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A NUMERICAL STUDY OF VORTEX DYNAMICS OVER RIGID RIPPLES

by
K T Shum

Submitted to the Departmert of Civil Engineering
on January 15, 1988
in partial fulfillment of the requirements for the degree of
Doctor of Science in Civil Engineering

In this thesis we shall study the separated flow over fixed periodic ripples due
to an oscillatory far field velocity. In terms of the length L and amplitude a of the
ripple, amplitude U and period T of the ambient flow, and kinematic viscosity v,
three parameters can be defined: the Reynolds number R=U2a/v, the Keulegan-
Carpenter number K=UT/L, and the ripple slope 2a/L. While their practical range
is wide, there are situations in which they can be small enough such that the flow is
laminar while vortical motion is prominent during a significant part of the wave
period.

Two-dimensional Navier-Stokes equations are solved numerically for a
semi-infinite fluid over a ripple bed. Grid spacings arc chosen to be sufficiently
small such that the flow field can be resolved in detail. The accuracy of the
numerical scheme is examined by comparing with the analytical solution for the
oscillatory flow over a plane bed and establisied numerical results for the flow
around an impulsively started circular cylinder.  Tests on the numerical
convergence of the solutions and the conservation of energy are also performed in
the computations for the flow over ripples.

Ripples with an approximately sinusoidal profile and a mild slope of 0.1 are
used in all computations. A systematic study is made over a range of Reynolds
number (15¢R<500) and Keulegan-Carpenter number (2.5¢K<12).  Vortices arc
generated during the deceleration of the ambient velocity even at the lowest values
of these dimensionless parameters.

The pressure distribution along the ripple surface is found to be very close to
that from the potential flow solution except at the ripple crests and under the
vortices, where the amplitudes of the iocal shear stress are alwn highest. These
amplitudes can be up to three times that on a plane bed under an ambient flow of
the same magnitude.

The horizontal force on a ripple length of the bed depends on the exact ripple
profile used in the computation, for example, that calculated from a crest to crest
profile F¢ or from a trough to trough profile Fy. Both F¢ and Fy vary sinusoidally
with time at low Reynolds numbers (<50) or Keuiegan-Carpenter numbers (<3), and
F, is in phase with the ambient velocity. At higher values of R and K the ambient
velocity leads F¢ and lags Fy in phase. The amplitudes of these forces are up to
more than five times that in the corresponding flow over a plane bed.



Values of the friction factor are deduced using two different definitions: from
the energy dissipation in the flow domain, and from the magnitude of the horizontal
force on a ripple length of the bed. Both friction factors decrease when R or K
increases, with the dependence on K appearing to be stronger. The variation of the
computed values of the friction factor based on the horizont:! furce follows closely
that of the theoretical values for rough turbulent flows proposed by Kajiura (1968),
while that based on energy dissipation appears to follow the same bilinear
relationship deduced from the laboratory data of Bagnold (1946).

The flow field due to a steady ambient current is also studied. At large time,
both the velocity profile and the hydrodynamic stresses are very nearly the same as
those in the impulsively started current over a plane bed. In the final case, an .
oscillatory component is superimposed onto an ambient current. Both the viscous
dissipation and the forces ¢n the ripple increase dramatically even when the
oscillatory component is much smaller in magnitude than the current.

Thesis Supervisor:  Chiang C. Mei
Title:  Professor of Civil Engineering
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Chapter I. Introduction

Vortex ripples, typ-ica.lly between 20 to 60 cm in length, 1 to 10 cm in height,
and with a slope of 0.05 to 0.2, are one of the major bed forms in coastal water
where bed materials are no coarser than medi’um sand. The flow immediately above
ripple beds, be it oscillatory due to wave actions or unidirectional due to currents,
induces separations on the leesides of crests which develop into vortical flows.! The
high velocity gradients associated with these vortices excavate bed materials from
the trough and redistribute them along the ripple profile. This distorts the bed
geometry further, and in turn enhances further flow separations. These interactions
between sediment motion and the fluid flow makes the quantitative description of
the flow field and the dynamics of the ripple bed a very complicated problem
indeed.

Aside from scientific curiosities, studies on the flow field immediately above a
ripple bed serve important engineering needs. Solutions to this velocity field, and
the associated hydrodynamic forces, are essential first steps in answering some of
the fundamental problems in nearshore hydrodynamics, for example wave
attenuation and sediment transport over ripple beds. Unfortunately, an accurate
description 6f this complicated flow pattern is still lacking. Indeed, as will be
discussed in Chapter 1II, even the solutions to the simpler problem of the flow of a
sediment-free fluid above a fixed ripple bed are yet unsatisfactory. It is on the
latter problem that this thesis will focus.

The flows immediately above ripples in the coastal environment are mostly

turbulent in nature (Jonsson, 1963). However, turbulence theory is still in a

!An example of this vortical flow visualized using alumina is shown in Fig. I.1. It
was taken during the deceleration of the ambient flow, with dimensionless
parameters (to be defined in 3.1.8) R=1880, K=4.4, and s=0.21.

13



Laboratory visualization of the streak lines in the

L.1.

Fig.

(Courtesy of Tetsu Hara)

separated flow over ripples.
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developing stage and is unlikely to be able to offer satisfactory solutions to the
ripple flow problem in the near future. Laboratory studies, on the other hand, are
in many cases laminar,2 and a reliable solution to the laminar flow problem is
therefore a valuable complement. In this thesis we shall examine the numerical
solutions to the Navier-Stokes equations in two dimensions over a range of flow
parameters. We shall first show that the flows we are to study in this thesis are
laminar.

Based on laboratory results, Jonssen (1966) classified the flows over ripples as
laminar or turbulent according to two din.« nsionless parameters

u A RK
RE = 20 = (1.1)

and

b (1.2)

The variables uy and Ab are the amplitudes of the velocity and oscillations over the
ripples due to wave motion, kS is the roughness parameter and » is the kinematic
viscosity of water. Their correspondence to the dimensionless parameters used in
our study and defined in (3.1.8) is also noted, where k.=4a is assumed as suggested
in Grant and Madsen (1979). For the ranges of R and K studied in this thesis,3
110<RE<3600 and 2.05Ab/k559.5 and according to Fig. 6 in Jonsson (1966), they
are all laminar flows.

The Navier-Stokes equations will be solved for a semi-infinite incompressible
fluid (water) of constant density and viscosity. A far field velocity of arbitrary time
dependence will be imposed. The ripples are assumed to be rigid and impermeable,

and with an arbitrary periodic profile. The mobility of sediment particles and their

2Earlier discussions in the literature on the simulation of laminar and turbulent
flows over ripples in the laboratory have been cited in Jonsson (1966).

3They are tabulated in Table VI.1.1.

15



effects on the flow field, and the free-surface effects due to the finite depth of the
water body, will be neglected. Computation is therefore reduced to a semi-infinite
strip of one ripple length in width and bounded below by the ripple bed. Spatial
resolution used in our computation will not be adequate to describe fine surface
roughness on the ripple profile.

Rigid, periodic ripples are assumed for expediency in the numerical
computation. Neglecting the effects of bed load (and the changing shape of ripple
profiles) and bottom permeability allows the far simpler 'no-slip' condition on the
fixed ripple boundary. Specifically, an approximately sinusoidal profile is assumed
which can be defined as a simple function of the horizontal coordinate. Du Toit and
Sleath (1981) found that this is a good approximation of the actual steady state
ripple profiles formed in their wave tank.4

The computation power and storage available on current supercomputers
available for this study necessarily restricts the solution to two dimensional flows.
Both two cimensional (long-crested) and three dimensional (brick pattern) ripples
have been observed to form in the field and in wave tanks. In the study on ripple
formations by Carsten (1966), Carstens et al (1969), and Lofquist (1978), the ratio
of the excursion amplitude of the fluid particle to the sediment size and, to a lesser
extent, Shields parameter are found to be the critical parameters in determining
whether two or three dimensional bedforms are generated. By defining the grain
size accordingly, we shall assume that two dimensional ripples do exist for the
dimensionless flow parameters used in our study. We shall give an example in the
following.

An approximate condition has been proposed in Lofquist (1978) for two cases

4Ripples with two different sizes were examined in their study: one with a slope s of
0.17 and length L of 0.14m, and the other with s=0.14 and L=0.16m, both
developed over a sand bed with a mean grain size of 0.4mm.

16



when the mean grain size of sand are 0.18mm and 0.21mm (Figs. 27 and 28 in his
paper). From extensive laboratory measurements of ripples under oscillatory flows,
he found that two dimensional ripples (that is, ripples with a long crest normal to

the direction of the oscillatory velocity) are formed if

UOT
< 10T
0.467
or
T
K < 4.6r—, (1.3)
L

where T is the wave period and L the ripple length. The parameter K is no greater
than 12 in our study, and therefore (1.3) is satisfied for most combinations of T and
L under laboratory conditions.

The assumption of a fluid of constant density and viscosity overlooks the effects
of suspension load whick may be prominent in the immediate vicinity of the ripple
bed. Significant variations in sediment concentration are observed in the vicinity of
the ripple bed in experimental studies. However, viscous and inertial effects of the
sand suspension in two phase flows pose too complicated a problem and wiil not be
attempted here. Nevertheless, Raudkivi (1963) observed in his experiments on
steady flows that bed load alone was sufficient for the formation of ripples from a
flat bed.

Since the water depths under consideration are orders of magnitude that of a
ripple length, it is expected that the free-surface will have negligible influence on
the flow field near the bottom.

One of the original intents of this study was to relate the results to sediment
transport. It was found that, due to limitations on computer time, our
computations can be carried only to flows in which only very fine grains can be
moved according to the modified Shields' criterion (Grant and Madsen, 1982).

Based on the magnitude of the shear stress on the bottom }0 related to the

17



amplitude of velocity U, using the friction factor f  in (7.6.1), the Shield's

parameter can be written as
‘ : 2
o -0 __*» .Y
> (ogp)gD  2(pp) ¥ D

where pg and p are the densities of sand and water, g the acceleration due to
gravity, and D the mean grain size of the sand. The first fraction on the right hand

side p/2g(ps-p)~0.02.

