Parcel circuits in a Sc-capped mixed layer

- Note implied discontinuous increase in liquid water and buoyancy fluxes at cloud base → turbulence driven from cloud, unlike dry CBL.
- Convective velocity w_∗ ~ 1 m s⁻¹:

$$w_*^3 = 2.5 \int_0^{z_i} \overline{w'b'} dz$$

Buoyancy flux profile in a Sc-capped mixed layer

Bretherton and Wyant 1997, Fig. 4

Solid: T_v flux (buoyancy flux)

Dotted: T_{vI} flux

Dashed: Scaled latent heat flux

Buoyancy flux minimum just below cloud base.

Buoyancy flux jump at cloud base is approx. proportional to LHF, with proportionality constant $\sigma \sim 0.35$.

Sc MLM entrainment closure

Nicholls-Turton (1986) entrainment closure Fit to aircraft and lab obs and dry CBL

$$w_e = A \frac{w_*^3}{z_i \Delta b}, \quad A = 0.2(1 + a_2 E), \quad \Delta b = g \Delta T_v / T_0$$

Evaporative enhancement: Less buoyant mixtures easier to entrain.

NT enhancement factor $E = \Delta_m / \Delta T_v$

$$a_2 = 15-60 \implies A = 0.5 - 5$$
 in typical Sc

Entrained fraction χ

Observational test with SE Pacific Sc diurnal cycle (Caldwell et al. 2005)

NT: Nicholls and Turton (1986)

DL: Lilly (2002)

LL: Lewellen (2003)

Profiles in a stratocumulus-capped mixed layer

MLM examples

Steady-state solutions: Higher SST, lower divergence promote deeper mixed layer with thicker cloud.

Lecture 16, Slide 5

MLM response to a +2K SST jump

Two timescales:

Fast internal adjustment

$$t_b = z_i / C_T V \sim 0.5 \text{ day}$$

Slow inversion adjustment

$$t_i = D^{-1} \sim 3 \text{ days}$$

Fig. 11. Results for Experiment 5 (constant divergence, instantaneous 2°C increase in sea surface temperature).

Lecture 16, Slide 6

Schubert et al. 1979b JAS

Eddy velocity vs. flux-partitioning entrainment closures

- Overall MLM evolution is not too sensitive to closure because the MLM adjusts w_e to maintain energy balance in which entrainment warming roughly balances total BL radiative cooling (which mainly just cares about the cloud fraction).
- Subcloud buoyancy fluxes are sensitive to the closure. In simulations of MLM evolution over a warming SST, NT (w*) closure predicts increasing negative subcloud buoyancy fluxes as the BL deepens, implying decoupling after 2.2 days. The flux-partitioning closure cannot do this.

Mixed layer evolution with w_* closure with A = 2

Mixed layer evolution with flux-partitioning closure

MLM diurnal cycle

MLM prediction: cloud thickens during the day because of decreased entrainment, opposite to observations. The problem is that the mixed layer assumption breaks down during daytime.

Fig. 7a. Diurnal variation of p_B and p_e (top) and k_M , $(s-Ll)_M$ and $(q+l)_M$ (bottom). Local time 1200 corresponds to noon. The large-scale divergence is 5.0×10^{-6} s⁻¹, the sea surface temperature 13°C, and the entrainment parameter 0.20.

Lecture 16, Slide 8

Multiple mixed layer model

Turton and Nicholls 1987 QJ