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Abstract

The performance of regional tide model simulations is examined in relation to the choice of open boundary conditions.
Three barotropic open boundary conditions, clamped elevation, clamped normal velocity, and Flather, give similar results
when the prescribed values are exact; however, Flather is much less sensitive to errors in the prescribed values. Of partic-
ular concern, it was found that with a phase error between the two boundaries, both the clamped conditions resulted in
magnitude errors in the unclamped variable (although the simulation remained stable).

A modified flow relaxation scheme for the depth-varying prognostic variables is presented. This implementation allows
the transmission of a range of vertical modes while retaining realistic topography at the boundary. It was found to be an
excellent internal tide boundary condition in tests comparing simulations of different domain length encompassing a ridge
and sloping bottom, and in a comparison to an analytical solution. Mass is conserved without any artificial volume
constraint.
Published by Elsevier Ltd.
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1. Introduction

Recently, there has been a resurgence of interest in open-ocean tidal processes. Much of this has been dri-
ven by satellite observations showing nearly 1 TW of energy is removed from the barotropic tide in regions
away from shallow seas (Egbert and Ray, 2000, 2001) and that baroclinic (internal) tides can propagate hun-
dreds of kilometers from their generation regions (Dushaw et al., 1995; Ray and Mitchum, 1996; Cummins
et al., 2001). As well as being a main contributor to global ocean energetics, tides play an obvious and impor-
tant role in many coastal processes.

Process studies utilizing regional numerical simulations have been employed alongside observations and
theory in an effort to understand tidal problems. These simulations are increasingly being used to extrapolate
in situ observations of quantities such as energy flux (Rudnick et al., 2003; Lee et al., 2006) and dissipation
(Klymak et al., 2006; Carter et al., 2006) as well as state variables. Large programs such as the Hawaii Ocean
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Mixing Experiment (HOME, Pinkel et al., 2000) allow the comparison of numerical simulations to observa-
tions at a range of scales. Accordingly, the definition of good agreement between simulation and observations
is evolving to accommodate these new uses.

Open boundary conditions (OBCs), which must be prescribed to complete the model description at non-land
boundaries, have a large effect on the simulation. The definition of these boundary conditions is not trivial, in
fact for incompressible, hydrostatic primitive equation models they are known to make the system ill-posed
(Oliger and Sundström, 1978). OBCs can be broadly divided into two classes, passive and active (Palma and
Matano, 1998). Passive boundary conditions, which aim to let information exit the model domain without
reflection, have been the subject of a number of studies (e.g., Chapman, 1985; Jensen, 1998; Palma and Matano,
1998, 2000). Passive boundary simulations include adjustment of an initial discontinuity, along- or across-shelf
wind stress and the response to a passing storm. Active boundary conditions, on the other hand, are used to
drive the simulation, and have been less well studied. Marchesiello et al. (2001) proposed a combination, an
adaptive boundary condition, where different definitions are used depending on whether information is entering
or leaving the domain.

One of the difficulties with OBCs is that their performance has been found to be highly dependent on the
simulation configuration. This current study of OBC was motivated by our interest in internal tide dynamics
near (within �100 km of) a generation region. Process studies using realistic topography, realistic but
horizontally constant stratification, and reduced forcing (typically one or two constituents) are an informa-
tive and common approach (Merrifield et al., 2001; Niwa and Hibiya, 2001; Merrifield and Holloway, 2002;
Holloway and Merrifield, 2003; Johnston et al., 2003). The OBC comparison studies to date have not
addressed tidal forcing. Depending on the topography and stratification, internal tide generation can
transfer energy to a wide range of vertical modes (Garrett and Kunze, 2007) each with a different phase
speed, and even form tidal beams through the phase-locking of multiple modes (e.g., Prinsenberg et al.,
1974). St Laurent et al. (2002) suggest 30 ± 10% of the energy converted into internal tides can go into high
modes.

1.1. Numerical model

In this analysis we use the Princeton Ocean Model (POM), a three-dimensional, non-linear, free surface,
time stepping, primitive equation model originally developed for coastal applications (Blumberg and Mellor,
1987). It has subsequently been used in a number of barotropic and baroclinic tidal studies, including idealized
open-ocean topographic features (e.g., Holloway and Merrifield, 1999; Johnston and Merrifield, 2003), two-
dimensional representation of shelf topography (e.g., Holloway, 1996), and realistic three-dimensional topog-
raphy (e.g., Merrifield et al., 2001; Niwa and Hibiya, 2001; Merrifield and Holloway, 2002; Holloway and
Merrifield, 2003; Johnston et al., 2003). Palma and Matano (1998, 2000) used POM in an investigation of
passive open boundary conditions.

The model equations and how they are solved is discussed in detail by Blumberg and Mellor (1987). Key
details pertinent to this study are described here. POM uses a finite difference approach on a staggered (Arak-
awa C) grid, with curvilinear coordinates in the horizontal and sigma coordinates in the vertical. The differ-
ences are calculated explicitly in the horizontal and implicitly in the vertical. POM employs a mode splitting
technique, whereby the vertically averaged velocities and free surface elevation (external mode) are calculated
with a shorter time step than the depth-varying variables (internal mode). Mode splitting requires that bound-
ary conditions are applied to both the external and internal modes.