For the flow under an ambient current of magnitude c, we can write

2 2
c 9 V
\I!S = 0.02 fwl_)— = 0.02 fw Rc ; (1.4)
4Da
-6

where R, is defined in §VIIL1, »=10 m/s2 is the kinematic viscosity of water, and
2a is the ripple height. From Table 1X.6.4, fwz0.5x10'3 for R =1000, the highest
R examined, and therefore ¥ in this case is of the order of 0.25x107}1 /Da2. No
sediment motion is expected in this case.

For the oscillatory flow, we can write

RK v 15)
¥ = 002f —— 1.5
s YsTD
where R, K, and s are defined in (3.1.8). For VRK/ST=O(10—2) and fw=o(0.1),

there will be sediment transport only for D<10'4

m=Ilmm for W.~0.1 (see foi
example Fig. 6.3 of Sleath, 1984). Therefore sediment transport occurs in the flows
we study only for very fine sand.

Previous studies on the flow over ripples will be reviewed in Chapter II. Details
of the mathematical formulation and numerical solution will be given in Chapters
IIT and IV. Verification of the numerical code will be made in Chapter V by
comparisons with available solutions in closely related flow problems. The accuracy

of the numerical results will be discussed in Chapter VI. Results for the flow over

ripples for three cases of ambient flows: oscillatory, steady, and a combination of
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the two, will be presented in Chapters VII, VIII, and IX. These results will be

summarized and discussed in Chapter X.
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Chapter II. Literature Review

In §II.1 we list some of the experimental investigations on the formation of
ripples and the flow fields above them. In §I1.2 we shall examine theoretical studies
of the flow fields based on semi-empirical models, potential flow models, or the

Navier-Stokes equations.

§II.1 Experiments

Experiments on the formation of ripples in steady currents have been performed
by Yalin (1964) and Williams and Kemp (1971). The growth of ripples under wave
action was studied by Hunt (1882), Darwin (1883), Ayrton (1910), Kennedy and
Falcon (1965), and Logquist (1978) in wave tanks and Raudkivi (1963) in oscillatory
flow tunnels, and by Bagnold (1946) who oscillated a tray of sand in a wave tank of
otherwise still water.! Bagnold classified three types of wave induced ripples:
rolling-grain, vortex, and brick-pattern, corresponding to different grain sizes of
sediment and flow velocities. We shall limit ourselves to vortex ripples in this
study.

Laboratory visualizations of the vortical flow field were reported in Bagnold
(1946), Honji and Matsunaga (1979), and Honji et al (1980). The magnitudes of
velocity fluctuations immediately above fixed ripples were measured by Sleath
(1970). More detailed time histories of velocity profiles were reported in Du Toit
and Sleath (1981), Sato et al (1984), and Tanaka and Shuto (1987).

Sediment concentration in suspension was measured in the laboratory by

Nakato et al (1977) and Ikeda and Asaeda (1983) for oscillatory flow over ripples.

1It should be noted, however, that there are basic differences between the simple
harmonic motion of a tray of sediment through still water and wave motion over a
sand bed. The more important ones are fluid accelerations, turbulence intensities,
and pressure fluctuations. A detailed discussion can be found in Vincent (1958).
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It was shown that horizontal gradients of sediment concentration in suspension may
not be negligible and they can alter flow characteristics significantly. However, this
concentration decreases rapidly with the distance from the bed.

Other quantities of engineering interests include the rate of energy dissipation
which was measured in the laboratory by Carstens et al (1969). Their data was
further studied by Vitale (1979) and Sleath (1985). The bottom shear and the
associated friction factor were experimentally determined by Bagnold (1946),
Bayazit (1969), Kamphius (1975), and Lofquist (1980).

Dingler and Inman (1976) performed a field study at La Jolla, California, a
location that "included all nearshore ripple regimes". Characteristic dimensions of
ripples under various flow conditions were measured using a high resolution sonar.

Surveys on earlier experimental results can be found in Kennedy and Falcon

(1965), Kobayashi (1979), and Hedegaard (1985).

811.2. Theoretical studies
Aside from a handful of papers which sought solutions to the Navier-Stokes

equations, theoretical studies are mostly based on semi-empirical approaches.

§I1.2.1. Semi-empirical models

In most turbulent flow models the flow field is solved using an eddy viscosity,
and the ripple amplitude appears as an equivalent roughness parameter in the
formulation.  Vertical profiles of the mean horizontal velocity were derived
independently by Nikuradse, von Karman, and Prandtl for steady flows, Jonsson
(1963) and Kajiura (1968) for oscillatory flows, and Grant and Madsen (1979) for

combined oscillatory flows and currents.
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§I1.2.2. Analytic solutions

Analytic solutions to the full Navier-Stokes equation for flows over ripple beds
have been based on asymptotic methods such that the nonlinear convective terms
can be linearized at each order. Series expansions for various limiting cases of ripple
slope s, Reynolds number R, and Keulegan-Carpenter number K defined in (3.1.8)
have been proposed. Benjamin (1959) obtained leading order asymptotic solution
for large R for a steady shear flow over an approximately sinusoidal bed.

Lyne (1971) derived a series solution for the streamfunction in orders of ysR/K
for oscillatory flows over the same bed profile. This smallness parameter used is
also the square root of the ratio of the time scale of viscous diffusion to the period of
oscillations in the ambient flow. Sleath (1974) obtained series expansion for the
streamfunction in orders of ms, and Kaneko and Honji (1979) expressed the same
function as a series in K. Unfortunately, the complexity of these asymptotic
solutions increases drastically beyond the first couple of orders, thus limiting their
applications to weak ambient flows and gentle ripple profiles. As a consequence,
their results do not describe vortical flows.

Separated flows are typically high Reynolds number phenomena and therefore
potential flow models appear attractive. Based on the ideas of von Karman (1911)
and Rosenhead (1931), in which the high shear layer in the separation was treated
mathematically as an infinitesimally thin vortex sheet and approximated by a string
of discrete point vortices, Longuet-Higgins (1981) proposed a potential flow model
for the description of oscillatory flow over periodic ripples with sharp crests. The
strengths of vortices used in simulating the vortex sheet were determined from the
potential flow velocities at a certain distance from the crest. However, this distance
was chosen somewhat arbitrarily and was not related to the thickness of the
boundary layer. The vortex strengths thus determined could therefore vary

considerably. Furthermore, the Kutta condition was not satisfied at the crests (see
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Crighton, 1985 for its significance). Subsequent motions of these vortices were
traced with a numerical scheme which had been demonstrated (for example Birkhoff
and Fisher, 1959 and Takami, 1964) to fail to reproduce the rollup of a simple
vortex sheet in an infinite fluid, and this problem was also found in oscillatory flows
(Craik, 1982). In the flow over ripples, these point vortices moved into close
vicinity of each other and induced high velocity gradients, thereby violating the
basic assumption of an inviscid flow. This crowding of vortices led to a chaotic
picture, and further ad hoc remedies were introduced. In addition, the rapidly
increasing number of vortices in the flow domain had to be artificially decreased by
amalgamations to reduce comptutation time.2 But this procedure lacks physical
justifications. It was not apparent that his results described large scale vortical

motions observed in visualization experiments (for example, in Honji et al, 1980).

§11.2.3. Numerical solutions

It is apparent from the previous section that neither convective inertia nor
viscous dissipation can be neglected in the modeling of separated flows. Since
analytical solutions to the full Navier-Stokes equations are unavailable for general
flow cases, numerical methods appear to be the appropriate approach.

Numerical simulations of separated flows over boundaries with periodic
variations have been presented in Gillani and Swanson (1976) for an unsteady flow
through spherical cavities, Sobey (1980, 1982, 1983) for both steady and unsteady
flows in two-dimensional symmetric and asymmetric furrowed channels, Ralph
(1986) for oscillatory flows in wavy-walled tubes, and Ghaddar et al (1986a,b) on
flows in two-dimensional grooved channels. All these results were in good

agreement with laboratory visualizations. Of special interest is the observation in

2The amount of computation is proportional to the third power of the number of
point vortices in the flow field.
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Ralph (1986) that, for oscillatory flows starting from a quiescent fluid, solution at
large times cease to be symmetrical in the two halves of the wave period as the
Reynods number and Keulegan-Carpenter number increase.

Numerical solutions to the full Navier-Stokes equations to the flow over ripples
with an approximately sinusoidal profile was first reported by Sleath (1973).
Navier-Stokes equations were solved in terms of streamfunction and vorticity
function. For the vorticity equation, the viscous terms were treated with a
Dufort-Frankel (Dufort and Frankei, 1953) type scheme and convective terms were
treated with a scheme first suggested by Arakawa (1966), both being leap-frog type
explicit schemes. The streamnfunction (Poisson) equation was solved by an
alternating-direction implicit scheme or successive over-relaxation according to the
ratio of the estimate of the thickness of viscous boundary layer to the ripple length.
Centered finite-differencing was used for spatial derivatives in the truncated
transformed plane. Unfortunately, limitations on computation time restricted
spatial resolution to eight grid points per ripple length and nine grid points in the
vertical direction, and such a coarse grid spacing was, for the range of Reynolds
numbers considered, insufficient to resolve the viscous boundary sublayer
immediately next to the ripple surface.3 Even though the formal spatial accuracy of
the scheme 1s fourth order for convective terms and second order for the viscous
terms and the Poisson equation, the lack of resolution due to the coarse grids raised
doubts on the convergence of the numerical solution to the exact solution of the
original Navier-Stokes equations. Small scale variations in the flow field, especially
at instants when separation first occurs, were not resolved and a detailed picture of

the flow field is therefore still lacking.

3Grid spacing is decided by the length scale of the vortices and the thickness of the
viscous boundary layer immediately above the ripple surface, and will be discussed
in detail in §IV.3 and §IV.4. The resolution used by Sleath in relation to the
Reynolds number in his studies will be examined in §VII.6.
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The same numerical procedure was lawer used to derive other guantities of
interest for the oscillatory flow over ripples, for example the velocity profile (Sleath,
1974), mean drift (Sleath, 1975), drag and shear forces on ripple (Sleath, 1976), and
the energy dissipation factor and friction coefficients (Sleath, 1982).  The
uncertainty in the numerical accuracy discussed above renders the results open to
questions. Quantitative variations with various flow parameters of the variables
conducive to wave attenuation and sediment transport, for example the rate of
energy dissipation and the stresses on the ripple, remain unresolved.

