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Lecture 6. Monin-Obukhov similarity theory (Garratt 3.3) 

In this lecture… 

• Similarity theory for wind and scalar profiles in stratified surface layers. 

• Stability correction to bulk surface-air transfer coefficients. 

Stability correction to vertical profiles in the surface layer 

  Because so many BL measurements are made within the surface layer (i. e. where wind 
veering with height is insignificant) but stratification effects can be important at standard 
measurement heights of 2 m (for temperature and moisture) and 10 m (for winds), it is desirable 
to correct the log-layer profiles for stratification effects. 
 Based on the scaling arguments of last lecture, Monin and Obukhov (1954) suggested that 
the vertical variation of mean flow and turbulence characteristics in the surface layer should 
depend only on the surface momentum flux as measured by friction velocity u*, buoyancy flux 
B0, and height z.  One can form a single nondimensional combination of these, which is 
traditionally chosen as the stability parameter  

 ζ = z/L . (6.1) 

The logarithmic scaling regime of last time corresponds to ζ << 1.  

 Thus, within the surface layer, we must have 

 (kz/u*)(du/dz)   =  Φm(ζ)  (6.2) 

 -(kz/θ*)(dθ /dz)   = Φh(ζ) (6.3) 

where Φm(ζ) and Φm(ζ) are nondimensional stability functions which relate the fluxes of 
momentum and θ (i. e. sensible heat)  to their mean gradients. Other adiabatically conserved 
scalars should behave similarly to θ since the transport is associated with eddies which are too 
large to be affected by molecular diffusion or viscosity.  To agree with the log layer scaling, 
Φm(ζ) and Φm(ζ) should approach 1 for small ζ.   

 We can express (6.2) and (6.3) in other equivalent forms. First, we can regard them as 
defining surface layer eddy viscosities: 

 Km = -  !u !w 0 /(du/dz) = u*
2/( Φm(ζ)u*/kz) = kzu*/Φm(ζ) (6.4) 

 Kh = -  !w !" 0 /(dθ /dz) = u* θ*/( Φh(ζ) θ*/kz) = kzu*/Φh(ζ) (6.5) 

By analogy to the molecular Prandtl number, the turbulent Prandtl number is their ratio: 

 Prt  =  Km/Kh  = Φh(ζ) / Φm(ζ). (6.6) 

Another commonly used form of the stability functions is to measure stability with gradient 
Richardson number Ri instead of z.  Recalling that N2 = -db/dz, and again noting that the surface 
layer is thin, so vertical fluxes do not vary significantly with height within it, Ri is related to z as 
follows: 
       Ri   =  (-db/dz) / (du/dz)2 
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      =  (  !w !b 0 / Kh) / (-  !u !w 0 /Km)2 

           =  (B0 Φh(ζ) / kzu*) / (u*
2 Φm(ζ) / kzu*)2 

           = ζ Φh/ Φm
2.        (6.7) 

Given expressions for Φm(ζ) and Φh(ζ), we can write ζ and hence the stability functions and eddy 
diffusivities in terms of Ri. The corresponding formulas for dependence of eddy diffusivity on Ri 
are often used by modellers even outside the surface layer, with the neutral Km and Kh estimated 
as the product of an appropriate velocity scale and lengthscale. 

Field Experiments 

 The stability functions must be determined empirically.  In the 1950-60s, several field 
experiments were conducted for this purpose over regions of flat, homogeneous ground with 
low, homogeneous roughness elements, culminating in the 1968 Kansas experiment. This used a 
32 m instrumented tower in the middle of a 1 mi2 field of wheat stubble.  Businger et al. (1971, 
JAS, 28, 181-189) documented the relations below, which are still accepted: 

 

!m =
(1" # 1$ )

"1/4 , for " 2 < $ < 0 (unstable)
1+ %$ , for 0 & $ < 1 (stable)

'
(
)

*)  

(6.8) 

 !h =
PrtN (1" # 2$ )

"1/2 , for " 2 < $ < 0 (unstable)
PrtN + %$ , for 0 & $ < 1 (stable)

'
(
)

 (6.9)  

The values of the constants determined by the Kansas experiment were 

 PrtN = 0.74,  β = 4.7,  γ1 = 15,  γ2 = 9. 

