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Lecture 9.  Nonlocal BL parameterizations for clear unstable boundary layers  
In this lecture… 

• Nonlocal correction to K-profile approach for dry convective boundary layers 

• Gradient-correction (e. g. Holtslag-Boville or YSU) and EDMF parameterizations 
Motivation: Countergradient heat transport in the DCBL 

Observations and LES of surface-heated dry convective BLs (e.g. dashed line in Fig. 9.1) show 
that over much of the upper half of the boundary layer (0.4 < z/zi < 0.8), the θ gradient is very 
slightly positive even though the heat flux is also upward, opposite to the expectation from 
downgradient turbulent diffusion.  Nonlocal schemes account for this effect by adding a 
correction term to scalar fluxes in convective boundary layers.  

 

 
 Fig. 9.1:  Left:  Dashed line shows LES of DCBL θ profile.  Right: Solid line shows 

corresponding heat flux profile. From Cuijpers and Holtslag (1998) . 

This approach can be motivated by considering the budget equation for the flux of an advected 
scalar a in a surface-heated convective BL.  Holtslag and Moeng (1991) started by taking a = θ 
(potential temperature) and examining the prognostic heat flux equation: 
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Using a 963 gridpoint LES of a dry convective boundary layer under a 4 K inversion, they 
determined profiles of the four terms on the RHS (Fig. 9.2, left).  Based on these profiles and 
theoretical arguments, they 
1. Neglected storage (LHS) 
2. Modeled the pressure-covariance term as: 
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  Fig. 9.2:  Left:  Terms in buoyancy flux budget for a DCBL, diagnosed from an LES.  

Right:  Nondimensionalized vertical velocity variance profile, which the scalar flux 
equation suggests is proportional to the eddy diffusivity profile. 

 Here τ is a ‘return-to-isotropy’ timescale for pressure forces to distort anisotropic turbulent 
eddies into isotropic turbulence, in the absence of other effects, and will be specified later.  
The assumption that a = ½ is appropriate for convective boundary layers, but not stable BLs. 

3. Modeled the turbulent transport term for DCBLs (based on Fig. 9.2 left) as 
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Putting these assumptions together into Eqn. (9.1), we obtain 
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That is, the heat flux has a downgradient component with diffusivity 
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and a second nonlocal term proportional to the surface heat flux.  The nonlocal term is thus seen 
to derive from the combined turbulent transport, pressure-covariance, and buoyancy 
contributions to the heat flux tendency.   This derivation suggests that the diffusivity should scale 
with the vertical velocity variance profile, which is well-measured and easily simulated with LES 
(Fig. 9.2, right): 

 !w !w " 2.8w*
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The timescale τ can be determined by noting that at Z = 0.4, there is no vertical θ gradient but the 
heat (buoyancy) flux is 0.5 times the surface value, so 
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This gives the diffusivity profile 
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Gradient correction schemes 
The above scale analysis applies only to a dry, nearly shear-free convective boundary layer. To 
handle sheared boundary layers and achieve the appropriate log-layer scaling near the surface, 
BL parameterizations handle the nonlocal term somewhat differently.  In one class of ‘gradient-
correction’ methods, the turbulent flux of an advected scalar a is modelled using a K-profile with 
a nonlocal correction γa added for advected scalars in convective boundary layers 
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The nonlocal term on the right is interpreted as being due to boundary-layer filling convective 
eddies which distribute the surface flux of a upward regardless of the local gradient of a. If the 
surface flux of a is positive, the nonlocal term produces a BL within which a decreases less with 
height than if pure first-order closure were used. 
An example of this type of scheme is the Holtslag-Boville (1993) scheme used in the CAM3 and 
CAM4 climate models.  In this scheme, the eddy diffusivity is specified using a K-profile based 
on the vertical velocity variance of a CTBL, 
   Ka(z) = kwtz(1 - z/h)2,        (9.7) 
where k = 0.4 is the von Karman constant, but using a scaling velocity that also applied for stable 
and neutral boundary layers. 
  wt
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3},    c1 = 0.6,  Pr = 1 (neutral)- 0.6 (pure convective)  (9.8) 
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The nonlocal term is modelled: 

  (9.9)  

Since the nonlocal flux is proportional to w*/wt , it is only active in unstable boundary layers 
where the convective velocity w* > 0.  In stable or neutral BLs, the parameterization reduces to a 
K-profile eddy diffusivity scheme.  The nonlocal flux is largest near the center of the boundary 
layer, with a maximum value 

   !w !a nonlocal, max = Ka, maxγa = 0.43(w*/wt ) !w !a 0 at z = h/3 
Related nonlocal approaches 

The MRF scheme used in the NCEP GFS model (Hong and Pan 2006) and the YSU scheme 
popular in the WRF (Hong et al. 2006) are structurally similar to the Holtslag-Boville scheme.  
In addition to the two terms in HB, the YSU scheme also includes a flux explicitly representing 
the effects of entrainment at the boundary layer top h: 
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The entrainment rate is picked roughly following the Moeng and Sullivan closure: 
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This approach regulates the entrainment at the top of the boundary layer better than HB or the 
MRF scheme, and seems to give better overall results than other WRF PBL parameterizations 
over land sites (e. g. Hu et al. 2010). 

EDMF scheme 
A related nonlocal approach for convective boundary layers, EDMF (Eddy Diffusion-Mass Flux) 
parameterization (Siebesma et al. 2007), is used in the ECMWF weather forecasting model.  In a 
dry-convective boundary layer, the vertical velocity has a positively-skewed pdf, implying that 
updrafts tend to be narrower and more intense than downdrafts, hence presumably more 
vertically organized. Siebesma et al. separated out vertical fluxes associated with these strongest 
updrafts, covering a horizontal area fraction A ~ 0.05-0.1  of the horizontal area  They treated 
these fluxes using a ‘mass-flux’ term in which the scalar flux is represented using the mean 
updraft velocity wu(z) and mean scalar value au(z) in these updrafts and compensating uniform 
downward motion across the remaining fraction 1 - A of the domain:   
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The term M  = Awu is called the updraft mass flux (strictly speaking it is the upward volume flux 
of a in the organized updrafts per unit horizontal area).  This approach was taken from cumulus 
parameterization, where it is attractive because the cloudy updrafts are typically much more 
intense than the subsidence around them. 
 Other eddies are assumed to be lesss vertically organized and are treated using eddy 
diffusion.  Thus, the overall turbulent transport is assumed to have the form: 

 !w !a = "K(z) da
dz
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The form of K(z) is similar to the HB form (9.2).  The mass flux and the value of au are 
calculated from a differential equation describing turbulent mixing into the organized updrafts, 
again using ideas transferred from cumulus parameterization: 
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B is the updraft buoyancy, and based on LES, the lateral entrainment rate into the updraft is 
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and h is determined as the height at which wu goes to zero.  Initial updraft scalar excesses near 
the surface are proportional to the corresponding surface flux divided by a diagnosed vertical 
velocity variance at the lowest grid level.   
 In all the above schemes, the underlying ideas are important to appreciate, but the details and 
numerical implementation on a discrete grid (often relegated to appendices of papers) are also 
critical to their success. 
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