Sato et al (1984) applied the same implicit finite difference scheme to oscillatory
flows over asymmetric ripples. Details of the finite-differencing scheme and
boundary conditions was not given in that paper. Approximately the same
resolution as in Sleath (1973) was used. In their results, the rate of energy
dissipation over the flow domain was negative during part of the wave cycle. Since
the formulation was strictly for a laminar flow model, the explanation that this was
due to "a part of turbulence energy is transfered back to the mean flow" is
unacceptable. This in fact is more likely to be due to numerical errors from a lack

of resolution rather than an accurate simulation of the actual physical flow.

An access to supercomputers allows a more accurate simulation of the flow field
over a ripple bed. In the study to be described in the following chapters, a different
numerical scheme than the one used by Sleath is introduced. The flow over ripples
under an oscillatory flow, a current, and a combination of the two, will be studied.
The resolution of the flow field and the accuracy of the numerical solution will be
examined carefully to ensure an accurate description of all salient features of the
flow field. This in turn gives confidence on the computed rates of energy

dissipation, surface stresses on the ripple, and the friction factors.
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Chapter III. Formulation

We shall study the velocity field of an initially quiescent, incompressible
Newtonian fluid over a ripple bed and driven by an imposed unsteady far field
velocity. Navier-Stokes equations in two dimensions will be solved numerically in a
transformed plane such that the flow domain, spanning one ripple length and
truncated sufficiently high above the bed, is reduced to a rectangle.

The following notations will be used: physical variables arc denoted by
subscript p (e.g. xp), nondimensional variables in the physical plane are denoted by
over-head tilde (e.g. %), and variables in the mapped plane are denoted by plain

letters (e.g. x).

§III.1. Goveruing eguations in transformed coordinates and dimensiorless
variables
In terms of streamfunction qbp and vorticity function Wy Navier-Stokes

equations in two dimensions take the form

0 9
] oY 0 a_ a0 a” a°
“p Vp 0w O 9 _ b (2 (3.1.1)
dtp 3yp Bxp 6xp 6yp 8xp2 ayp2
and
v 0y
_R+—E et —wp_ (3.1.2)
2 2
ahp ("7‘yp
The velocity components are defined as
oY oY
u = —LP and v =-—L2. (3.1.3)
Y 3yp p 3xp

A detailed derivatior can be found in, for example, Batchelor (1967).

Introduce nondimensional variables such that
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xp=L5E, up=U0',
yp=Ly, vp=U0v, tp=Tt,
U
¢p=U0L¢, wp=?w,
r =pU2r —pUp, and F_=pULF (3.1.4)
p_pO ’ pp pop, p pO ) re
where

L = ripple length,

U0 = amplitude of ambient velocity, and

T = wave period of ambient oscillatory flow,
and To pp’ and Fp are respectively the shear stress, pressure, and hydrodynamic
force. Equations (3.1.1) to (3.1.3) become

w  Wow I ow K v &w

—+K(——-—— ) = s—(—+—), (3.1.5)
ot dy 0x 0x 0y R 52 35'2
P Py
_-|-— = -w, (3.1.6)
652 65'2
Y il
i =— and V =-—, (3.1.7)
oy x
where
U,T
K = —— = Keulegan-Carpenter number,
L
Uj2a
R = = Reynolds number, and
v
a
s = 2 — = ripple slope (3.1.8)
L

are the dimensionless parameters, and a is the amplitude of ripple.

We next introduce a conformal mapping (%,§)—(x,y) such that the flow
domain above one ripple length of the bottom boundary is transformed onto a
semi-infinite rectangular strip in the (x,y) plane (Fig. III.1.1). Let the Jacobian of

the transformation J(x,y) be
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physical plane

A D s Yoax?

Y4

B|(C,O) X Cl(1,0
mappad plane

Fig. IIl.1.1. Conformal mapping
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r'w|'—

J(x,y) = (3.1.9)

Pl PR
I& &R
§’L53’ Q’L_ﬁ’
2| e PR

), the equalities

»t
<<

For any analytic functions f and g defined in (

of ag of g, 1 of og ch’)g
TR TE = - (——-—— (3.1.9.a)

ox oy dyox J Ox 0y 6y3x

and

PPt 1 Pf o |
—_—t— = —-(—+—) (3.1.9.b)
hold, as are derived in the Appendices, §AI.2 and §AI3 respectively. Equations
(3.1.5) to (3.1.6) can then be written as
w O dw Oy dw K v 0w

ik i i ) = s (et ), (3.1.10)
at dy 0x 0x Oy R 5.2 0y2
Py Py
_+— = —Jw, (3.1.11)
From (A1.1.6) and (Al.1.5), (3.1.7) can be written as
1 koY 8y oy 1 dxdyp dy oy
i=-(——+-——) and V= -—(——-——). (3.1.12)
J Oxdy Oxox J O0x 0x 0Oxdy

Physical boundary conditions are as follows. There can be ‘no-slip’ on the

surface of ripple, that is,

u, = v, = 0 on theripple surface y =0. (3.1.13a)
The ambient velocity must be approached in the far field,

u, = U, U_(t), Vp = 0 as Yp @ (3.1.13b)
where U_(t) is dimensionless. The flow must be periodic such that

up(xp=0, Ypr tp) = up(xp=L, Ypr tp) (3.1.13c)

and
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= = = . .1.13d
The ambient velocity can in general be a uniform current ¢ superimposed on &

sinusoidal oscillation Uy, sin(27rtp/T), where 0<c<1, and therefore

c t
U (t) = — + sin(2r —2) . (3.1.14)
® Up T

By choosing a conformal mapping such that x—X and y—§ as y—w, (3.1.13)

and (3.1.14) can be written as

ay
p=—=0 at y=0 (3.1.15)
Oy
and
o
¥ = constant , ™ =U(t) a8 y—w. (3.1.16)
y

Note that t=constant as y-w corresponds directly to the potential flow solution,
and is identical to (3.1.13b) since vp=0 implies 84/ 8x=0 for all x, or & /x" for all

r21l.

§II1.2. Hydrodynamic forces on ripple
Expressions for the pressure, shear stress, and lift and drag forces acting on

the ripple surface will be derived in transformed coordinates in this section.

§II1.2.1. Pressure at the surface of ripple
In nondimensional variables and transformed coordinates, the momentum

equations in two dimensions can be written as

o 108 sd 18y &y
+—)]

ax Kadtdy Ry J o2 3y2

1 oty Wy 1 01 o, O
Fo{o—r—— = — [+ (DY) (2))
] 0x 52 Oyxdy 2] 3x Ox dy
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and

o 108y s9 1 Py 9

= e ()

by Kadx Rox1 52 52

1 31/)321/ 31,/)62¢ 1 8] g O
‘- ’ F—— (D (D). B22)
J 0yax2 ax axdy 2J0y O0x dy

Details of derivation is given in §AL7.

From (3.2.2), the pressure at any point can be written as

® {1aa¢ s d 1a2¢ P

p(x, ¥, t) -p(x, y=w, t) = - [ dy{ ———-——[=(—+ —)]
f; Kot dx Rox J 6)(2 o2

oWty oty 101 ., Oy
P Sl A e Tida L B ais . DY R PR
J oy 6x2 Ox dxdy 2Jady 0Ox Oy

The integral
© 1 4] oy
d 2

can be integrated by parts to give

2
o y=a o 1 OpOY 0Py
e AT - Ly e
2 0Ox dy y y J 0Oy 6y2 Ox Oxdy
From boundary condition (3.1.16), this can be rewritten as

1 1 w 1 0wy oYy

—U 2= Uy ) - [ dy = — + ———)],

2 2 y J oy 3y 0x 0x0y

where
U(x,y,t) = —|(— —)7] .
(%, ¥, t) J[(ax) +(6y)]

Substitution into (3.2.2) gives

1 o 1 o
p(an1 t)-p(x Y=o, t) = EU "'2"U (x,y,t)
o 100p sd 18w v 10y Py 0%y
Sy s DS D E () 4 (—+ ) (324)

31



Far above the ripples, boundary conditions (3.1.16) reduce (3.2.1) to
ap 14 dy 1 dUw

—_— = e——— = -—— a8 Y- (3253)
Ox K at dy Kdt
and therefore
(ery=ait) = p0)- [ dxeote _p)- 2T (a5
p(Xx, y=ow; t) = p (t)- X——— = p (t)-——, 3.2.5.
® 0 Koatoy ® 7 Kdt

where pm(t) is the far field (as y—w) pressure at x=0 and Y, is the streamfunction
as y—o (and is constant along x).
Upon applying governing equation (3.1.11) and boundary conditions (3.1.16)

and (3.2.5.b), equation (3.2.4) can be reduced to
x dU
p(x, ¥, t) - [p(t) - = —]

Kt 9 d w

1 1 o 188 sdw &
= -0 20y ) - [y (C—— = —-w ),
2 9 y  Kdtdox Rox dy

and, finally, to the form
p(x, ¥, t) - Po(t)

2 442
xdU U U“(x,y,t) w 180 0 sow 0Oy
=24 ® -fdy(c——+=——-w—).  (326)
K dt 2 2 y Koox Rox oy

The pressure along the ripple surface is of particular interest. From (3.2.6)

and boundary conditions (3.1.15), we have

p(x,t) = p(x,y=0,1)
i by IR R N,
While the preésure term is absent in the governing equations (3.1.10) and
(3.1.11), the far field pressure (3.2.5) is implied, although not imposed as a
boundary condition. As will be discussed in Chapter IV, the flow field is truncated
at a finite height from the ripple bed, and the pressure at this boundary can be

estirnated from (3.2.1) and boundary conditions (3.1.16), which give
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d  1dU_ sdw UZal (5:2.5.0)
—_— = 2 4+ 2 aty=y . 3.2.5.¢c
ax Kdt Ry 2 & max

Its difference from that of the far field pressure in a semi-infinite fluid given by
(3.2.5.a) can therefore be estimated from the magnitudes of the last two terms on
the right hand side, which should assume very small values for y_ - chosen

sufficiently large.

