Vertical resolution of numerical models

Model Levels in the Lower Troposphere
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M-O and Galperin stability factors

Galperin Stability Functions vs. Ri

Smagorinsky factors

Galperin Stability Functions vs. Gh
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Profile vs. forcing-driven turbulence parameterization

Mellor-Yamada turbulence closure schemes are profile-driven:

Nonturbulent processes destabilize u,v,0, profiles.
=» The unstable profiles develop turbulence.
Such schemes (except 1st order closure) can be numerically delicate:

Small profile changes (e.g. from slightly stable to unstable strat) can
greatly change K \/(z), turbulent fluxes, hence turbulent tendencies.
This can lead to numerical instability if the model timestep At is large.

TKE schemes are popular in regional models (At ~ 1-5 min).
Most models use first-order closure for free-trop turbulent layers.

K-profile approach is forcing-driven:

Ky m(z) are directly based on surface fluxes or heating rates.
More numerically stable for long At
Hence K-profile schemes popular in global models (At ~ 20-60 min).

However, K-profile schemes only consider some forcings (e. g.

surface fluxes) and not others (differential advection, internal

radiative or latent heating), so can be physically incomplete.
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K-profile method

« Parameterize turbulent mixing in terms of surface fluxes
(and possibly other forcings) using a specified profile
scaled to a diagnosed boundary layer height h.

 Example: Brost and Wyngaard (1978) - for stable BLs
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M-O form

(1-2)*" (Z = z/h)

K, (z)

* h empirically diagnosed using threshold bulk Ri, e. g.

h(b(h)— b, )
(ulh)=u. ) +(v(W)=v,.) +100u

where ‘sfc’ =20 m

=R1__ =0.25

crit

Vogelezang&Holtslag 1996
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A challenge to downgradient diffusion:
Countergradient heat transport

In dry convective boundary layer, deep eddies transport heat
This breaks correlation between local gradient and heat flux
LES shows slight g min at z=0.4h, but w’ q' >0 at z<0.8h

‘Countergradient’” heat flux for 0.4 < z/h < 0.8.. first
recognized in 1960s by Telford Deardorff, etc.
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CLUBB shines for marine Cu under Sc BLs
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GCSS ATEX intercomparison case, Bogenschutz et al. 2012 GMD, Fig. 7a
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Nonlocal schemes

This has spawned a class of nonlocal schemes for
convective BLs (Holtslag-Boville in CAM3, MRF/
Yonsei in WRF) which parameterize:

wa =-K (z) (g—z ~7, j
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Derivation of nonlocal schemes

Heat flux budget:

Neglect storage S
Empirically:
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For convection, a=0.5, so
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Take [?] = 0.5h/w.to
get zero [?][?]gradient
at 0.4h.
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FIG. 1. The normalized terms at the rhs of the heat-flux equation
(1), as a function of relative height (adopted from Moeng and Wyn-
gaard 1989). The terms are defined in the text of section 2a.
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FIG. 4. The nondimensional vertical-velocity variance of (15a)
(solid curve) in comparison with the (96)* LES data (shaded area;
Moeng and Wyngaard 1989), the AMTEX data (circles; Lenschow
et al. 1980), and convection tank experiments (squares; Deardorff
and Willis 1985).

Holtslag and Moeng (1991)
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Nonlocal parameterization, continued

06
This has the form w6’ =-K (2)(——}/9j where ¥, =
Z

2w?0,

VSR 4

ww

Although the derivation suggests [?] is a strong function of z,
the parameterization treats it as a constant evaluated at
z = 0.4h to obtain the correct heat flux there with d[?]}/dz = O:

w' (04h)=04w. = vy,=50./h.
The eddy diffusivity can be parameterized from vert. vel. var.:
w(z)=28w.Z(1-2Z), Z=z/h = K,(2)=07w.z(1-2)

With cleverly chosen velocity scales, this can be seamlessly
combined with a K-profile for stable BLs to give a generally
applicable parameterization (Holtslag and Boville 1993).
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Comparison of TKE and nonlocal K-profile scheme
UW TKE scheme (Bretherton&Park 2009) vs. Holtslag-Boville.
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« Default CAM3 has too | !
much free-trop diffusion, | it
causing BL overdeepening o | T !
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CBL comparison
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Bretherton and Park 2009

« Sfc heating of 300 W m-
 No moisture or mean wind

 UW TKE scheme with entrainment closure and HB scheme give
similar results at both high and low res.

» Overall, can get comparably good results from TKE and profile-
based schemes on these archetypical cases.
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