2. External mode

There are three prognostic variables (g, �u, and �v; where the overbar denotes the vertical average) solved for
in the external mode. At the boundaries some description must be given for each of these variables, however, if
each of the three variables were set to an externally (user) prescribed value the model would, in all likelihood,
be over-specified (i.e., the prescribed values would be incompatible with the interior equations; Marchesiello
et al., 2001) and probably become unstable. In general, only one of the variables is prescribed and the other
two are related to the interior model solution, here a zero gradient (/b = /interior neighbor) is used.
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2.1. Boundary conditions

Although a large number of boundary conditions have been proposed for different situations (see Palma
and Matano, 1998; Blayo and Debreu, 2005, for reviews), three types of barotropic boundary conditions tend
to be used for tidal simulations:

� Clamped elevation: Here the free surface displacement is set to an externally prescribed value:
gb�1 ¼ gext; ð1Þ
where gb±1 indicates that the elevation must be clamped one cell in from the boundary (Mellor, 2004). This
continues to be a popular boundary condition for tidal simulations, due in part to the smooth spatial var-
iation of elevation data, and readily available satellite-altimetry-derived data.
� Clamped normal velocity: This condition sets the normal velocity component in the boundary cell ð�vn;bÞ to

an externally prescribed value:
�vn;b ¼ �vext
n : ð2Þ
� Flather condition: This extension of a radiation boundary condition was originally proposed by Flather
(1976). Radiation conditions are a popular class of passive OBCs, which are based on the propagation
of a quantity w through a boundary:
ow
ot
þ c

ow
on
¼ 0; ð3Þ
where n is the outward normal, and c is a velocity. The Flather condition is a combination of (3) applied to
the free surface elevation, the long wave phase speed (c ¼

ffiffiffiffiffiffiffi
gH
p

, where g is gravitational acceleration and H

is bottom depth), and a one-dimensional approximation of the continuity equation:
og
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þ H
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¼ 0; ð4Þ
which gives
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¼ 0: ð5Þ
Finally, integrating across the boundary gives
�vn;b ¼ �vext
n �

ffiffiffiffi
g
H

r
ðgb�1 � gextÞ: ð6Þ
The Flather condition can be thought of as applying an adjustment to the externally prescribed normal
velocity based on the difference between modeled and externally prescribed surface elevations, i.e., a volume
error. In POM the elevations are calculated prior to updating the external mode velocities, therefore gb±1 is
at the same timestep as �vn;b. The sign of the adjustment velocity depends on the boundary (positive for north
and east boundaries; negative for south and west boundaries).

For passive boundary conditions, it is well known that clamping results in very poor performance (Chapman,
1985). A clamped boundary condition is 100% reflective to any flow not described by the boundary condition.
Despite this clamped conditions, particularly clamped elevation, remain popular as an active boundary condi-
tion for tidal simulations (e.g., Cheng et al., 1993; Holloway, 1996; Black et al., 2000; Merrifield et al., 2001;
Merrifield and Holloway, 2002; Holloway and Merrifield, 2003; Katsumata, 2005; Banas and Hickey, 2005).

Blayo and Debreu (2005) showed that the Flather condition is a characteristic solution to the 2D linearized
inviscid shallow-water equations, i.e., forms a well-posed problem. The primitive equations are not hyperbolic
and consequently the Flather condition is not a characteristic solution, although in comparison tests of passive
OBCs the Flather condition is amongst the best performers (Palma and Matano, 1998). Marchesiello et al.
(2001) found that in a simulation of the west coast of the United States, a barotropic rim current was set
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up by the Flather condition. In primitive equation models the Flather condition seems most suited to situa-
tions where surface gravity waves dominate (Marchesiello et al., 2001).

2.2. Approach

The simplest possible tidal configuration, a freely propagating sinusoidal long wave in a constant depth
channel, is considered. The continuity and momentum equations in this case reduce to (Pugh, 1987)
og
ot
þ H

o�u
ox
¼ 0; ð7Þ

o�u
ot
þ g

og
ox
¼ 0; ð8Þ
which has solutions
g ¼ g0 cosðkx� xtÞ ¼ g0 cosðxt þ /Þ; ð9Þ

�u ¼ g0

ffiffiffiffi
g
H

r
cosðkx� xtÞ ¼ g0

ffiffiffiffi
g
H

r
cosðxt þ /Þ; ð10Þ
where g0 is the amplitude of the surface oscillation, x is the frequency, k is the wavenumber, and / is the
phase. The phase difference between the ends of the channel (L apart) is governed by the travel time of the
wave, and is given by
jD/j ¼ Lx=c ½radians�: ð11Þ
The majority of simulations presented in this section are 2D runs of a 250 cell long east–west channel with
horizontal grid spacing of 2 km, a constant depth of H = 4500 m, and the Coriolis force set to zero (no
rotation). The external forcing is an eastward propagating M2 frequency wave with gext = 2 m and
�uext ¼ 2