§I11.2.2. Drag and lift forces on ripple

Consider a surface element ds_ with components of its unit normal vector

p
(Fig. I11.2.1) given by
dy dx
n, = - and n, = —B
X ds y ds
p p

where
_ 2 2%
dsp = (dxp +dyp )?.

The drag and lift forces per unit arc length on the ripple are given by

f = = 2.
b, rpxx n, + prx ny and fpy rpxy n, + pry ny (3.2.8)
respectively, and the sign convention is defined in Fig. I11.2.2. Since
Ou v
T = —pp+2p—2, . = -pp+2p——9,
XX axp yy D
and
Qu_ Ov
T =T, = (—R+ &R) (3.2.9)
Xy yX Oy, Ox,
where p=pv, (3.2.8) gives
ou_  Ov Ou
dF =1f ds. = p(—L+—-L oy —P
p, = p 3% ﬂ(ay +ax)dxp+(pp 2#6)()dyp
p P p

and

Gu_ Ov ov
F. = = -p(—R+—B)dy -(p.-2u—2L : 2.
d f ds 7 (ay + o ) dyp (pp 2u o ) dxp (3.2.10)
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S
Y ds
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Fig. III.2.1. Normal vector of surface element ds
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Fig. III.2.2. Sign convention of stress vector
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In terms of the streamfunction, they are

iy Py &y
dF = p(—LB-—DB)ydx + (p,-22—) dy
Py 9 9" P P dx_dy P
Iy, o, PP
and
Py, 0 >y
de = -p(—B-—B dyp - (pp +op—2PR) dxp . (3.2.11)
If the force components are normalized as
_ 2
de = pUO L dF,
(3.2.11) becomes
8 321/; 62¢ s &
de = —(—-—)dx+ (p-2———) dy
R 35,2 o2 ox dy
and
] 62¢v 821/) ] 02¢
R 6512 %2 R 0xdy

To express (3.2.12) in terms of transformed coordinates, we make use of
(A1.4.1) and (Al.5.1) derived in Appendix I. The relationship between the

differential operators are

# & # o & 5 i

—-— = A(—-—)+4B—+2C—+2D— (3.2.13.a)
ay2 52 3y2 2 Oxdy ax dy
and
& P> & 7 8 8
—— =-B(—-—)+A—+D—-C—, (3.2.13.b)
Fisdix, ay? o2 0xy ox Oy
where
AzAxy)=—[(—)2- (=),
2 8 ox
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B=B(x,y) = ———,
() 32 0x Ox :
1 0% 0% 0% o 0505 o o%
C= 06 y) = —{——[(=)?-3 (- ——[(=)?-3 ()},
3 Ox 52 Ox ax Ox 52 Ox ox
and
1 o % o &, O Py o oy
D=D(x,y) = —{——[)*-3 ()] - ——[()?-3 ()]
3 Ox 52 x x Ox 52 Ox
(3.2.14)
Along the ripple surface, dy=0 and therefore
ax dy
dx = —dx and dy = —dx.
ax ax
Boundary conditions (3.1.15) reduce (3.2.13) to
PP &%y
(___)11[’ = A(X, 0)
35'2 &2 5y2
and
& i
_1‘0_ = - B(x’ 0) —1./) . (3215)
axay 8y2
Upon substitution of (3.2.15) and Cauchy-Riemann relations, (3.2.12) becomes
ox 0y % oy
— = — and — = -—,
x Oy dy ax
&Py 6% Py o
dF, = { i A(x,0) ——¢— +[p, +2 i B(x,0) l] ?X } dx
R 0y2 ax R 326)'2 x
- % -
= {prﬁ+i[A(x,0)—+2B(x,0)ﬁ]——¢} dx
& R ax x ay2
- % -
= {»n, %— r[AG0) —+2 B(x0) %} } dx
and
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Py 65 Py ox
dFy = {-iA(x,O)-—'piy--[pr—2iB(x,O)—lb]—}dx
R 5y26x R 823y2 ox
ax y ox
(-5, & -2 A0 2 -2 B(x0) ) 2 ) ax
ox R Ox ox 0y2

ax oy X
= {-p, . + 7 [A(x,0) I 2 B(x,0) 5;] } dx (3.2.16)
where 7 is the shear stress on the ripple surface and will defined in (3.2.17).
The total drag or lift force acting on a ripple length of the bottom boundary
can therefore be computed by integrating (3.2.16) between x=x, and x=x,+1.
However, the integral for the horizontal force varies with the choice of x.

Physically, this is due to the pressure gradient associated with the acceleration of

x dU

the ambient velocity, which is the term linearly proportional to x, - — —=2 in the
Kdt

expression for p_ in (3.2.7). The horizontal component of this force on surfaces with
the same slope therefore varies with the location along x. Therefore, when
multiplied by 87/dx in (3.2.16) and integrated over a ripple length, the integral
involving this term depends on the particular choice of ripple profile deﬁned by the
value of Xq- Such non-uniqueness leads to uncertainties in comparisons of computed
forces with laboratory measurements, since most reports do not specify the exact
ripple profile used in the experiments. This problem is discussed in detail in

Appendix IV.

§I11.2.3. Shear stress on ripple surface

Local shear stress on the ripple surface can be computed from the difference
between the total hydrodynamic stress (3.2.16) and pressure force (3.2.7) acting on
the ripple,

ds oy ox
S L _p — dx]? — dxl%1?
T T { [dF, praxd.x] +[dFy+pf3xdx] }
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332¢ ox I dy

= dx— — x,0) — — —- —-2*
=d ay2{[A( 0)ax+2B(x0) ] +[A(x0)ax 2 B(x,0) ] }
= dx —— X — — x,0) [(—) —_ 2
d Ray2{A(,0)[(ax) +(ax)]+4B( 0)[(ax, +(6x)]}
832¢1 2 65'2 35(35’2 3;(2 ayz%
= dXE;y—J—{[(ax ’(ax)] [(ax) (c?x)]-l-‘i(??;;) [(;x‘) +('a—x')]}
= dxiﬁlﬁ e =Sily
R0y2'] R R
or,
s
5 (3.2.17)
R

where the shear stress 7 is nondimensionalized by pU02, and (3.2.14) and (3.1.9) are
used for A(x, 0), B(x, 0), and J. The final equality is obtained from (3.1.11),
(3.1.15), and the identity dsp/L = dx J.

As a check, note that the slope of this stress is given by

%
[dfy+pgdx]/[dfx—pgdx]

= -[A(x, 0 % 2B(x, 0 * A(x, 0 > 2B(x, 0 %
= '_[ (x$ )&'"’ (X, )_3_)(—]/[ (x‘) )g"' (X, )&]
by & _dy
= ax/ax = (3.2.18)

since dy=0 along the ripple surface. This stress is therefore tangential to the ripple

surface, as expected.

§II1.3. Rate of energy dissipation and energy balance
We shall consider the fluid above two successive ripple crests as defined by

the control volume ABCD in Fig. III.1.1. This corresponds to a fixed control
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volume defined by 0<x<1, 0<y<yma.x in the mapped plane.

Energy balance for an incompressible Newtonian fluid in two dimensions can

be expressed in vector notation as ((15.2), (16.2), and (16.3), Landau and Lifshitz
1959)

)

2 a9 =
——fdsp-plv | fdl p p| v, rp]
du ov_ 2 du_ 2 ov_ 2
-pv fdsp{(—2+—2> I Ce I SIS | I CERY
Byp p p p
where
v_ = velocity vector of fluid element,

p
i = unit outward normal of control volume,

?p = two dimensional stress tensor with components defined in (3.2.9), and

dsp and dJp are surface and line elements.

For the control volume defined in Fig. II1.1.1, (3.3.1) becomes

du_ Ov du ov
- y —Py291(_Py2, (D)2
fdx S asy Sy 4 puf o fa, {E?axp) G G )
1 =
- -(fBC [y ﬁ-[;pvplvpﬁ-vp-rpl
) J;B"Lf Y qup|2_ap'?pl' (33.2)

§II1.3.1. Energy flux from pressure work done on the boundaries

On the right hand side of (3.3.2), the line integral f vanishes since Vpso
along the bottom boundary. The integral f is also zero since, from boundary

condition (3.1.13b), i-v p=0, p’ p ppn vp_O along DA. The integral &/;\B+f

can be reduced using periodicity conditions (3.1.13c) and (3.1.13d) to
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Yp
f m“dyp (upPp | ),

o "PPelay -
a @ X5 0 @ X, L
and is the rate of pressure work done on the fluid in the control volume. From

(3.2.6) and periodicity conditions (3.1.13c) and (3.1.13d), we have
U3 1dU
U Pyla x,=0 “UpPpla xp=L o u;(-d—t_
For a ripple profile defined in parametric form by (3.4.2), along with the conformal
mapping defined by (3.4.1), the increment dx equals zero along both AB and CD.
Equations (3.4.1) and (3.4.3) give

& o &,
dy=—dy, -—=0, and (—)° =
dy ox x

at x=0 and x=1. The rate of energy flux through pressure work done on the

boundaries can therefore be normalized to give,

-fa i [ 9123 = oy = [ oy 5 e
—pv Y —v = pLU dy (i —
K “is dt @ x=0
i laxarlrdU 1 o OpdU
= pLU,> f (- —— )l = pLU — [“dy (——)
0 6yJ<9x8ydt @ x=0 K “0 dy dt '@ x=0
LU 31 " dU ( )
=p —yp —2, 3.3.3
K “dt

The last equality is deduced from boundary conditions (3.1.15).

