across is approximately two meters.

Gravity wave theory

- Approximations
	- Periodic in time and space.
	- The waves shapes are sinusoidal.
	- The wave amplitudes are small compared to wavelength and depth.
	- Viscosity, surface tension, and the earth's rotation can be ignored.
	- Freely propagating, and uniform depth.

Dispersion relation

The dispersion relation gives the frequency (ω) associated with a particular wavenumber $(k).$

For surface gravity waves

$$
\omega = \sqrt{g k \tanh(kH)}
$$

g = gravitational acceleration $H =$ water depth

Phase speed

Speed that wave crests travel.

The phase speed for surface gravity waves is

$$
c = \frac{\omega}{k} = \sqrt{\frac{g}{k} \tanh(kH)} = \sqrt{\frac{gL}{2\pi} \tanh\left(\frac{2\pi H}{L}\right)}
$$

- Two limiting cases:
	- When x is small, $tanh(x) \sim x$
	- When x is greater than pi, $tanh(x) \sim 1$

Deep water limit

$$
c = \frac{\omega}{k} = \sqrt{\frac{g}{k} \tanh(kH)} = \sqrt{\frac{gL}{2\pi} \tanh\left(\frac{2\pi H}{L}\right)}
$$

$$
\tanh(kH) \sim 1 \Rightarrow kH > \pi \Rightarrow H > \frac{L}{2}
$$

$$
c = \sqrt{\frac{g}{k}} = \sqrt{\frac{gL}{2\pi}}
$$

Particle motions

- Particles move in a nearly circular path.
- Orbital diameter decreases exponentially.
- Near zero displacement by depth $= L/2$.

Wave (Stokes) drift

• Displacement at the top of the 'circle' is greater that the negative displacement at the bottom.

wave phase: $t/T = -3.000$

Stokes Drift

For deep water waves

$$
\overline{u}_S = \omega k a^2 e^{kz} = \frac{4\pi^2 a^2}{LT} e^{2\pi z/L}
$$

Stokes(1847)

(Wikipedia)

Shallow water limit (long)

$$
c = \frac{\omega}{k} = \sqrt{\frac{g}{k} \tanh(kH)} = \sqrt{\frac{gL}{2\pi} \tanh\left(\frac{2\pi H}{L}\right)}
$$

$$
\tanh(kH)\sim kH \Rightarrow kH \ll 1 \Rightarrow H \lesssim \frac{L}{20}
$$

$$
c = \sqrt{gH}
$$

Particle motions

- Waves 'feel' the bottom.
- Particles paths are ellipses, which get progressively flatter with depth.
- Near bottom flows are rectilinear.

Dispersive waves

Waves are dispersive if their speed depends on wavenumber.

Deep water waves are dispersive.

$$
c = \sqrt{\frac{g}{k}} = \sqrt{\frac{gL}{2\pi}}
$$

Longer wavelength (and period) waves travel faster.

Shallow water waves are NOT dispersive.

$$
c=\sqrt{gH}
$$

Dispersive waves

Wave groups

- Ocean not made up of a single frequency wave.
- Add another frequency wave.

Wave groups

$$
\eta_1 = a_1 \cos(k_1 x - \omega_1 t)
$$

+
$$
\eta_2 = a_2 \cos(k_2 x - \omega_2 t)
$$

Let $k_1 = k +$ $\frac{\Delta k}{2},\quad k_{2}=\overline{k}-\frac{\Delta k}{2}$ $\omega_1 = \overline{\omega} +$ $\frac{\Delta \omega}{2}, \quad \omega_2 = \overline{\omega} - \frac{\Delta \omega}{2}$

Trigonometric identity

$$
\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)
$$

$$
\eta_3 = a_3 \cos(\bar{k}x - \bar{\omega}t) \cos\left(\frac{\Delta k}{2}x - \frac{\Delta \omega}{2}t\right)
$$

Wave groups

$$
\eta_3 = a_3 \cos(\bar{k}x - \bar{\omega}t) \cos\left(\frac{\Delta k}{2}x - \frac{\Delta \omega}{2}t\right)
$$

Shallow water limit

$$
\begin{array}{rcl}\n\omega & = & \sqrt{gHk^2} \\
c_g & = & \frac{d\omega}{dk} = \sqrt{gH} \\
& = & c\n\end{array}
$$

/i.

Deep water limit $\omega \quad = \quad \sqrt{gk}$ $c_g =$ $d\omega$ *dk* = 1 2 *g* \sqrt{gk} = 1 2 ⇥*g k* = 1 2 *c*

Taking the limit gives

dk

Deep water limit $^\prime g k$ c_g = $\frac{d\omega}{d\omega}$ *dk* = $\frac{1}{2} \frac{g}{\sqrt{g k}}$ = $\overline{2}$ $\sqrt{2}$ $\frac{g}{k}$ = $\frac{1}{2}$ *c*

Wind wave generation

- Factors affecting wind wave development:
	- ‣ Wind strength wind speed exceeds wave speed, and greater than one m/s
	- ‣ Wind duration
	- \triangleright Fetch the uninterrupted distance over with the wind blows without changing direction

Wind wave generation

- 1. Turbulence in wind causes small waves.
- 2. Wind blowing over waves produces pressure differences resulting in growth.

Wave Growth Depends on Wind Fetch and Duration

energy transfer from wind to waves is integrated over time and distance

Fig. 4.8. Evolution of wave spectra for offshore winds $(11^h-12^h$, Sept. 15, 1968). The number next to the different curves indicate the fetch in kilometres. After Hasselmann et al. (1973).

Wave spectra

Pierson-Moskowitz (1964)

Dispersive waves

From Edson review

Wave measurements

- **Direct**
	- Wave buoys
	- Pressure sensors
	- x-band radar
- Indirect

- SAR images (synthetic aperture radar)

2-dimensional wavenumber spectrum

Concentric rings are frequency values, smaller towards center

Energy and energy flux

• The total energy per unit area is

$$
E = \frac{1}{2}\rho g a^2 \quad [J \ m^{-2}]
$$

• The rate at which energy is supplied to a particular location is the energy flux or wave power.

 $F = c_q E$ per unit length of wave crest

Attenuation

- Loss or dissipation of wave energy, resulting in a reduction of amplitude.
	- 1. White-capping.
	- 2. Viscous attenuation (capillary waves).
	- 3. Air resistance.
	- 4. Non-linear wave-wave interactions.

Internal waves

Buoyancy frequency

Internal waves

- Mass conservation will prevent moving just a single particle.
- Consider a 'infinite ocean'.

 ζ

- No reason to limit the particles to vertical displacement.
- Restoring force reduced as at angle to gravity

 $\omega = N \cos \theta$

- Energy propagates perpendicular to phase
- Vertical components have opposite sign.

Internal wave animation

Reflection

Internal waves

 $\omega = N \cos \theta$ IW frequency due to gravity (θ) is angle to vertical)

But gravity is not the only force acting on IWs in the ocean --- also rotation (which is maximum in the horizontal)

 $\omega = N \cos \theta + f \sin \theta$

So

$$
f < \omega \le N
$$

Carter et al. 2008

Carter et al. 2008

Carter et al., 2012

Simmons et al., 2012

Nonlinear internal waves

Nonlinear internal waves