ffiffiffiffiffiffiffiffiffi
g=H

p
ffi 0:09 m s�1. To enforce the unidirectional flow on a tidal channel the normal velocity on

the north and south boundaries is set to zero (this is equivalent to a wall). All the tangential velocity compo-
nents are set using a zero gradient. Each simulation is run for 60 tidal cycles (�31 days) starting from a
quiescent state, with forcing gradually increasing over one day to minimize the adjustment through waves.
Singular value decomposition (Press et al., 1989) is used to evaluate the mean (offset from the initial water-
level) and harmonic constants (amplitude and phase) over the last 10 tidal cycles.

The theoretical momentum balance, (8), does not include a frictional term. The horizontal diffusivity in the
model has been set to zero. However, POM calculates the bottom friction coefficient using a logarithmic layer
formulation:
cbottom ¼
j

logðdzbH=z0bÞ

� �2

; ð12Þ
where j is von Karman’s constant, dzb is the distance between the deepest velocity level and the seabed, H is
the water depth, and z0b is the bottom roughness. This should be small for deep channels. To confirm that
bottom friction plays a negligible role in these simulations, and hence that it should be possible to directly
compare with the inviscid theoretical solutions, a non-oscillating run was made with a 1 mm difference in ele-
vation between the two ends of the domain. The forcing was gradually increased over one day from a quies-
cent state. After 120 days the along-channel velocity was still increasing, although approaching its asymptotic
value where the friction in the model balances acceleration (Fig. 1). After 60 tidal cycles the model velocity is
almost equal to the theoretical inviscid velocity ðg og

ox tÞ, meaning close agreement between the simulations and
(9) and (10) should be possible.

2.3. Results from the simple tidal channel

When both boundaries are set to the theoretical values, all three OBCs give very good agreement to Eqs. (9)
and (10). Comparing the harmonic constants for the middle cell of the domain, however, shows that the
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Fig. 1. Along-channel velocity in a non-oscillating simulation with a 1 mm elevation difference along the 500 km channel: Black line, POM
simulation; and gray line theoretical value. After 120 days the small bottom friction in the model formulation had not completely balanced
the acceleration.

Table 1
Comparison of the clamped elevation, clamped normal velocity, and Flather boundary conditions for a freely propagating tide in a
constant depth channel, and the imposed boundary conditions exactly match theory

OBC g / m �u = m s�1

Mean Amp Mean Amp

Value %Error Value %Error

Clamped g 0.000 2.000 0.0 �0.001 0.094 0.8
Clamped �vn �0.027 2.008 0.4 0.000 0.093 0.0
Flather 0.000 2.000 0.0 0.000 0.093 0.0

Values are from the harmonic analysis on the center cell of the domain. Percentage errors are defined as 100[(Uharmonic � Uext)/Uext], where
U ¼ g or �u.
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Flather condition is the most accurate (Table 1). The two clamped boundary conditions have small errors in
the unclamped variable. In terms of amplitude these errors range from 0.4% to 0.8%, and an offset of <1% of
the forcing amplitude is also introduced. �v is identically zero with all three OBCs.

As it is unrealistic to assume that perfectly consistent boundary values would be available for all simula-
tions, it is important to quantify the sensitivity of the various OBCs to errors in the externally prescribed val-
ues. Here we consider two possible classes of errors that may arise in measurement derived boundary
conditions. Errors in travel time, or phase, across the domain, and errors in the amplitude of either gext or �uext.

To examine the sensitivity of the tidal simulations to phase errors at the boundaries, we conduct a series of
runs where the phase at the western boundary is held at zero and the eastern boundary is �jD/j + �/, where �/
ranges from �90� to 90�. Similar to the exact OBC case, the Flather condition gives the best results and the
clamped boundary conditions result in errors, particularly in the unclamped variable (Fig. 2). Regardless of
the phase error, the Flather condition gives zero mean offset (Fig. 2a and b) and zero M2 harmonic amplitude
errors as a percentage of the theoretical value (Fig. 2c), i.e., agreement with theory. This is consistent with the
interpretation of Blayo and Debreu (2005) that the Flather condition ‘imposes the value of the incoming char-
acteristic of the shallow-water equation’, and hence the tidal wave can propagate cleanly through the outgoing
boundary.1

The response of the two clamped OBCs is nearly symmetric (Fig. 2). Both OBCs give no mean offset in the
clamped variable, and the percentage amplitude error in elevation for the clamped velocity condition is almost
equal to the error in velocity for the clamped elevation case. There is, however, a 30-fold difference in mean
offset for the unclamped variables, with clamped elevation resulting in a smaller offset than clamped velocity.
Unlike the Flather OBC, there is also some along-channel variability ([5%).