§II1.3.2. Rate of energy dissipation
The second integral on the left hand side of (3.3.2) is the rate of energy

dissipation and can be written in terms of the streamfunction as

Py & du_ v Bu_ by
g =p fdyp fdxp u[(—-'-pl3 + —_—'/)H)2 +4(—2—LB-_P_PBy (334)
8xp2 %2 Oy, Ox, dx Oy,

by using the continuity equation. In terms of nondimensionalized variables and

transformed coordinates, this can be written as
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2fd fdx {Ha2 62)1 ia“av ) ')

= pvU y J st —) '+ A{——-—— 3.3.5

% Vol g2 Joyox oxoy

by applying (A1.3.1) and (A1.4.1). Upon substitution of (3.1.11) into the first term

in (3.3.5), we get

1 o au ov
2, r°% 2
D =pU ([ dy [ dxJuw“ +4f dy | d&x(——-—— )} -(3.3.6)
p= oy A o e afar
By using boundary conditions (3.1.13a) and (3.1.13b) and periodicity conditions
(3.1.13c) and (3.1.13d), the second term can be integrated by parts to give

av \Qy © 32\7 ® o Q@ x=1
4prU, {f dx[u— —f dy i ]-f dy [ —
@y=0 °0 axdy 0 dy '@ x=0
[ ax A ) (3.3.7)
- i =0. 3.3.7
0 Oxdy
Finally, we define the nondimensional rate of energy dissipation as
1
9 = 9 (3.3.8)
pLU03 P
such that
S food fl 9 ( )
9D = — y | dxJw”. 3.3.9
R0 0

§I11.3.3. Rate of change in kinetic energy
The first term on the left hand side of (3.3.2) represents the time rate of
change in kinetic energy. The integral under the partial time derivative can be

expressed in transformed coordinates by using (3.1.12),

-fdy Jax, (u) +v
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If we integrate this last expression by parts and apply governing equation (3.1.11),

boundary conditions (3.1.15) and (3.1.16), and periodicity, we obtain

p ® &y Py a¢ @ y=w
—U02L2{-f dyf dx¢(—+ -——)+f dx ( ),
@X— 2.9 (] 1
f dy (¢ —), = —UOL (60 + [ dy [ dxJyw].
u 2 0 0
The rate of change in kinetic energy is therefore given by
fu 2?2 3[¢U [a fld Tjw] (3.3.10)
- —— + y XJYw|. 3.
R G

Combining (3.3.2), (3.3.3), (3.3.9), and (3.3.10), we finally obtain the

dimensionless equation for energy balance over one ripple length,

0 1
b, —2-——[yU +f dyf deww]-—f dyj{)dx.]wz

=0. (3.3.11)

| =
8
o
8
=~
&

This provides a check on the conservative property of the numerical scheme.

$II1.4. Conformal Mapping
The transformation (Benjamin, 1959)

X X X - %se"?"ysin 27x
=L =L (3.4.1)

y y - 356 2™ ¢os 21x
maps the ripple profile

(xp, yp) = (Lx -asin 27x, a cos 21x) (3.4.2)
onto (x, 0) in the transformed plane. The Jacobian is given by

-
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= (1-ms 2™ cos 27rx)2 + (73 e 2™ sin 21rx)2

¥|e w|®
gl o|p

= 14 %% 4™ —2ms € 2™ cos 2mx . (3.4.3)
For later use in the evaluation of the stresses on the ripple surface, (3.2.7) and

(3.2.16), we note that,

& oy ax oy
— = — = l-7m8cos27x, — = -— = 73 8in 271X,
ox Oy dy ax
and
J = 1+ %% - 273 cos 2mx (3.4.4)
at y=0. Substitution into equation (3.2.14) gives
1 29
A(x,0) = (1 + 7“s“cos 4mx - 278 cos 27x)
(1 + 7282 - 275 cos 2mx)?
and
TS 1
B(x,0) = ( — 78 sin 47x - sin 27x) . (3.4.5)
(1 + 7282 - 27s cos 2mx)2 2
Note that the value of s has to be less than w—1z0.318, at which 6yp/ Ox D is
singular at x = 0, L, 2L, ... . Some ripple profiles (3.4.2) corresponding to the

values of s used in previous experiments or numerical computations are plotted in
Fig. 111.4.1. The mapping (3.4.1) with s=0.1 will be used exclusively in our study.
This mapping can be extended to periodic ripples with arbitrary profiles (Sato

et al, 1984). Consider Fast Fourier Transform pair

M
(2 -z) = mﬁl (ag, +ib.) exp(i2mnz ) (3.4.6)
and
i M
a_+ib_ = -— Y (%, -2z,) exp(H2mmnz, ) . 3.4.7
mtiby = = 5 (55 eplizmm) 3.47)
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g = {,318
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s = 0,100

s = 0.050

Fig. II1.4.1. Rippla profilaes dafinad by
conformal mapping (3.4.2
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Let

zk = xk + iyk ’ (3.4.8)
and require that the points in the mapped plane

zrk = (k-1) Ax, k=1,...,. M (3.4.10)
correspond to points on the given ripple profile

Z, = (k-D)AX +i§. , k=1,.,M. (3.4.11)

T b}
k
For a domain of computation spanning r ripple lengths, we have

r

Ax = —. (3.4.12)
M
Substitution into (3.4.7) gives
1 M
a_+ib_ = — ¥ §_ exp[H2mn(k-1)Ax], m=1,..,M. (3.4.13)
m-o M Mk=1"Tk

The choice of r=1, a,1=s/2=a/L, b,;=0, and a_=b =0 for all m#1 yields

the mapping (3.4.1).
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Chapter IV. Numerical solution

It has been shown in §IIL1 that the streamfunction/vorticity formulation of
two-dimensional laminar flows takes the form of two coupled second-order,
homogeneous, nonlinear partial differential equations in three variables, (3.1.10) and
(3.1.11). The forcing in this initial/boundary-value problem comes solely from the
far field boundary condition (3.1.16), which implies an ambient pressure gradient
given by (3.2.5.c). We shall now describe the numerical scheme for solving the
system of equations inside the rectangular domain (0<x<1’0<y<ymax) that

results from truncating the flow field at a certain height above the ripple bed.

§IV.1. Numerical scheme

The periodicity in Xps and thus x, suggests spectral decomposition in the
horizontal direction, which has the advantage of convergence to an infinite order for
an infinitely differentiable periodic function.  Specifically, a pseudo-spectral
(collocation) method in terms of a Fourier series is used, that is, x derivatives at the
grid points are computed in the Fourier space while the nonlinear terms in (3.1.10)
are evaluated in the physical space. Derivatives in the y direction are computed
using second-order center-differencing given by (A2.2.1) and (A2.2.2).

Let the grid points in the rectangular computational domain be denoted by

1
X) = (k-1) Ax, k=1,...M; Ax=— (4.1.1)
M
and
Y1 =0, Yo, ¥3r = YN = Ymax (4.1.2)
with grid-spacings
AJ- == j+1 -yj . (4-1.3)

A typical grid with M=32 and N=57 is shown in Fig. IV.1.1.
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Let the unknown functions 3 and w be defined as

M—1
¥ (X Y ty) = Y = mEO w;;lj exp(im2mx, ) (4.1.4)
and
M-l
w (X, Y5 t,) = wll:j = mE-O er;lj exp(im2mx, ) . (4.1.5)

The r-th derivative of the streamfunction with respect to x is defined as

— (xpynt) = L r‘I’rrrll- exp(im2mx, )
axr '] m=0 J
in which
(im2m) w“J
r\I!IIIII. = { for m § iM
e )
nx-m, j
and
- (iMm)* ‘I,J'M,j even
Ui = { for r{ , (4.1.6)
2+ 0 odd

and superscript * denotes complex conjugation. Derivatives in x for w are similarly

defined.

At each time-step, the vorticity equation (3.1.10) is solved in mapped

coordinates. A 'split-step' treatment is used in which the nonlinear convective term

is accounted for using a third-order Adams-Bashforth scheme and the viscous term

using an Euler forward scheme. The expression takes the form
23 5

4
J— 1 -
(Jw)i:'}' = (Jw)kJ—At[ <ka “1 12%2], (4.1.7)

+1 1
Gw)ltl = (Jw)ﬁ'}' + AL

k=1,.,M, j=2, .. N-1; and

(4.1.8)
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d w0y w K v 8w
¢§j=x( ————— )kJ and 0“ =s—(— +—)§J (4.1.9)
dy 0x 0x dy R 52 g2

are respectively the convective and viscous terms.! Since this is an explicit time-ste
in which only values at interior grid-points are updated, no boundary conditions are

necessary.
Equation (3.1.11) is solved for the streamfunction in the Fourier space by

compact differencing. The Poisson equation is discretized as

[12 - (27m)? (A + A, j_12)]A gh+tl

=1 -1 "m, j+1
- [12 + (2mm)? (A +308 By 2] (A+8) wr’;j}
+[12 + (2mm)? (4 2 -AB - A DA, 1;31+}_1
= (A A = A A (T
- (Aj +3AA + A A (A8;+8) (Jn)rfr‘:}
+ (Aj2 -8 - B 2] A, (Jn);f}_l ; (4.1.10)

wherem =0, ..., M ; j=2, ..., N-1; and (JQ) lS the m-th Fourier coefficient in
the transform of Jw at t=t and y=yj A denva.tlon of (4.1.10) is given in §AIL3.
The tridiagonal matrix from the Poisson solver is inverted by LU-decomposition.
Updated values of w evaluated in (4.1.8) are substituted into (4.1.10) and the
streamnfunction solved by forward and back substitution in compact form (Ralston
and Rabinowitz, 1978). Note, however, that since the values for Jw at the
boundaries y=0 and y=y_ . have not been updated in (4.1.7) and (4.1.8), the old
values (JQ);:% and (JQ)II::I%I are used in (4.1.10) for j=2 and N-1, respectively,

such that the algorithm remains explicit.

IThe third-order Adams-Bashforth scheme for the convective terms is replaced by
Euler forward and second-order Adams-Bashforth schemes at the beginning of
computation and immediately after a change in the time-step.
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The decoupling in x (by Fourier Transform) and y and the use of Fast Fourier
Transform allow the amount of computation required to be competitive with
explicit iterative schemes using finite differencing.

