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Lecture 3. Turbulent fluxes and TKE budgets   (Garratt, Ch 2) 

In this lecture… 
• How does turbulence affect the ensemble-mean equations of fluid motion/transport?
• Force balance in a quasi-steady turbulent boundary layer.
• What are the sources and sinks of turbulent kinetic energy?

Hydrodynamic Equations of Turbulence 

 The ABL, though turbulent, is not homogeneous, and a critical role of turbulence is 
transport and mixing of air properties, especially in the vertical.  This process is quantified using 
ensemble averaging (often called Reynolds averaging) of the hydrodynamic equations. 

Boussinesq Equations (G 2.2) 

 For simplicity, we will use the Boussinesq approximation to the Navier-Stokes equations to 
describe boundary-layer flows. The ABL (like ocean BLs ) obeys the two principal requirements 
for the accuracy of the Boussinesq approximation: 

1. The ABL depth of O(1 km) is much less than the density scale height of O(10 km).
2. Typical fluid velocities are O(1-10 m s-1), much less than the sound speed.

The Boussinesq equations of motion are:
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Here p′ is a pressure perturbation, θ is potential temperature (defined using a reference pressure
that is within 10% of the typical ABL air pressure), q = qv + ql is mixing ratio (including water 
vapor qv and liquid water ql if present), and θv =  θ(1 + .608qv - ql) is virtual potential temperature
including liquid water loading.  S denotes a source/sink term, and ρ0 and θ0 are characteristic
ABL density and potential temperature.  κ and κq are the diffusivities of heat and water vapor.
The terms involving molecular viscosity or diffusivity are in brackets because in most of the 
ABL, they are negligibly small compared to the other terms.   

The most important source term for θ is divergence of the net radiative flux RN  (usually
treated as horizontally uniform on the scale of the boundary layer, though this needn't be exactly 
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cs=1500 m/s water
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true, especially when clouds are present). For boundary layers topped by stratocumulus or 
cumulus clouds, condensation C and evaporation E can be important sources of θ and q. 

Ensemble Averaging (G 2.3) 

 Using mass continuity, the substantial derivative of any quantity a can be written in flux 
form: 
   Da/Dt =  !a / !t +" # ua( ) .      (3.5) 

This helps us write the ensemble average of Da/Dt as a sum of easily interpreted terms: 
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The three eddy correlation terms at the end of the equation express the net effect of the 
turbulence. 
 Consider a BL of characteristic depth H over a nearly horizontally homogeneous surface.  
The most energetic  turbulent eddies in the boundary layer have horizontal and vertical 
lengthscale H and (by mass continuity) the same scale V for turbulent velocity perturbations in 
both the horizontal and vertical.  The boundary layer structure, and hence the eddy correlations, 
will vary horizontally on characteristic scales Ls >> H due to the impact on the BL of mesoscale 
and synoptic-scale variability in the free troposphere.   If we let {} denote `the scale of', and 
assume {a′} = A, we see that the vertical flux divergence is dominant: 
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Thus (noting also that ! "u = 0  to undo the flux form of the advection of the mean), 
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If we apply (3.8) to the ensemble-averaged heat equation, and throw out horizontal derivatives of 
θ in the diffusion term using the same lengthscale argument H << Ls as above, we find 
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Thus, the effect of turbulence on !  is felt through the convergence of the vertical eddy 
correlation, or turbulent flux of θ. Except in the interfacial layer within mm of the surface, the 
molecular diffusion term in square brackets is negligible, so we will drop it from now except in 
situations it is clearly important.  The turbulent sensible and latent heat fluxes are the 
turbulent fluxes of θ and q in energy units of W m-2, ρ0cp !w !"  and ρ0L !w !q respectively. The 
surface turbulent fluxes (measured just above the interfacial layer) are given special symbols: 

   Surface sensible heat flux (SHF)  HS = ρ0cp !w !"
z=0+

    (3.10) 

   Surface latent heat flux (LHF) HS = ρ0 L !w !qv z=0+
    (3.11) 

 If geostrophic wind (ug, vg)is defined in the standard way, the ensemble-averages of the 
horizontal components of the momentum equation (3.1) are: 
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Often, the tendency and advection terms are much smaller than the two terms on the right hand 
side, and there is an approximate three-way force balance (see Figure 3.1) between turbulent 
momentum flux (often called Reynolds stress) convergence, Coriolis force and pressure gradient 
force in the ABL such that the mean wind has a component down the pressure gradient. The 
cross-isobar flow angle α is the angle between the near-surface wind and the geostrophic wind. 

 

 
Fig. 3.1:  Surface layer force balance  in a steady state BL (f > 0). Above the surface layer, the 

force balance is similar but the Reynolds stress need not be along -V. 
 
