## Potential evaporation vs. available heat flux $R_N$ - $H_G$

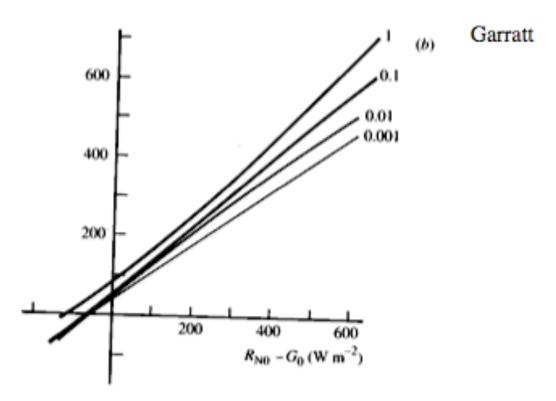



Fig. 5.6 Potential evaporation for different wet surfaces calculated from Eq. 5.26. In (a) neutral conditions have been assumed, and in (b) the full stability correction in  $r_{aV}$  is included (see Eqs. 3.47 and 3.57). Note how the effects of thermal stability tend to reduce the direct influence of aerodynamic roughness. Values of  $z_0$  are as follows: 0.001 m, lake; 0.01 m, grass; 0.1 m, scrub; 1 m, forest. Further details of the calculations can be found in Webb (1975).

## Evaporation vs. surface stomatal resistance

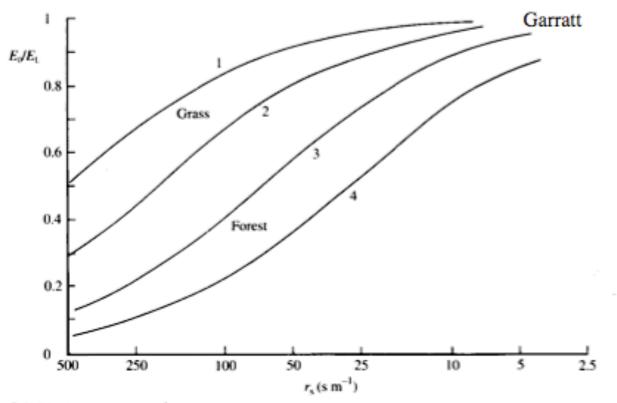



Fig. 5.8 Variations of  $E_0/E_L$  (Eq. 5.37) with surface resistance. Values of  $r_{aV}$  have been calculated for neutral conditions, with  $z_q = z_0/7.4$ . For short grass ( $z_0 = 0.0025$  m): curve 1, T = 303 K; curve 2, T = 278 K. For forest ( $z_0 = 0.75$  m): curve 3, T = 303 K; curve 4, T = 278 K.

## Soil moisture parameters

Garratt

Table A9. Soil moisture quantities for a range of soil types, based on Clapp and Hornberger (1978)

Quantities shown are as follows:  $\eta_s$  is the saturation moisture content (volume per volume),  $\eta_w$  is the wilting value of the moisture constant which assumes 150 m suction (i.e. the value of  $\eta$  when  $\psi = -150$  m),  $\psi_s$  is the saturation moisture potential and  $K_{\eta s}$  is the saturation hydraulic conductivity; b is an index parameter (see Eqs. 5.46-5.48).

| Soil type                         | $(m^3 m^{-3})$ | $\psi_{\rm s}$ (m) | $K_{\eta s}$ (10 <sup>-6</sup> m s <sup>-1</sup> ) | b     | $(m^3 m^{-3})$ |
|-----------------------------------|----------------|--------------------|----------------------------------------------------|-------|----------------|
| 1. sand                           | 0.395          | - 0.121            | 176                                                | 4.05  | 0.0677         |
| <ol><li>loamy sand</li></ol>      | 0.410          | -0.090             | 156.3                                              | 4.38  | 0.075          |
| <ol><li>sandy loam</li></ol>      | 0.435          | -0.218             | 34.1                                               | 4.90  | 0.1142         |
| 4. silt loam                      | 0.485          | -0.786             | 7.2                                                | 5.30  | 0.1794         |
| 5. loam                           | 0.451          | -0.478             | 7.0                                                | 5.39  | 0.1547         |
| <ol><li>sandy clay loam</li></ol> | 0.420          | -0.299             | 6.3                                                | 7.12  | 0.1749         |
| <ol><li>silty clay loam</li></ol> | 0.477          | -0.356             | 1.7                                                | 7.75  | 0.2181         |
| <ol><li>clay loam</li></ol>       | 0.476          | -0.630             | 2.5                                                | 8.52  | 0.2498         |
| <ol><li>sandy clay</li></ol>      | 0.426          | -0.153             | 2.2                                                | 10.40 | 0.2193         |
| 0. silty clay                     | 0.492          | -0.490             | 1.0                                                | 10.40 | 0.2832         |
| <ol> <li>clay</li> </ol>          | 0.482          | -0.405             | 1.3                                                | 11.40 | 0.2864         |

## Surface RH vs. soil moisture

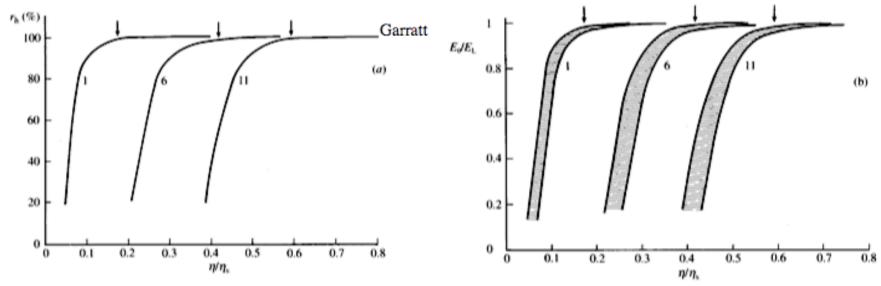



Fig. 5.9 (a) Relative humidity  $r_h$  as a function of relative soil moisture content  $\eta/\eta_s$ , based on Eq. 5.49 and data in Table A9 for soil types 1 (sand), 6 (loam) and 11 (clay). Calculations are for a temperature  $T_0$  of 303 K. The vertical arrows indicate the wilting points. Note that combining Eqs. 5.46 and 5.49 allows  $r_h$  to be calculated from  $\ln r_h = -(g/R_v T_0)\psi_s(\eta/\eta_s)^{-b}$ . (b)  $E_0/E_L$  as a function of the relative soil moisture content, based on numerical simulations in an atmospheric model for a range of climate conditions (mid-latitude summer) represented by the shaded regions (the temperature range is 283–303 K and q = 0.005).