The quality of the fits to observations are shown on the next page.  Other experiments have 
yielded somewhat different values of the constants (Garratt, Appendix 4, Table A5), so we will 
follow Garratt (p. 52) and Dyer (1974, Bound-Layer Meteor., 7, 363-372) and assume: 

 PrtN = 1,  β = 5,  γ1 = γ2 = 16. (6.10) 

In neutral or stable stratification, this implies Φm = Φh, i. e. pressure perturbations do not affect 
the eddy transport of momentum relative to scalars such as heat, and the turbulent Prandtl 
number is 1. In unstable stratification, the eddy diffusivity for scalars is more than for 
momentum. 
 Solving these relations for Ri, 
  

 ! =
Ri, for  -2 < Ri < 0 (unstable)
Ri

1-5Ri
, for  0 < Ri < 0.2 (stable)
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 (6.11) 
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Fig. 6.1:  Empirical determination of stability functions from Kansas experiment. 
 

 
 

Fig. 6.2: Nondimensional eddy viscosity Φm
−1 and diffusivity Φη

−1 as functions of stability, 
measured by Ri.
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Limiting cases (Garratt, p. 50) 

(i)  Neutral limit: Φm, Φh → 1 as ζ → 0 as expected, recovering log-layer scaling for z << |L|. 

(ii) Stable limit:  Expect eddy size to depend on L rather than z (z -less scaling), since our scaling 
analysis of last time suggests that stable buoyancy forces tend to suppress eddies with a scale 
larger than L.  This implies that the eddy diffusivity  

  Km = kzu*/ Φm ∝ (length) (velocity) = Lu*  

  ⇒  Φm ∝ z/L = ζ     as  ζ  →  +∞ (6.12) 

 and similarly for Kh.  The empirical formulas imply Φm ~  β ζ  for large ζ , which is consistent 
with this limit. 

 (iii) Unstable limit. Convection replaces shear as the main source of eddy energy, so we expect 
the eddy velocity to scale with the buoyancy flux B0 and not the friction velocity. We still 
assume that the size of the eddies that carry most of the vertical fluxes is limited by the 
distance z to the boundary.  In this `free convective scaling', the eddy velocity scale is uf = 
(B0z)1/3 and the eddy viscosity should go as 

 Km = kzu*/ Φm ∝ (length) (velocity) = zuf 

 ⇒  Φm ∝ u*/uf   ∝   (-z/L)-1/3  = (-ζ)-1/3     as  ζ  →  −∞ (6.13) 

 A similar argument applies for the scalar stability function Φh. The empirical relations go as 
(-ζ)-1/2  for scalars and (-ζ)-1/4  for momenta,  which are close but not identical to (-ζ)-1/3.  Note 
reliable measurements only extend out to ζ = -2, so free convective scaling may be physically 
realized at larger |ζ|.  

Wind and thermodynamic profiles 

The similarity relations can be integrated with respect to height to get: 
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u*
k
log z
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(and similarly for other scalars), where if x = (1 - γ1ζ)1/4,  
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Wind profiles in stable, neutral, and unstable conditions are shown in the figure below.  Low-
level wind and shear are reduced compared to the log profile in unstable conditions, for which Km 
is larger.  

 
 
 From (6.14) and (6.15), we derive bulk aerodynamic coefficients for non-neutral conditions: 

  CD = k2

log(zR / z0 ) ! "m (zR / L)[ ]2
,        (6.18) 

  CH = k2

log(zR / z0 ) ! "m (zR / L)[ ] log(zR / zT ) ! "h (zR / L)[ ]     (6.19) 

These decrease considerably in stable conditions (see figure on next page).  
 The main use of these transfer coefficients is to compute the surface fluxes from the wind 
and thermodynamic quantities measured or computed at a reference level zR.  For a numerical 
model, zR is the lowest grid level for horizontal winds and scalars.  In either case, this approach is 
only valid if zR is in the surface layer; this condition can easily be violated for strongly stable 
boundary layers for the coarse vertical grid of many large-scale numerical models.  