One-sided derivatives of second order are used in evaluating boundary values,

namely,
n+l _ gn+1 _
%1=%1=0, (4.1.11)
JHL - 2 A ﬁ+§—A1+ ) 1) (11.12)
, Agly 1 (Bj+BgR A, ’
1
n+1 _ n+l1
YN = oA A {(AngtAN-2) AnaYy
N-1T2N-2
1
2 n+1 2 n+1
N-2
1
n+l _ n+1
Ym,N = i aa {(ANaT2N2) ANaVs O0m
N-1T2N-2
1
2. .n+1 2 .n+1
(AN ANe) Y N~ AN U Nolbs  (4114)
N-2
and
9
1 8 2
“’E,N =73 { ;bk’N““A N7 2[-A1\1-13'/)ﬂ,N-2
kN ox N-22N-1" (AN tAN-)

2

3 n 2y n
+ (ANt AN Pk No1 ~ Anco(BNog TIANAN H3ANL ¥ N

+ Ag gy Ay g+ Any) AN AU, ] ] (4.1.15)
k=1,..,M; m=0, .. M-1, and can be derived from boundary conditions
(3.1.15) and (3.1.16). The details of derivation and their truncation errors are given

in §AIL.2, where (4.1.12) can be deduced from (A2.2.3), (4.1.13) and (4.1.14) from
(A2.2.5), and (4.1.15) from (A2.2.6).

The truncation error is o(At3, s/R At, Ay2) in the vorticity equation, o(Ay4)
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in the compact differencing in the streamfunction equation, and o(Ay2) in the
boundary conditions (4.1.12) through (4.1.14). The overall accuracy of the scheme
is therefore expected to be o(s/R At, Ayz) for moderate Reynolds numbers. Exact
expressions for these errors will be discussed in the next section.

A formal proof of the convergence of the numerical solution to the analytical
solution will not be attempted here. For a linear problem, Lax Equivalence
Theorem (see for example Richtmyer and Morton, 1967) states that a numerical
algorithm that is stable and consistent converges to the exact solution in the limit
of vanishing grid sizes and time-steps. In our system of equations, there are no
apparent mathematical singularities and it is therefore expected that a stable
numerical solution will converge to the exact solution up to the order of truncation
errors.

At regular time intervals, computed values of vorticity and streamfunction
values are used to evaluate the hydrodynamic forces: the shear stress, pressure, and
force components on the ripple, and the rate of energy dissipation in the domain of
computation. One-dimensional integrations are evaluated using IMSL subroutines
ICSICU and DCSQDU, which is based on a cubic spline quadrature. Since the
integrands are known only at regular (3.2.16) or irregular (3.2.7) intervals (at the
grid points), a series of cubic polynomials, each defined within adjacent grid-points
such that their values and first two derivatives at these points are continuous across
the grid-points, are therefore used to intrapolate the integrand. Details of its
derivation can be found, for example, in Ralston and Rabinowitz (1978). Since the
spline coefficients are underdetermined with four free parameters, we define the
splines only to the last interior grid-point in the range and specify the values of the
four parameters using values of the integrand at the two boundary points.
Two-dimensional integrations in (3.3.13) are computed using IMSL subroutine

DBCQDU. Time derivatives in (3.3.13) are estimated using a one-sided third-order
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finite-differencing formula.
Further details on the implementation of the numerical scheme are discussed in

the following subsections. Detailed derivations of some of the results are given in

the Appendices.

§IV.2. Truncation error

For uniform grids, local truncation error per unit time in the vorticity equation

is given by
1 o OwdBYp oY PBw 3 g B dwdp OYow
“K Ay (—— - — ) - K A — (—— - )
6 Ox 0y3 Ox 0y3 8 Ot3 Ox dy Ox 0Oy

Ay?2K dtw sK 0 0%w ?w 4 4 9 1 4
+ —) + O(Ay", At™, Ay“At, — At%)
12 Ryt 2R & ox2 dy° R

(4.2.1)
and can be obtained from Taylor series expansions of equations (4.1.7) to (4.1.9),
with exact values of the grid-spacings Aj's replaced by a mean value Ay in the
error terms for simplicity. Details of the derivation are given in §AIIL.2. The first
two terms in (4.2.1) are errors due to the temporal and spatial (in y) discretization
in the convective terms and the next two are those in the viscous terms. Error
estimates for discretization in the x-direction are less straightforward and will be
discussed in the next section. Even though the Euler forward scheme is first-order
in time while the Adams-Bashforth scheme is third order, the leading order error is
associated with spatial discretization in the convective terms, and is dissipative in
nature. This will be demonstrated using the time-step defined in §IV.5. An

immediate consequence is the requirement
9 8 00, 2
Ay << —(—) " = A
R ox max

such that numerical viscosity from the treatment of convective terms is smaller

(4.2.2)
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than the actual physical viscosity at all y. This is satisfied using the values of Ay

defined in §IV 4.
Local truncation error in the compact differencing scheme (4.1.10) for the
Poisson equation is, from (A2.3.8),
Ay4 361,/)
- . (4.2.3)
180 (9y6
Truncation errors in boundary conditions are, from (A2.2.4) to (A2.2.6),

2 P

3
=AY —| @ v (4.2.4)
for the boundary value of streamfunction given by (4.1.13),
P/ (4.2:5)
--Ay" —— _ 4.2.5
6 J,4 QY0
for the value of vorticity on the ripple surface given by (4.1.12), and
1 ,14%
-—Ay® - —| (4.2.6)

for the value of vorticity at the upper boundary given by (4.1.15). The exact

expressions for these errors are given in §AIL.2 and AIL3.

§IV.3. Grid spacing in the x direction

The grid spacing in the x direction is determined from the length scale of
variation in the flow field and aliasing considerations. As seen by substituting
(4.1.4) and (4.1.5) into (4.1.9) and (4.1.7), the quadratic terms in the vorticity
equation give components with wavenumbers up to twice that of the Nyquist
frequency Q=7M, and the components with frequencies in the range (Q,2Q) are
aliased in the primary wavenumber range (0,Q). This error is further magnified
since these nonlinear terms involve derivatives in the x direction in which the higher

wavenumber components are accentuated according to (4.1.6).
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To limit this aliasing error, the amplitudes of the Fourier coefficients at high
wavenumbers therefore have to be much smaller than those at low wavenumbers.
During the course of computation the magnitudes of the Fourier coefficients are
examined at regular time intervals. We have observed that when the resolution is
adequate according to convergence tests (i) for fixed n and j, the maximum of
|(im27r)2\IJIIr‘lj| for wavenumbers 27m in the range (4Q,Q) is less than 30% of that
in (0,4Q), and the amplitude at the Nyquist frequency |(iQ)2\IlgM,j| is less than
10% of the maximum of |(im21r)2'~1131j| in 0<2mm<4Q, and (ii) the amplitudes
|\I!:111j| near the Nyquist frequency do not grow further as computation progresses.

The amplitudes |(im21r)2111:;1j| in (i) are estimates of mrlrlle (from 3.1.11 and
4.1.6) and the criterion is obtained empirically from convergence tests. Specifically,
flows with the same dimensionless parameters are computed twice, one using twice
the number of grids in the x direction as the other. For the case R=250, K=4.5 and
s=0.1 good agreement in all physical quantities when the number of grid points is
increased from 32 to 64. The results using 32 grid points are therefore accurate.

For R=500, K=4.5, and s=0.1, M=32 is insufficient and we only record the
results using M=64. Comparisons are made with the number of grid points
increased to 128 and computed up to t=2 only because of the large expense. The
agreement is satisfactory within 0<t<2. No convergence is established for t>2
however. With 64 grid points, we also observe (i) and (ii) described previously for
t<22, suggesting that convergence may be acceptable for large t. This is
speculative, of course. Details of these results will be presented in §VI.2.

Continuous growth in the components |\I’11111j| at high wavenumbers over
successive periods suggests possible aliasing problems. It is found that a lack of
resolution can indeed lead to breakdowns in the computation when the components
at high wavenumbers in the Fourier spectrum of streamfunction become of

comparable magnitudes with those at low wavenumbers. On the other hand, there
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may be significant aliasing (discretization) errors even if the computation progresses
without any apparent numerical instabilities. This is found in the case with R=500

and K=4.5 using M=32 and 64 discussed above.

§IV.4. Grid spacing in the y direction

Grid spacing of variable sizes are used in the y direction to increase
computational efficiency. In principle, grid points should be chosen to achieve a
uniform spatial discretization error estimated from velocity gradients. However,
since the velocity field is not known e priori, grid sizes are made to increase
exponentially away from the viscous boundary layer. Their values are determined
as follows.

To ensure adequate resolution for the velocity profile inside the viscous
boundary layer immediately above the ripple surface, we require that the
dimensionless grid spacing in the y direction near the ripple surface to be much less
than the boundary thickness. Since the thickness of this oscillatory viscous
boundary layer Jp is expected to be of the same order as that of oscillatory flow
over a plane bed at steady state?, we have

5. (VT/mf  sK

- 1

§ = P N —, = ( —)'2 = ﬂ;_5
L L TR max

or

1 sK,

§= (———)7. (4.4.1)
J TR
Imax

The value § is the boundary layer thickness in the mapped plane and the parameter

J Imax is the maximum value of Jacobian on the ripple surface y=0. By comparing

20ur computations are started with a quiescent fluid, and the initial boundary layer
thickness in the oscillatory flow over a plane bed starting from rest is infinitesimally
small. Therefore our numerical solution is less accurate near t=0 but improves as t
increases.
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results obtained from our numerical scheme with exﬁct solutions in the Stokes
second problem, it is found that as few as five grid points equally spaced within this
boundary layer are adequate to resolve accurately the velocity profile (§V.1,
Figs. V.1.1 and V.1.2). If we denote the number of grid points in this layer by h,
the ratio of 4 to Amax’ the critical value in the estimate of the maximum allowable

Ay defined in (4.2.2), equals

6 1 1 Koy,
——)? (4.4.2)

Amax h erax T OX

inside the boundary layer. This ratio is of an order smaller than unity since dy/dx,
which is a measure of the velocity normal to the ripple profile, is much smaller
thant one there. The grid size is allowed to be greater than 6 at a height far enough
away from this boundary layer such that dy/0x is small again.