Of real concern is the amplitude errors in the unclamped variable, which range from 0.05 to 5 times the
theoretical value. For example, with an error of +20� (5.5%) the magnitude of the unclamped variable is twice
1 Our POM simulations indicate that for a pure channel the eastern boundary is always treated as the outgoing boundary. Attempts to
simulate a westward propagating tide in the channel still result in an eastward propagating wave, with the phase at the western boundary
determined from the external conditions. However, when the tidal wave is at an angle to the grid, there is sufficient phase information for
the Flather condition to determine the wave direction and correctly identify the outgoing boundary.
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the theoretical value (Figs. 2c and 3), although, the simulation is stable with no sign of energy growth (Fig. 3).
Also, as the phase error increases, an error in the magnitude of the clamped variable develops, up to 40% at
90� (Fig. 2c). The timeseries from the two clamped boundary conditions slightly lag the Flather timeseries
(Fig. 3), and comparison with the theoretical solution finds that the Flather condition is the most accurate.
Finally, the slight difference in magnitude of every second energy peak for the two clamped boundary condi-
tions is due to the mean offset (Fig. 2a and b).

To address the sensitivity of the three OBCs to errors in amplitude, we conduct a series of simulations
where a multiplying factor is applied to either gext or �uext. These simulations apply the same multiplier to both
the west and east boundaries, which is similar to assuming that both boundaries were derived from measure-
ments with the same characteristics. Fig. 4 plots the percentage amplitude errors. The two clamped boundary
conditions behave as expected. When the multiplier is applied to the variable that is not clamped in one of the
clamped OBC (i.e., elevation for the clamped normal velocity OBC or velocity for the clamped elevation
OBC), the results are the same as Table 1. Likewise, when the multiplier is applied to the clamped variable
the response, in both amplitude and mean offset, is proportional to the change in forcing. Because the Flather
condition uses both gext and �uext, it is a little more complicated. The response of the variable which has had the
Day

0

20

40

60

80

0

20

40

60

80

29 29.2 29.4 29.6 29.8 30 30.2 30.4 30.6 30.8 31

H
K

E 
/ m

3
s-2

A
PE

 / 
m

3
s-2

Fig. 3. Time series of (a) horizontal kinetic energy ð1
2
H�u2Þ and (b) available potential energy ð1

2
gg2Þ at the center grid cell for the last two

days of the simulation. This simulation had a +20� phase error. The gray shading gives the results from using the Flather OBC; solid line is
the clamped normal velocity OBC; and the dashed line is the clamped elevation OBC.



—25

—50

0

25

50

75

100

0.5 0.75 1 1.25 1.5 1.75 2 0.5 0.75 1 1.25 1.5 1.75 2

%
 A

m
pl

itu
de

 E
rr

or

ext multiplier un
ext multiplier

Flather OBC: 
Flather OBC: u

η

η
η ηClamped elevation OBC: 

Clamped elevation OBC: u
Clamped Velocity OBC: 
Clamped Velocity OBC: u

Fig. 4. Sensitivity of tidal simulations to errors in gext and �uext amplitude. The same multiplier is applied to both the west and east
boundary. (a) gext amplitude varied; and (b) �uext amplitude varied. The symbols are the same as Fig. 2.

200 G.S. Carter, M.A. Merrifield / Ocean Modelling 18 (2007) 194–209
multiplier applied is nearly proportional to the multiplier, whereas the other variable only shows a small per-
centage error. In these tests the Flather simulations show along-channel variability, but the dynamic mismatch
between gext and �uext does not result in any growth or decay with time.

To get an indication of the response to an amplitude error at only one boundary, we conduct simulations
where a multiplier of 1.3 is applied to either gext or �uext at the west boundary while a multiplier of 1.0 is applied
to the east boundary. For the clamped elevation condition, the amplitude of the surface elevation oscillations
decreases linearly from 1.3gext at the western boundary to 1.0gext at the eastern boundary, while the along-
channel velocity amplitude increases nearly linearly from 1:34�uext to 1:57�uext. Over the last 10 tidal cycles
the mean value around which the elevation oscillations are centered is slightly negative in the middle of the
domain and zero at the end, whereas for the along-channel velocity the mean is �0.005 m s�1 over the domain.
The results for the clamped velocity simulation are essentially the inverse. The along-channel velocity ampli-
tude decreases from 1:3�uext to 1:0�uext while the elevation amplitude increases from 1.34gext to 1.57gext. The
mean elevation value during the last 10 tidal cycles is +0.025 m. Neither of the clamped boundary conditions
conserves mass with an amplitude error occurring only at one boundary. With the Flather condition the
results of applying the multiplier to gext are identical to applying it to �uext. In both cases the elevation and
velocity amplitudes are 1.15gext and 1:15�uext respectively, and there is no drift in the mean values. If the
multiplier is applied to both gext and �uext then the elevation and velocity amplitudes throughout the domain
are consistent with the increased forcing at the western boundary, i.e., 1.3gext and 1:3�uext.
2.4. Tidal flow at an angle to the domain

