Introduction to Turbulence

OCN/MET 665



Transition to Turbulence

An album of fluid motion. Van Dyke
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Sketch of Reynolds’s dye experiment, taken from his 1883
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Reynolds' sketches of the transition from larminar to turbulent flow

Osborne Reynolds 1883
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103. Repetition of Reynolds’ dye experiment. Osborne
Reynolds’ celebrated 1883 investigation of stability of flow
in a tube was documented by sketches rather than photog-
raphy. However the original apparatus has survived at the
University of Manchester. Using it a century later, N. H.
Johannesen and C. Lowe have taken this sequence of
photographs. In laminar flow a filament of colored water

introduced at a bell-shaped entry extends undisturbed the
whole length of the glass tube. Transition is seen in the sec-
ond of the photographs as the speed is increased; and the
last two photographs show fully turbulent flow. Modern
traffic in the streets of Manchester made the critical
Reynolds number lower than the value 13,000 found by
Reynolds.



Shear Instability

Reynolds Number:

Critical Reynolds number

Re = O(1000)



Tritton

(a) (b} (c) (d) (e)

Figure 17.13  To illustrate that the velocity profiles of (a) pipe flow, (b) a boundary layer,
(c) a wake, (d) a jet, and (e) a free convection boundary layer are all shear flows.

Some shear flows. Dots indicate inflection points.
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Grae Worcester, University of Cambridge



Buoyancy stabilised Kelvin-Helmholtz instability

Re = 1200
Pr=29
Ri=0.15

Vanja Zecevic, University of Sydney
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Lewis Fry Richardson

Richardson
Number

Necessary condition for
instability:

somewhere in the flow
Miles (1961), Howard
(1961)
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Thorpe: Transitional Phenomena of Turbulence in Stratified Fluids

STAGE 0, PARALLEL STRATIFIED FLOW
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STAGE 1, K-H INSTABILITY AND GROWTH OF BILLOWS

STAGE 2,
(a) Subharmonic vortex pairing (b) Convective Rolls

(d) Tubes

(c) Knots

STAGE 3, UNKNOWN

STAGE 4, SECONDARY BILLOWS AND UNIDENTIFIED STRUCTURES IN BILLOWS
d -CHAOS ?

Fig. 7. Stages in the transition to turbulence of Kelvin-Nelmholtz instabilicy.
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Figure 1.6. Turbulent jets at different Reynolds numbers: (a) relatively low Reynolds
number, (b) relatively high Reynolds number (adapted from a film sequence by R. W.
Stewart, 1969). The shading pattern used closely resembles the small-scale structure of
turbulence seen in shadowgraph pictures.



Convection

Rayleigh Number:

B gaATd?

VK

Ra

AT temperature difference
d distance between plates
a coef of expansion

v kinematic viscosity

K thermal diffusivity

Lord Rayleigh (John Strutt)
(1842-1919)
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Figure4.4  Variation of Nussclt number with Rayleigh number for Bénard convection, show-
ing increase of heat transfer with onset of motion. Data obtained by C. W, Titman.



139. Buoyancy-driven convection rolls. Differential
interferograms show side views of convective instability of
silicone oil in a rectangular box of relative dimensions
10:4:1 heated from below. At the top is the classical Ray-
leigh-Bénard situation: uniform heating produces rolls

140. Circular buoyancy-driven convection cells. Sili-
cone oil containing aluminum powder is covered by a
uniformly cooled glass plate, which eliminates surface-
tension effects. The circular boundary induces circular
rolls. In the left photograph the copper bottom is uni-
formly heated at 2.9 times the critical Rayleigh number,

82

parallel to the shorter side. In the middle photograph the
temperature difference and hence the amplitude of motion
increase from right to left. At the bottom, the box is
rotating about a vertical axis. Oertel & Kircharty 1979,
Qertel 1982a

giving regular rolls. At the right, the bottom is hotter at
the rim than at the center. This induces an overall circula-
tion which, superimposed on regular circular rolls, pro-
duces alternately larger and smaller rolls. Koschmieder 1974,
1966



141. Surface-tension-driven (Bénard) convection. A
top view, magnified some 25 times, shows the hexagonal
convection pattern in a layer of silicone oil I mm deep that
is heated uniformly below and exposed to ambient air
above. With the upper surface free, the flow is driven
mainly by inhomogeneities in surface tension, rather than

142. Imperfections in a h 1
Bénard convection pattern. The hexa-
gonal pattern of cells typical of convective
instability driven primarily by surface ten-
sion is seen to accommodate itself to a circu-
lar boundary. Aluminum powder shows the
flow in a thin layer of silicone oil of kine-
matic viscosity 0.5 cm?/s on a uniformly
heated copper plate. A tiny dent in the
plate causes the imperfection at the left,
forming diamond-shaped cells. This shows
how sensitive the pattern is to small irregu-
larities. Koschmieder 1974
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by buoyancy as on the previous page. Light reflected from
aluminum flakes shows fluid rising at the center of each
cell and descending at the edges. The exposure time is 10 s,
whereas fluid moves across the cell from the center to the
edge in 2 s. Photograph by M. G. Velarde, M. Yuste, and J.
Salan