The exact variation of grid spacing

¥1=0: Yo ¥3» - YNTYmax
is determined from two parameters: y .., the vertical extent of computation (the
criteria for its magnitude will be discussed in §IV.6); and H, the ratio of the
maximum grid size to the grid spacing inside the viscous boundary layer. We divide
the vertical domain 0<y<y max into two regions. Inside the boundary layer, we

define h identical spacings

6 2 5 3 5
y=01y=—)y=_ay=_6"'7y =0
1 27,078y 47,7 h+1
Outside the boundary layer, the grid points are defined by
1 .
yj = 5+g{ea(1'h'1)AZ—1}, j=h+2,...,N (4.4.3)
where
In H
a = v (4.4.4)
- Az
b o Az/(1-Az)
b =-(H -1), (4.4.5)
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In H
Az = 1- , (4.4.6)
In H + In (1-6) - In (1-H6)

5 1
f= ————. (4.4.7)

hy max " )
In actual implementation, the vertical extent is defined in the physical plane,

that is, is defined from Yp using the criterion discussed in §IV.6. From
max

Ymax
{3.4.1), we require that

S
y = L[yt EexP(-%ymax) cos 2mx | , (4.4.8)

Pmax

and y ax 18 then solved from

1

Ymax T exp(-21rymax) cos 2mx —E Ypmax = 0 (4.4.9)

using Newton's method.

8IV.5. Size of time-step : Numerical stability

The critical value of the time-step for numerical stability will be estimated by
considering the viscous equation and the linearized convective equation
independently. Owing to the linearization and approximation, these estimates may
be off by a factor of around two.

From the von Neumann stability criterion, a third-order Adams-Bashforth
scheme is conditionally stable for a hyperbolic equation with constant coefficients,
the critical time-step being

Ay Jo

. . < 0.72— (4.5.1)
critical, convective K Vo+rUpAy/Ax

At

where ‘]O’ U0 and V, are the maximum values of Jacobian function and x and y
velocities respectively. This is in general more restrictive than the 'physical'

criterion of KAt<Ay, the requirement that disturbances propagate less than a grid
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size per time step.
The Euler forward scheme is conditionally stable, subjected to
9 R Jo 1

- . < Ay" —— . 4.5.2
critical, viscous y K 25 1+(47Ay/Ax)2 ( )

At

Detailed derivations of (4.5.1) and (4.5.2) are given in §AIILI.
The ratio of the two time-steps is given by
Atcritical,convective 1.45 1+ (47Ay/AXx)?

Ateriticalyviscous R Ay Vo+UoAy/Ax

The upperbound for this ratio can be obtained by substituting the minimum grid

size (Ay) discussed in the last section,

1 1 sK,
Ay — _( __)2, (4.5.3)
h J TR
T'max

defined in (4.4.3). Based on this minimum grid size, the time step defined in (4.5.1)

can be approximated as
Ay 0.72 ] 1
2

At w072 — v ——( )i (4.5.4)
K h J 7RK
I'max
This gives
Atcriticalsconvective L4k ( TS 1 1+ (47Ay /Ax )2
Ateritical,viscous B eraxKR Vo+7UgAy/ Ax

This ratio is generally much smaller than one.

The critical size of time-step determined from (4.5.1) varies inversely with the
maximum velocity in the flow field and fluctuates within the wave cycle. The size
of time-step is therefore varied at regular intervals according to the maximum of
the instantaneous values of the velocity field. During the computations, we obtain
at regular time intervals the maximum values of |dy/dy| and |0y/0x| from their
vertical profiles at eight different values of x equally spaced along the ripple. These

values are used for Uj and V) in the determination of time-steps in (4.5.4). At the



beginning of each change in time-step (and at the start of computation), lower order
numerical schemes are used for the convective term in the vorticity equation.
Specifically, an Euler forward scheme, and then a second-order Adams-Bashforth
scheme are used in the first two time-steps.

All our computations progress without breakdowns when time steps defined in
(4.5.4) are used. Numerical experiments have also been performed to allow the size
of time-step both to (i) decrease only and to (ii) fluctuate according to the
instantaneous maximum flow velocity. It is found that the ratio of the number of
time-steps used for the same duration of computation in the two cases is less than
1.5. To avoid introducing unnecessary numerical disturbances due to the lower
order time-stepping scheme used at the beginning of each change in time-step, the
time-step is allowed only to decrease in all runs.

We shall now show that spatial discretization error of the convective term is
dominant in (4.2.1) if we choose the size of time-step on the basis of numerical
stability rather than temporal discretization error. Based on the vertical grid
spacings defined in §IV.4, substitution of (4.4.1) and (4.5.4) into the first four terms

in (4.2.1) gives

sK? 0wy O Bw

gconvective, spatial = m E%'aéy—a ) (4.5.5)
0.2 1 s B 0wdyp 0P Ow
convecti g -—— (P (——-—— ), (45.6)
convective, temporal = 3 JK 1R 915 ox 9y Ox dy ) 0.
1 K, 04w
gviscous, spatial = _Er SE) 5;:» (4.5.7)
and
0.4 K14 5156 0w 0w
gviscous, temporal = T(;) (I—{) E(%"‘ gy‘;) - (4.5.8)
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The ratios of the error terms (4.5.6), (4.5.7), and (4.5.8) to the error in the spatial

discretization in the convective term are

gconvective,tempora! 11 8
Y —— (—)F, (4.5.9)
é’convectivempatial h3 K2 TRK
3visc0us,spatial ]
y— (4.5.10)
gconvectivempatial 2R
and
Eviscous temporal 21 sn 1
: g —-—(—)? (4.5.11)

gconvectiveaspatial hK RK

less than unity for the range of dimensionless parameters used in our computations,
and therefore spatial discretization error in the convective term is the dominant
error. The size of time-step is therefore determined from the numerical stability
criterion.

It should also be noted that the time-step used in our scheme is smaller than
the time scales for both viscous diffusion and convection. The ratio of time scales

for viscous diffusion to convection can be estimated as

1 9 Ax s2K
—(2aAy)* / (L—) v <1 (4.5.12)
v U0 TAx
and the ratio of the time-step to viscous diffusion is
1 9 h o |
TAt / ~(2aAy)® ~ 0,79 — (—)? <1 (4.5.13)
v 8 sRK

for the range of dimensionless parameters in our calculations.

8IV.6. Domain of computation
The horizontal extent of computations is one ripple length. Computations over
multiples of a ripple length will lead to identical flow patterns over individual

ripples unless irregularities are introduced either in the ripple profiles or in the
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initial conditions.

The vertical extent of computation has to be large enough such that both
viscous effects and the velocity induced from vortical motion become negligible at
the upper boundary. This boundary is chosen to be between one and two ripple
lengths above the bed, and increases with the Reynolds nurnber of the flow. The
first requirement is easily satisfied since the thickness of the viscous boundary layer
immediately above the ripple surface is only a small fraction of a ripple height.
That the second requirement, that the vortical motion at the upper boundary is
much smaller than that near the ripple surface, is satisfied (':an be established in two
steps. Firstly, we shall show that (i) for the range of dimensionless parameters used
in our study, the velocity field at tp=o(T) due to the viscous decay of a point
vortex can be approximated by that in an equivalent potential flow field; and
secondly, that (ii) this potential velocity field induced by a point vortex near a
plane bed decays to a small fraction of its maximum at the upper boundary in our

computation.

(i) The viscous decay of the velocity field of an initial point vortex in an
infinite fluid is given by Oseen's solution,

I'p Ip2

1 -exp(-—)], (4.6.1)
27rp 4tp

where T D is the radial distance from the point vortex and up is the tangential

up(rp, tp) =

veloctiy in radial coordinates. In nondimensional variables this can be written as

r 1 Rr?
u(r, t) = — [1 -exp(-———)] (4.6.2)
27T 45Kt
in which the velocity (up), radial coordinate (rp), time (tp), and vorticity potential

(T p) are nondimensionalized with UO’ L, T, and U0L3 respectively. Dimensionless

3The minimum value of ynax needed to meet the requirements (i) and (ii) increases
with the vortex strength I'p, and therefore the scaling of I'p with UoL instead of
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ﬁarameters s, K, and R are as defined in (3.1.8). From (4.6.2), u increases from
zero to a maximum and decays exponentially as r increases from zero to infinity. In
our parameters range of interest, R/4Ks>>1, and therefore the difference between
the velocity fields of a viscous and a potential vortex, the term exp(- Rr? /4sKt) in

(4.6.2), decays rapidly with r for finite values of t. The maximum velocity is given

by
0.16 R | R |
—T (—)? = 0.051T ( )?
e tsK tsK
at
K 1
~ — )2
rmax”(5StR) . (4.6.3)

For R=250, K=4.5, and s=0.1, rmaxzo.1~o(s) for t~o(1), that is, r . is of the
order of a ripple height. The velocity field at more than a few ripple heights away
from the vortex is therefore well represented by the potential flow velocity

represented by the first term in (4.6.1).

(ii) We next show that the magnitude of the velocity induced by a potential
vortex placed at a distance ap~o(a) from a plane bed has diminished substantially
at a distance of a ripple length L from the bed, and therefore the requirement that
the vortical motion at the uppzr boundary is negligible will be satisfied if the
boundary is over a ripple length from the bed.

The velocity field along the y-axis induced by a potential vortex on the y-axis

at a distance o, from a plane wall defined by yp=0 is given by

( ) I'p 1 1 )

u (y,t.,) = — -

PTP P 2T yptap Yyp=Cp
a’pPp Qp

= - 1+ 2 +et+ 0(56)] ; E=—. (4.6.4)
Typ? yp

Uop2a gives a more conservative estimate on ypax.
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In nondimensional variables with

= =L
Yp Ly and a, a, .
T and u as defined above, and o o(a) such that a~ o(—)=5<<1,

a T 9 4 a
u(yt) = -~———[L+e"+o(e)]; e=—. (4.6.5)
271 y? y
For both I' and y to be of order 1, a/2r~s/4r is much less than one and the
velocity induced by the vortex is negligible at yx1 or ysz for moderate Reynolds

numbers.