Atm S 547  Boundary Layer Meteorology  Bretherton 

   6.6 

 
A practical complication is that L depends on the surface momentum and buoyancy fluxes, 
which are what we are trying to compute.  Thus, we must solve (6.18) and (6.19) simultaneously 
with the definition of the Obukhov length,  
 L = - u*

3 /kB0 (6.20) 
To compute L from reference-level quantities, we note that by definition of CD,  
 u*

2 = CDu2(zR) (6.21) 
Although not precisely correct, it is generally a good approximation to assume CH can also be 
applied to virtual temperature θv as well as θ, so that the surface buoyancy flux can be computed 

 B0 = CHu(zR )
g
!v0

!v0 "!v (zR )[ ]  (6.22) 

Substituting these formulas for u* and B0 into (6.20), we have expressed L in terms of reference 
level quantities together with CD and CH.  
We must now solve the three simultaneous nonlinear equations (6.18), (6.19) and (6.20) for CD, 
CH and L.  One approach for doing this is iterative and relies on the fact that the stability  
dependence of CD, CH is not too strong.  Starting with an estimate of L, we solve for CD, CH.  
Using these coefficients, we infer u* and B0 and thereby get a new estimate of L .  The iteration is 
repeated until it converges (which it generally does).  We can start the iteration by assuming 
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neutral conditions (L = ∞) . The problem is further complicated over the ocean, where z0 and zT 
depend on u*.  A popular simplification is to use a computationally efficient approximation to the 
iterative solution, e.g. Louis 1979, Bound. Layer Meteor., 17, 187-202. 

Scaling for the entire boundary layer- the turbulent Ekman layer (Garratt, 3.2) 

 In general, the BL depth h and turbulence profile depend on many factors, including history, 
stability, baroclinicity, clouds, presence of a capping inversion, etc.  Hence universal formulas 
for the velocity and thermodynamic profiles above the surface layer (i. e. where transports are 
primarily by the large, BL-filling eddies) are rarely applicable.  
 However, a couple of special cases are illuminating to consider. The first is a well-mixed BL 
(homework), in which the fluxes adjust to ensure that the tendency of θ, q, and velocity remain 
the same at all levels.  Well mixed BLs are usually either strongly convective, or strongly driven 
stable BLs capped by a strong inversion.  As will be furher discussed in later lectures, mixed 
layer models incorporating an entrainment closure for determining the rate at which BL 
turbulence incorporates above-BL air into the mixed layer are widely used. 
 The other interesting (though rarely observable) case is a steady-state, neutral, barotropic BL. 
This is the turbulent analogue to a laminar Ekman layer. Here, the fundamental scaling 
parameters are G = |ug|,  f, and z0. Out of these one can form one independent nondimensional 
parameter, the surface Rossby number Ros = G/ fz0 (which is typically 104 -108).  The friction 
velocity (which measures surface stress) must have the form 
 u*/G  =  F(Ros) (6.23) 
Hence, one can also regard u*/G (which has a typical value of 0.01-0.1) as a proxy  
nondimensional control parameter in place of Ros.  The steady-state BL momentum equations are 

 f (u ! ug ) = !
d
dz

"v "w , (6.24) 

 f (v ! vg ) =
d
dz

"u "w . (6.25) 

On the next page are velocity and momentum flux profiles from a  direct numerical simulation 
(384×384×85 gridpoints) in which u*/G = 0.053 (Coleman 1999, J.  Atmos. Sci, 56, 891-900). 
The geostrophic wind is oriented in the x direction, and is independent of height (the barotropic 
assumption). Height is nondimensionalized by δ = u*/f.    In the thin surface layer, extending up 
to z = 0.02δ, the wind increases logarithmically with height without appreciable turning (this is 
most clearly seen on the wind hodograph), and is turned at 20° from geostrophic (this angle is an 
increasing function of u*/G)   The neutral BL depth, defined as the top of the region of 
significantly ageostrophic mean wind, is  
 hN  = 0.8u*/f . (6.26) 
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Fig.  6.5:  Wind and stress profiles in a numerically simulated turbulent barotropic Ekman layer
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For u* = 0.3 m s-1 and f = 10-4 s-1, HN = 2.4 km.  Real ABLs are rarely this deep because of 
stratification aloft, but fair approximations to the idealized turbulent Ekman layer can occur in 
strong winds over the midlatitude oceans.  The wind profile qualitatively resembles an  Ekman 
layer with a thickness 0.12u*/f, except much more of the wind shear is compressed into the 
surface layer. 
The profiles of ageostrophic wind and momentum flux depend only very weakly on Ros above 
the surface layer. Below we  show a scaling using u* and f that collapses these into universal 
profiles.   These wind and stress profiles can be matched onto a z0-dependent surface log-layer; 
the matching height (i. e. the top of the surface layer) and the implied surface wind turning angle 
depend upon z0; in this way the profiles can apply to arbitrary Ros. 