In realistic tidal simulations the wave propagation direction will often intersect the boundary at an angle
relative to the model grid. Comparison of the three OBCs are performed using a M2 frequency wave propa-
gating at an angle h = +20� to the x-axis. The theoretical solutions in this case are given by (9) and
�u ¼ g0

ffiffiffiffi
g
H

r
cosðxt þ /Þ cosðhÞ; ð13Þ

�v ¼ g0

ffiffiffiffi
g
H

r
cosðxt þ /Þ sinðhÞ: ð14Þ
A 170 	 170 cell domain is used for these simulations, with grid spacing, horizontal viscosity, H, gext the same
as the channel simulations, and (13) and (14) giving �uext and �vext respectively at all open boundaries. The con-
clusions are similar to the channel case; the Flather OBC is the most accurate and gives very good agreement



Table 2
Comparison of the clamped elevation, clamped normal velocity, and Flather boundary conditions for a constant depth domain where the
tide is propagating at an angle to the grid

OBC g / m �u = m s�1 �v = m s�1

Mean %Error Mean %Error Mean %Error

Clamped g Unstable Unstable Unstable
Clamped �un �0.029 0.6 0.000 0.0 0.000 0.0
Flather 0.000 0.0 0.000 0.0 0.000 0.0

Values are from the harmonic analysis on the center cell of the domain. Percentage errors are relative to (9), (13), and (14).

Table 3
Comparison of the clamped elevation, clamped normal velocity, and Flather boundary conditions for a partially standing tide in a
constant depth channel (the imposed boundary values are exact)

OBC g / m �u = m s�1

Mean Amp Mean Amp

Value %Error Value %Error

Clamped g 0.000 2.963 0.0 �0.002 0.052 0.7
Clamped �u �0.051 2.976 0.4 0.000 0.051 �0.1
Flather 0.000 2.963 0.0 0.000 0.051 0.0

Values are from the harmonic analysis on the center cell of the domain.
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with theory (Table 2). However, with zero horizontal viscosity the clamped elevation run becomes unstable. In
these tests, like the channel tests, the tangential velocity component is set to zero gradient. Although in this
idealized case the tangential velocity is also known exactly, we find setting the tangential velocity directly re-
sults in a worse agreement.

Finally, it should be noted that although (13) and (14) collapse to (10) as h ? 0, only the clamped normal
velocity OBC will simulate a channel flow when h = 0. The reason is that without the normal velocity through
the north and south boundaries set to zero, the clamped elevation or Flather OBCs will respond to a change in
volume by allowing flow through all four boundaries and hence a non-zero across-channel flow.

2.5. A partially standing tide

Until now we have considered a freely propagating tide, however, in many situations, particularly coastal
environments, the surface displacement and velocity are not in phase, i.e., the tide is a partially standing wave.
Here we compare the performance of the three OBCs in a channel with a partially standing tide, created as the
superposition of an eastward propagating wave ðg1 ¼ a cosðkx� xM2

tÞ; a ¼ 2 mÞ and a westward propagating
wave ðg2 ¼ b cosðkxþ xM2

tÞ; b ¼ 1 mÞ. The theoretical solution in this case is
g ¼ ðaþ bÞ cosðkxÞ cosðxM2
tÞ þ ða� bÞ sinðkxÞ sinðxM2

tÞ; ð15Þ

�u ¼ ða� bÞ
ffiffiffiffi
g
H

r
cosðkxÞ cosðxM2

tÞ þ ðaþ bÞ
ffiffiffiffi
g
H

r
sinðkxÞ sinðxM2

tÞ: ð16Þ
The results are consistent with the cases considered above. Once again, the Flather condition is the most accu-
rate, while the two clamped conditions give small errors in the unclamped variable (Table 3). With the partially
standing wave, there is a �0.1% velocity error with the clamped normal velocity condition, whereas there is no
such error with the freely propagating tide (Table 1).

3. Internal mode

The prognostic depth-varying variables within POM are the three velocity components, potential temper-
ature, salinity, turbulent kinetic energy, and a turbulent length scale. In this current investigation the bound-
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ary conditions involving these variables need only be passive, i.e., no external information will be transmitted
into the domain via them.

For simulations using realistic topography and where internal tide dynamics are important, the internal
mode boundary conditions should fulfill the following criteria (with the first two being most important):

(1) The boundary condition does not reflect energy back into the interior domain (i.e., fully transmits or
absorbs energy) when a range of vertical modes are present. As noted in Section 1, a significant fraction
of the energy can be in mode-2 and higher. This criterion effectively precludes the use of radiation
boundary conditions (3), as they assume a single dominant wavespeed. Jensen (1998) suggests decompos-
ing the flow into vertical modes and then applying a radiation condition to each mode separately, but
this is very computational expensive.

(2) Realistic topography is included in the boundary region. It is common for baroclinic boundary condi-
tions to be applied over a band of cells, where often the topography is held constant. This can be easily
incorporated into idealized test cases used in comparison studies (e.g., Palma and Matano, 2000), but
complicates the setting of gext and �vext

n in simulations with realistic topography.
(3) Kinetic and potential energies are treated similarly. Because the temperature and salinity are dynami-

cally linked to the velocity, dealing with them in a consistent manner in the boundary region may reduce
unrealistic secondary flows.