(c) S. Labrosse






Turbulence characteristics

3-dimensional

rotational vxr =0
— carries vorticity (unlike linear surface
waves)

irregular, unpredictable (random) motion —
described by probability density function

diffusive — several orders of magnitude
greater than molecular diffusion

dissipative — K.E.— heat
requires steady supply of energy



Turbulence characteristics

flow has large Reynolds #, re=Z > 10’

(nonlinear) v

does not obey a dispersion relation (not
wavelike)

broad wavenumber spectrum
generally anisotropic at larger scales
Is a function of the flow, not the fluid
satisfies Navier-Stokes equations
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Fig. 1.3
Idealization of
(a) Mean wind
alone, (b) waves
alone, and (c)

turbulence alone.

In reality waves
or turbulence are
often super-
imposed on a
mean wind. U is
the component
of wind in the
x-direction.
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Fig. 2.2 Schematic spectrum of wind speed near the ground estimated

from a study of Van der Hoven (1957).



Stirring and Mixing

€ Stirring increases area
B
Of Contact adapted from Eckart (|948) .

€ Sharpens gradients
and reduces scales
down to those where
molecular diffusivity
acts

€ Molecular diffusivity
results in irreversible
mixing




P:run942, k= 001, t= 001 Z: run942, k=001, t= 001

120 120 —
100 100
80 80
60 60
10 10
20 20

20 40 60 80 100 120 20 40 60 80 100 120

0 02 04 0.6 08 1

0 002 004 006 008 0.1



120

100

40

20

P:run942, k= 001, t= 001

20

40

60

80

100 120

04

0.6

08 1

Z:run942, k= 001, t= 001

120
100
80
60
40

201

20 40 60 80 100 120

0 0.02 0.04 0.06 0.08 0.1




P:run942, k= 001, t= 001 Z: run942, k=001, t= 001

120 120 —
100 100
80 80
60 60
10 10
20 20

20 40 60 80 100 120 20 40 60 80 100 120

0 02 04 0.6 08 1

0 002 004 006 008 0.1



500
450

P: run936, k= 001, t= 001 Z: Tun936, k= 001, t= 001
500 7 :

100 200 300 400 500 100 200 300 400 500




Energy Cascade (Kolmogorov ,1941)

Figure 8.3 Schema
of energy spectrum in
three-dimensional turbu-
lence, in the theory of Kol-
mogorov. Energy is sup-
plied at some rate g; it
is transferred (‘cascaded’)
to small scales, where it
is ultimately dissipated by
viscosity. There is no
systematic energy trans-
fer to scales larger than
the forcing scale, so here
the energy falls off.

If £ = f(e k) then the only dimensionally consistent relation for the energy

spectrum is

Energy

M

Stirring

Xy

Transfer

lk"' - (E./‘,J)IM

U

Dissipation

Wavenumber

F — x82/3k—5/3



Energy Cascade (L. F. Richardson ,1922)

“Big whirls have little whirls

that feed on their velocity,
and little whirls have smaller whirls

and so on to viscosity”

Stirring
Xy

Transfer ky ~ (e/v3)!/4

Energy

Dissipation

Wavenumber



TURBULENT MIXING

* MIXING: Irreversible destruction of scalar and velocity gradients
through the action of molecular diffusivities k and viscosity v

In a turbulent fluid, scalar and velocity gradients exist down to
Batchelor and Kolmogorov scales:

For Ocean
Lb~2-7T(K2’U /g)”4 Momentum v =1 x 10~ %m?2s!
3, \1/4 Thermal kp = 1.4 x 10~ "m2s~1
Ly~ ZJt(v /5)
Salt Kg = 1 8¢ 10—9m28—1

Typical deep ocean TKE dissipation rate e~10° W kg™
( 1 hair dryer/km?3)

= L, & L, ~ millimeters to centimeters

TURBULENT MIXING OCCURS AT SMALL SCALES




Homework:

Compare the Batchelor and Kolmogorov length
scales in the deep and surface ocean where the
dissipation rate is typically €=10-2 and 10-> W kg,
respectively.

What are the scales in the atmospheric boundary
layer under different conditions?



Vertical turbulent transports

What is a turbulent flux?
— Reynolds’ decomposition: <wT> = <w><T> + <w'T’>
What determines the vertical distribution of turbulence?

— TKE equation: dTKE/dt = production — dissipation +
advection

How does turbulence determine the interfacial fluxes of heat,
moisture and momentum?

— Near-surface gradients and TKE levels are related.
How are vertical turbulent transports modeled?

— Flux profile relationships (Monin-Obukhov similarity theory)
— closure schemes (parameterizations)

— layered versus level models



Turbulent Flux Definitions

Sensible Heat - H, = p,c, W'T"

Latent Heat : H, = p, L. W'q'

. ' 0 ' v
Stress : 7= p ,Wu i + p,wu,j