 If the mean profiles of actual and geostrophic velocity can be accurately measured, the 
momentum flux convergence can be calculated as a residual in (3.12-13), and vertically 
integrated to deduce momentum flux. This technique was commonly applied early in this 



Atm S 547  Boundary Layer Meteorology  Bretherton 

   3.4 

century, before fast-response, high data rate measurements of turbulent velocity components 
were perfected. It was not very accurate, because small measurement errors in either u  or ug can 
lead to large relative errors in momentum flux. 
 In most BLs, the vertical fluxes of heat, moisture and momentum are primarily carried by 
large eddies with lengthscale comparable to the boundary layer depth, except near the surface 
where smaller eddies become important. This partitioning of turbulent fluxes across length or 
timescales can be quantified using the cospectrum.  For instance, the cospectrum of w′ and T′, is 
the real part of the conjugate product of their Fourier transforms  !w

*(! )  !T (! ) .  If properly 
normalized, the cospectrum partitions the turbulent heat flux (the covariance of w′ and T′) across 
frequencies ω.    

 The cospectrum shown in Figure 3.2 is plotted in units of inverse period n = ω/2π.  It was 
calculated from tethered balloon measurements at two heights in the cloud-topped boundary 
layer we plotted in the previous lecture. It is positive, i. e. positive correlation between w′ and T′, 
at all frequencies, typical of a convective boundary layer. Most of the covariance between w′ and 
T′ is at the same inverse periods n ~ 10-2 Hz that had the maximum spectral power in vertical 
velocity. Since the BL is blowing by the tethered balloon at the mean wind speed U = 7 m s-1, 
this frequency corresponds to large eddies of wavelength  λ = U /n = 700 m, comparable to the 
BL depth of 1 km.  
  

 
Fig. 3.3:  Cospectrum of w ́ and T ́ at cloud base (triangles), top (circles) in convective BL. 
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Turbulent Kinetic Energy Equation (G 2.5,6) 

 To form an equation for ensemble-mean TKE e = !u " !u / 2 , we dot u′ into the perturbation 
momentum equation and take the ensemble average. After considerable manipulation, we find 
that for the nearly horizontally homogeneous BL (H << Ls),  

   !e
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where 

   S  =   ! "u "w
du
dz

! "v "w
dv
dz

   (shear production),    (3.15) 

   B  =   !w !b      (buoyancy flux or production),   
 (3.16) 

   T  =    ! "
"z

#w #e +
1
$0

#w #p
%
&'

(
)*

   (transport and pressure work) ,  (3.17) 

   D  = - ! " # u 2     (dissipation, always negative, -ε in Garratt) .  (3.18) 

Shear production of TKE is the net conversion rate per unit mass from kinetic energy of the 
mean flow into TKE.  Positive shear production occurs when the momentum flux is 
downgradient, i. e. has a component opposite (‘down’) the mean vertical shear. For this the 
eddies must tilt into the shear. 
  Buoyancy production of TKE is the net conversion rate per unit mass from gravitational 
potential energy of the mean state to TKE.  Positive buoyancy production or flux occurs where 
relatively buoyant air is moving upward and less buoyant air is moving downward.  It can be 
related to the sensible and latent heat fluxes as follows: 
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Assuming there is no liquid water flux at the surface, the surface buoyancy flux can thus be 
related to the surface sensible and latent heat fluxes 
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 Both S and B can be negative at some or all levels in the BL, but together they are the main 
source of TKE, so the vertical integral of S + B over the BL is always positive.   
 The transport term T accounts for the redistribution of TKE due to the convergence of a 
mechanical energy flux that is the sum of the eddy flux of TKE and a pressure work term.  
Although this mainly moves TKE between different heights within the boundary layer, a small 
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fraction of BL TKE can be lost to upward-propagating internal gravity waves excited by 
turbulence perturbing the BL top.   
 The dissipation term is the primary sink of TKE.  It is proportional to enstrophy, which is 
dominated by the smallest (dissipation) scales in turbulent flows, so D can be considerable 
despite the smallness of ν. 

 Usually, the left hand side (the ‘storage’ term) is smaller than the dominant terms on the right 
hand side. Figure 3.3 shows typical profiles of these terms for a daytime convectively driven 
boundary layer and a nighttime shear-driven boundary layer.  In the convective boundary layer, 
transport  is considerable. Its main effect is to homogenizing TKE in the vertical.  With vertically 
fairly uniform TKE, dissipation is also uniform, except near the ground where it is enhanced by 
the surface drag . Shear production  is important only near the ground (and sometimes at the 
boundary layer top). In the shear-driven boundary layer, transport and buoyancy fluxes are small 
everywhere, and there is an approximate balance between shear production and dissipation. 
 The flux Richardson number  
   Rif = - B/S         (3.21) 

characterizes whether the flow is stable (Rif > 0), neutral (Rif ≈ 0), or unstable (Rif < 0). 
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Fig. 3.3: 