(4) No additional horizontal viscosity is added in the boundary region. Another common approach for
increasing stability of the simulation is to add an arbitrarily high viscosity near the boundary, often
referred to as a sponge layer.

A modified flow relaxation scheme, presented below, appears to meet all these criteria. Martinsen and Enge-
dahl (1987) originally proposed flow relaxation for barotropic OBCs, with the prognostic variable U, near the
boundary, being given as
U ¼ aUext þ ð1� aÞU
; ð17Þ

where U* denotes a time-integrated value calculated by the model, and a is a relaxation parameter that varies
from 0 to 1. This scheme is designed to absorb the outgoing energy, in contrast to the Flather barotropic
condition which transmits the energy. Following Martinsen and Engedahl (1987) we define a as
aðiÞ ¼ 1� tanh½1

2
ði� 1Þ� where i is an index over the width of the relaxation layer.

Flow relaxation schemes have often been used in conjunction with other temperature and salinity boundary
conditions, such as radiation (Blumberg and Kantha, 1985; Cummins et al., 2001) or advection (Holloway and
Merrifield, 2003), to damp out energy not accounted for by the primary boundary condition. Marchesiello
et al. (2001) applied flow relaxation (nudging) to all variables except elevation. When the boundary was pas-
sive they combined weak relaxation with oblique radiation, and when the boundary was active they used
strong relaxation. In one of their tests, Palma and Matano (2000) used a pure flow relaxation scheme for tem-
perature and salinity when the flow was into the domain. Jensen (1998) reports excellent results using a flow
relaxation scheme to radiate one-dimensional internal waves out of a three-layer z-coordinate model. How-
ever, he cautioned that the solution being relaxed towards must be chosen carefully to obtain good results.

3.1. Implementation of internal mode boundary condition

Although, we use a flow relaxation scheme for all the internal mode variables there are important differ-
ences in their implementation. Accordingly, we discuss them separately.

3.1.1. Horizontal velocity

The two horizontal velocity components are relaxed to the corresponding depth-averaged values. This is
equivalent to relaxing the baroclinic fluctuation to zero. Although POM utilizes mode splitting the internal
mode velocities include the depth-averaged component.

Because the topography is allowed to vary in the relaxation region, there is no reason to presume that
depth-averaged velocity at the boundary is relevant to a cell within the relaxation region. For instance, in
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the extreme consider a island cutting through the relaxation region at an angle. Consequently, we relax to the
depth-averaged velocity calculated in that cell, i.e.,
Fig. 5.
vertica
region
throug
salinity
uði; j; kÞ ¼ a�uði; jÞ þ ð1� aÞu
ði; j; kÞ and vði; j; kÞ ¼ a�vði; jÞ þ ð1� aÞv
ði; j; kÞ; ð18Þ
where i, j, k are indexes in the x, y, z directions respectively.

3.1.2. Isopycnal displacement (potential temperature and salinity)

The isopycnal displacement is relaxed to zero. By reducing the displacement at the same rate (a) as the
baroclinic velocities, the density field does not become decoupled from the velocity field. Because the model
variables are potential temperature and salinity, the reduced isopycnal displacement is mapped back into these
variables. If the temperature and salinity are relaxed individually, instabilities can arise, particularly over
variable topography, because density is the dynamically relevant variable, and the equation of state linking
temperature and salinity to density is non-linear.

We find the best approach is to relax the displacement along the original smooth high-resolution temper-
ature and salinity profiles. Because the salinity profile can be multi-valued, and the thermocline and halocline
displacements should be the same (driven by the same vertical velocities), the displacement is defined using
temperature. The displacement is then simply the difference between the depth of a given cell and the depth
of the corresponding temperature in the high-resolution profile. The displacement is then relaxed using (17)
with Uext = 0. The new temperature and salinity values are then obtained for this relaxed depth from the
high-resolution profiles.

Although the potential temperature and salinity are relaxed using the high-resolution profiles, simulations
with strong thermoclines (like that shown in Fig. 5b) still require a reasonably large number of sigma levels.
This is because the advection calculation works best when the difference between levels is not extreme. For
example, if only 11 sigma levels were used with this temperature profile, there would be over 10 �C difference
between levels 1 and 2.

3.1.3. Vertical velocity, and turbulence quantities
The vertical velocity and turbulent kinetic energy are relaxed to zero. Because of the way the turbulent

length scale is implemented in POM, it appears in a denominator, it is relaxed to a small, but non-zero,
value.
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3.2. Performance of the modified flow relaxation scheme

3.2.1. Comparison between domains of different lengths

To illustrate the performance of the modified flow relaxation scheme presented above, simulations with
different domain lengths are compared for a channel with a central ridge and sloping bottom (Fig. 5a). A
2700 m high Gaussian ridge is superimposed on a domain with 4500 m mean depth and a �1:1000 slope. The
linear sloping bottom is used to give topographic variation within the relaxation regions (criteria 2), while min-
imizing additional internal tide generation in the larger domains. For the same reason, the smallest domain
encompasses the entire ridge. The temperature and salinity profiles (Fig. 5b), an average of 10 years of data from
the Hawaii Ocean Time Series experiment at Station Aloha, include a sharp thermocline and salinity inversions.