 
Fig. 6.6:  Scaled ageostrophic wind (solid: LES; triangles: lab expt.) for a turbulent Ekman layer.  

A log-profile in the surface layer (z/δ < 0.02 ) matches onto universal profiles above. 

As we go up through the boundary layer, the magnitude of the momentum flux will decrease 
from u*

2 in  the surface layer to near zero at the BL top, so throughout the BL, the momentum 
flux will be O(u*

2), and the turbulent velocity perturbations u′, w′ should scale with u*  to be 
consistent with this momentum flux).  We assume that the BL depth scales with δ = u*/f.   These 
scalings suggest a nondimensionalization of the steady state BL momentum equations (6.24) and 
(6.25): 

 
u ! ug
u*

= !
d "v "w u*

2( )
d z #( )  (6.27) 

 
v ! vg
u*

=
d "u "w u*

2( )
d z #( )  (6.28) 

 
If we adopt a coordinate system in which the x axis is in the direction of the surface-layer wind, 
the boundary conditions on the momentum flux are 
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 !u !w u*
2 " 1  and !v !w u*

2 " 0   as  z/δ → 0  (i. e. at surface layer top) (6.29) 

 !u !w u*
2 " 0  and !v !w u*

2 " 0   as  z/δ → ∞ (6.30)  

If we assume that the momentum flux depends only on wind shear and height, this is consistent 
with universal velocity defect laws: 

 
u ! ug
u*

= Fx (z " ) ,   
v ! vg
u*

= Fy (z " )  . (6.31) 

and similarly for momentum flux scaled with u*
2. These universal profiles can then be deduced 

from either lab experiments or numerical simualtions of turbulent Ekman layers. .   The figure 
below shows that Coleman's simulations and laboratory experiments with different parameters 
are consistent with the same Fx and Fy, supporting their universality.  One can see that at hN = 
0.8δ, the velocity defects are very close to zero (geostrophic flow), while at z ≈ 0.02δ, the v 
defect has flattened out with Fy(0) ≈ 5.  This corresponds to the top of the surface layer. 

In the surface layer , these universal functions cease to apply and the logarithmic wind profile 
u(z)  = (u*/k) ln(z/z0), v(z) = 0 must match onto the defect laws.  In particular, this means that 
Fy(0) = -vg/u*, i. e. that vg ≈ -5u*. From the overall geostrophic wind magnitude G,  we can 
deduce the surface wind turning angle α, i. e.  

 α  ≈ sin-1(5u*/G) . (6.32) 

For the case shown, this gives α  ≈ 15°, in excellent agreement with the hodograph in Fig. 6.5. 
Smoother surfaces with lower u*/G  (e. g. ocean) will give smaller turning angles and rougher 
surfaces will give larger turning angles, as we’d expect. We can also deduce ug (≈ 0.96G for the 
case shown).  At the top of the surface layer, us = ug + u*Fx(0)   ≈ ug- 5u*≈ (0.96-0.27)G = 0.7G, 
again in good agreement with the plotted hodograph once it is rotated into coordinates 
along/transverse to the surface wind.  From this we could deduce a precise matching height zs at 
which us = (u*/k) ln(zs/z0) between the log-layer and the velocity defect profiles.  While this all 
may seem rather indirect, it provides a way to construct the boundary layer wind and stress 
profile in any turbulent barotropic Ekman layer.  In fact, this would be a wonderful approach to 
parameterize BLs if they were actually unstratified and barotropic, but this is almost never the 
case in reality. 

 