Two sets of simulations are presented. The first is forced with a gext = 1 m amplitude M2 frequency wave.
The second is forced with the six main tidal constituents, and the amplitudes are consistent with their global
amplitudes relative to a M2 elevation of 1 m (M2 = 1 m; S2 = 0.47 m; N2 = 0.19 m; K1 = 0.58 m; O1 = 0.42 m;
and P1 = 0.19 m; Pugh, 1987). All simulations have a 2 km horizontal resolution, 71 sigma levels in the ver-
tical, and were forced using the Flather OBC. To minimize the differences in forcing, the phase at the western
boundary is calculated by (11) relative to the 480 km domain. Each simulation is spun up from a quiescent
state over one day. The horizontal viscosity term is set to zero, and the relaxation regions are 10 cells wide.
A time slice of along-channel velocity (after 356.5 h, M2-only forcing) clearly shows that internal tidal beams
are formed and are coherent through the domain (Fig. 5a). As mentioned above the presence of tidal beams
requires a range of vertical modes.

Comparisons of the baroclinic component of the along-channel velocity ðu� �uÞ for sigma level 35 (location
of which is shown in Fig. 5a) are shown for the M2-only case (Fig. 6) and the six constituent forcing case
(Fig. 7). During the spin up period, and as the gravest mode reaches the boundary of the smallest domain
the agreement is extremely good (Fig. 6a). After the initial spin up, the agreement degrades slightly but
remains very good. Figs. 6b and c, and 7a illustrate a reoccurring theme, that the largest differences between
the domains are over the ridge crest. This suggests that small differences in forcing account for a substantial
fraction of the variation between the simulations. At certain phases of the tide, the overall agreement is worse
(e.g., Figs. 6c and 7a) than at others (e.g., Figs. 6d and 7b). A potential explanation for this may be the prob-
lem of specifying a depth-averaged flow over sloping topography as the ‘‘barotropic” component. The increase
in high frequency variation in Fig. 6c and d compared to Fig. 6a and b is due to the higher modes taking
longer to propagate through the domain. From flat-bottom baroclinic modes calculated using the stratifica-
tion in Fig. 5b, the mode-10 propagation speed is 0.35 m s�1 compared to 3.24 m s�1 for mode-1 and
1.72 m s�1 for mode-2. As the baroclinic velocities from the shorter domains follow those from the longest
domain even when high modes and multiple constituents are present, we conclude that no significant amount
of energy has been reflected and, therefore, criteria 1 has been meet.

In free surface models the application of boundary conditions can lead to mass not being conserved, unless
an artificial volume constraint is included (e.g., Palma and Matano, 1998; Marchesiello et al., 2001). To assess
the modified flow relaxation scheme in terms of mass conservation, we compare mean sealevel for the M2 forced
640 km domain between a 30 tidal cycle simulation and a 130 tidal cycle simulation. Mean sealevel is calculated
over the last 10 tidal cycles of each simulation. In both cases the mean sealevel is less than a millimeter different
from the initial, zero, value. Consequently, no volume constraint is required.
3.2.2. Comparison to the Pétrélis et al. (2006) analytical solution
Pétrélis et al. (2006) present an analytical expression for tidal conversion in a uniformly stratified fluid over

a two-dimensional submarine ridge. This solution collapses to the knife-edge solution (Llewellyn-Smith and
Young, 2002; St Laurent and Garrett, 2002) at the supercritical limit and to the Bell (1975a,b) solution for
weak topography. The conversion in W m�1 (of along-ridge extent) is
C ¼ 1
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where U 2
0 is the velocity amplitude away from the ridge, N is the buoyancy frequency, b is the ridge height, a is

the half-width of the ridge, and l ¼ N=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � f 2

p
is the inverse characteristic slope. M la

H ;
b
H

� �
is a dimensionless

parameter, which we evaluate following Pétrélis et al. (2006) for a polynomial ridge defined by
Fig. 8.
compa
from t
the ana
the 12
extent
z ¼ �H þ b
1� x2

a2

� �2

if jxj < a;

0 if jxj > a:

8<
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As a check on the performance of the modified relaxation scheme, we compare the modeled barotropic-to-
baroclinic conversion to the Pétrélis solution. Di Lorenzo et al. (2006) found what they describe as satisfactory
agreement between the analytical solution and conversion estimates from the Regional Ocean Modeling System
(ROMS). In those simulations Di Lorenzo et al. (2006) used periodic boundary conditions on a 1200 km long
domain, but limited the integration time to 12 tidal cycles, less than the travel time for the mode 1 internal tide
to the boundary (i.e., no baroclinic energy reaches the boundaries, so the nature of the boundary conditions is
irrelevant). When they simulated a shorter domain, the baroclinic energy propagated back into the domain
leading to zero energy flux.

We consider a series of simulations of a polynomial ridge of half-width 10 km with the fractional height of
the ridge (b/H) ranging from 0.1 to 0.8. All simulations are on a 1200 km long domain, and have a M2 tidal
frequency, U0 = 2 cm s�1, H = 2000 m, f = 0, N = 1.7 	 10�3 s�1. To isolate the role of the boundary condi-
tions we compare results from runs with a 12 tidal cycle integration time (no baroclinic energy reaches the
boundary) to runs with a 100 tidal cycle integration time. The energy flux is an average over the last four tidal
cycles. The agreement between the 12 tidal cycle runs and analytical conversion is consistent with Di Lorenzo
et al. (2006) (Fig. 8a and b), with mean difference being �3.5% and standard deviation of 2.9%. The difference
in conversion between the 12 and 100 tidal cycle runs is small (mean = 0.1%, standard deviation = 4.6%), and
has no relation to b/H (gray bars in Fig. 8b).

A further verification of the modified relaxation scheme for internal tide studies is obtained by considering
along-channel sections of baroclinic energy flux as a function of integration time (Fig. 8c). As expected after 12
tidal cycles no baroclinic energy has reached the boundary, by 24 tidal cycles some higher mode energy still has
not reach the boundary. The 50, 100, and 200 tidal cycle lines all lie almost on top of each other (percentage
error [0.1%), clearly indicating no energy build up within the domain. Between the 24 and 50 tidal cycle runs,
there is a slight decrease in the peak energy fluxes resulting in the �8.2% difference seen in Fig. 8b for the
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b/H = 0.2 case. The longer integration runs show some noise close to the ridge, but the magnitude and hor-
izontal extent of this noise does not appear to increase with integration time. A possible cause of this noise
maybe the pressure gradient error associated with sigma coordinate models, Di Lorenzo et al. (2006) discuss
other possible errors in the comparison.
4. Discussion and conclusions

Three external mode (depth-averaged) open boundary conditions commonly used in regional tidal simula-
tions are compared using a simple flat-bottom channel. All three (clamped elevation, clamped normal velocity,
and Flather) gave good agreement to theory when the boundary conditions are exact; however, the Flather
condition is the least sensitive to errors in the prescribed boundary values. Of particular concern, we found
that with a phase error between the two boundaries, both the clamped conditions result in magnitude errors
in the unclamped variable (although the simulation remained stable). With a 1� phase error the modeled
amplitude is out by �5%, and by a 20� phase error the amplitude is twice the theoretical value.

Consequently, we recommend using Flather for the external mode boundary condition, which requires both
gext and �vext

n . Satellite constrained global inverse models (e.g., Egbert and Erofeeva, 2002) can provide both
these components, however, there are two common sources of inaccuracies to be aware of. First, when using
a basin scale model to force a smaller scale regional model, the domains often incorporate different resolution
topography which can lead to mismatches in the tidal variables at the common boundaries. Selection of the
boundary location to be over slowly varying topography can minimize this error. Second, the velocity tends to
become noisy in shallow water. Flather (1987) used a two-step process involving only elevation data. A short
simulation was performed using clamped elevation boundary conditions, and amplitude and phase were then
calculated for the modeled velocity at the open boundary. The final simulation was driven by the Flather con-
dition using satellite elevations and modeled velocities. We did not evaluate this two-step process but the
potential errors can be estimated from the sensitivity analysis presented in Figs. 2 and 4.

At least in tidal process studies, a modified flow relaxation scheme is found to be an excellent boundary
condition for the internal (depth-varying) mode prognostic variables. This implementation allows the trans-
mission of a range of vertical modes while retaining realistic topography at the boundary. The performance
was tested by comparing simulations of different domain length encompassing a ridge and sloping bottom,
and by comparison to the analytical solution of Pétrélis et al. (2006). Both tests demonstrated that this bound-
ary condition handled well formed tidal beams without reflection or energy build up. Comparison of simula-
tions over 30 and 130 tidal cycles show that mass is conserved without any artificial volume constraint.

The applicability of a set of boundary conditions can be dependent on the model/problem configuration.
Therefore, we have limited this investigation to the area that initially motivated it, the dynamics of internal
tides. Although it is beyond the scope of this current study to test these boundary conditions using different
problem configurations, we will close with a few comments about their extension. The most likely extension
would be to simulate a combination of tidal and subtidal processes. The obvious difficulty in extending the
boundary condition presented here is to know what to relax towards. As far as internal tides are concerned
the important factor is to relax to zero the baroclinic fluctuations in velocity and isopycnal displacement.
In the current case this is achieved by relaxing the depth-varying velocity to the depth-averaged velocity. How-
ever, for example, in a case where there is a time-invariant surface jet as well as tidal processes, then it seems
that relaxing to a superposition of the jet structure and the barotropic tide will fulfill the requirement of no
reflection of internal tide energy at the boundary.
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