As an example, at R=250, K=4.5, and s=0.1, R/4sK ~ 140 in (4.6.2) and the
potential velocity can therefore very well approximate the velocity in an infinite
viscous fluid. The ratio of vortex induced velocity u(y,t) given by (4.6.5) to the

maximum velocity given by (4.6.3) is
r K,
0.5a— (st —)*

y? R

for &~ o(s) and yxtxl. Anyy . >1 (approximately one ripple length above mean

v 0.002 << 1 (4.6.6)

bed in the physical plane) can be chosen as the upper boundary in the computation.
In §V.3 we shall show that y . ~1 gives the same results as y . ~3 for the
flow with R=63, K=4, and s=0.1. Further numerical confirmation of this estimate

Ony .o will be given in §VI.1 for the flow with R=500, K=4.5, and s=0.1..

§IV.7. Initial conditions and termination of computation

The fluid is inititally at rest and therefore

w=P=0 forall x,y at t=0. (4.7.1)
The boundary condition at Y max is therefore discontinuous in its time-derivatives
(and itself discontinuous if an impulsive start or a current is imposed).

Time-periodic solutions are of particular interest in our present study since they
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can be readily applied to sediment transport* and other engineering problems-.
However, in nonlinear problems, periodic forcings do not guarantee periodic
responses. In the separated flow over ripples, vortices shed in previous wave cycles
modify the velocity and pressure field, and thus change the conditions near the
ripple surface under which new vortices are formed. Since the mutual interactions
between new and old vortices depend on their exact strengths and locations, the
flow field may remain different from period to period as computation proceeds.

We therefore introduce a measure of the departure from periodicity of the
solution by examining the sum of the differences in the values of the streamfunction

at the same instants exactly one period apart, and define
1 1 M N

50 = (B D WY 0¥ 9 DT @)

in which r is an integer parameter. Thus El(t) is the mean of the absolute values of
fluctuation in streamfunction values at all grid points, and Em(t) is its maximum
over the entire mesh. Linear intrapolation is used in (4.7.2) when streamfunction
values exactly one wave period later are not available due to the finite size of
time-steps.

An estimate of the number of periods te required to obtain this periodic or
steady state can be obtained from that in the impulsively started oscillatory flow
discussed in the next chapter. In dimensionless parameters this is given, from

(5.1.14), by

oL LR
¢ T ¢2 16sK

(4.7.3)

where c is the deviation in the horizontal velocity from the periodic solution. For

4Recall from Chapter I that an empirical criterion for the initiation of bed load
transport can be deduced from the Shields parameter in (I.4) and (1.5) for steady
flows and oscillatory flows respectively. The conditions for suspended load
transport, unfortunately, are not as well understood.
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example, when R=250, K=4.5, and 8=0.1, (4.7.3) gives tcz22 for ¢=0.01.

It will be seen in Chapter VI that, when the Reynolds number and
Keulegan-Carpenter number are both high, the variables & and 300 defined in
(4.7.2) do not decrease monotonously but remain above some finite values. For
example, we have, after twenty periods of computation, 8mz0.07 and 31m0.015 when
R=500, K=4.5, and s=0.1, and & ~0.06 and 8,~0.01 when R=250, K=6, and s=0.1.
A more detailed discussion will be presented in §VI.1.3. However, even under these
circumstances, global quantities such as the energy dissipation or the magnitudes of
the horizontal force on a ripple over a wave period do not fluctuate by more than

5% of their mean values.

§IV.8. Estimate of Central Processing Unit (CPU) time

The number of floating point operations per time-step is of the order of pMN
where M and N are the numbber of grid points in the x and y direction respectively.
The multiple ¢ is obtained by counting the number of operations in the FORTRAN
code and estimating the number of operations in the FFT subroutine (Cooley and
Tukey, 1965). In the computer code COMPUTE listed in Appendix V, o is
approximately 40+1210g2M . For M=64 and N=72 (the maximum number of grid
points used in our study), the operation count is around 0.5 million floating point
operations (MFLOP) per time-step, a typical size of which is around 0.0005.

The bulk of computation is performed on a Cray-2 machine at the Minnesota
Supercomputing Center in Minneapolis, MN and a Cray X-MP/24 at the Naval
Research Laboratory in Washington, D.C. Computation time can be est,imai;ed
from the speed of Cray-supercomputers, conservatively estimated at 50 MFLOP per
second.  The efficiency of computation may be increased by optimizing
vectorizations and using library subroutines (used in FFT and one and two

dimensional integrations) specifically designed for optimal efficiency on the Cray
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machines.

§IV.9. Further comments

To conclude this chapter we shall discuss two variations on the numerical
scheme discussed above. The first was designed to improve the numerical stability
in the Poisson solver and was found to be unnecessary. The second was intended to
accelerate the approach to a periodic solution and was found to be ineffective. They

are not implemented in the computations reported in the rest of the thesis.

§IV.9.1. Iteration scheme for Poisson equation

The boundary values of w are not updated in the time-stepping scheme of the
vorticity equation (4.1.7) to (4.1.9) so as to keep the computation fully explicit.
The values of (J)J | and (JQ)J y, instead of (JQ)n+1 and (J2)2° N are
therefore used in solving for the streamfunction equation with compact d1fferencmg,
(4.1.10). To assure that such a lagging in time in the boundary values does not
incur inaccuracies or numerical instabilities, an iterative procedure was therefore
tried: after the streamfunction values had been solved in (4.1.10), the boundary
values of w obtained from (4.1.12) and (4.1.15) were substituted back into (4.1.10)
and the streamfunction values were solved again. This was iterated to convergence.
It was found that this procedure did not result in any noticeable differences in
streajnfunction values, and no more than one iteration was needed for convergence
up to 107 at all times after the initial start. With a timestep defined in (4.5.1),
computations without iterations remained stable provided that the aliasing error

remained small.

§IV.9.2. Acceleration scheme for convergence of the solution to symmetry in the

two half periods
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If the solution is symmetric in the two halves of the wave period, the following
relationships for the nondimensional streamfunction and vorticity function must

hold: identical y-velocities requires that

0 0

—aixb(x, ¥, t) = g(-x, y, t+4) (4.9.1)
and

i) il

—(x,y,t) = ~—(=x,y, t+1 4.9.2

ay(xvt) ay(xyt+) (4.9.2)

where t+1 is one-half period after t.
With streamfunction expressed in terms of Fourier series (4.1.4), (4.9.1) and

(4.9.2) require that
1
nl _ n2,* _ .
‘I’mj = -(lIImj) for t ; =t +E. (4.9.3)

Alternatively, this can be written as

P (x5, t+4) = -9 (x5, 1), (4.9.4)
b2 oY
—(1x,y,t+4) = —(x, 5, t) , 4.9.5)
™ ( ) ™ ( ) (
&y &y
— (l'x, Y, t+%) = - (X, Y, t’) ’ (496)
ox2 ox
0y Y
— (1%, 5, t+4) = - —(x, ¥, t), (4.9.7)
dy dy

and
7y P
N (l—xa Y, t+12") = - (X, Y, t’) . (4'9'8)
oy* ay*

The vorticity function is, from (3.1.11), governed by
w (1-)(, Y, t+‘2l) = -w (X, Y, t) ) : (499)
6w( ) 6w( )
— (=, y, t+3) = —(x, 5, 1), 4.9.10
. o ( )
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- (l-xv Y, t+12') = - (X, Y, t) ’ (4911)
ox? ox>
» ( ) o ( ) (4.9.12)
—_ 1—X,y,t+% = - X,y,t ) oI
dy dy

and
Puw Pw
— (x5, t+) = -——(x ¥, t). (4.9.13)

The relationships (4.9.1) and (4.9.2) are attained after a few periods of
computation for flows at low Reynolds numbers or Keulegan-Carpenter numbers.
At higher dimensionless numbers, for example, when R=250, K=4.5, and 8=0.1, the
solution remains asymmetric after thirty-five periods of computation. A numerical
experiment was therefore performed, in an attempt to speed up convergence to a
symmetric solution, such that current values of ¥, 9%/dy, w, 0w/ dy, 62w/ ax2, and
82w/ 8y2 at (x,y,t) were replaced with half their differences with corresponding
values at (1-x,y,t-4), and current values of dy/dx and dw/0x at (x,y,t) were
replaced with their means with corresponding values at (1-x,y,t~). It was found
that, for the case of R=250, K=4.5, and s=0.1, the solution remains asymmetric in
the two half periods after fifteen periods of computation, starting at the twenty-first
period, and an averaging procedure every two periods. This averaging procedure

was therefore discarded and is not used in any of the computations.
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Chaper V. Verification of Numerical Scheme

The validity of the numerical scheme discussed previously will be demonstrated
in this chapter. Various criteria used in determing the time-step, grid-size, and
domain of computation proposed in Chapter IV will be verified for the test cases
studied. Except for the comparison with an asymptotic solution to the flow over a
ripple bed at a low Reynolds number, the verification procedure is based on well
known solutions to closely related flow cases in which the exact formulations vary

from that described in Chapter ITII. These differences will be discussed in detail.

§V.1. Oscillatory flow over a plane bed
An exact solution to the Navier-Stokes equations exists for the two-dimensional
flow over a plane bed in an initially quiescent semi-infinite fluid due to an

impulsively started simple harmonic flow

t
— - P ;
uy U, H(tp) sm(27rT ) (5.1.1)
in the far field, where H(tp) is the Heaviside step function. The solution takes the

form (Carslaw and Jaeger, 1947)

p JY
T 5p 6p
2 o exp(-0t )
-— [ d0 ————Psin[y_yaJy] (5.1.2)

The boundary layer thickness 5p=,/71'71r has been defined in (4.4.1). Alternatively,

the nondimensional streamfunction can be written as
1
W(y,t) =y sin 27t - 77 exp(-ay) [cos(2mt-ay+4m) - cos(2mt+4)]
o

o exp(-6t) cos(ayyr0)

+2fd0

0 02 +4n2 o7l
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o exp(-0t) cos(ayymh)
~ v vz Ca (5.1.3)
0 62 +4n2 o7l

where o=L/§ b and d’s denotes the steady state solution.

A numerical solution to this problem is computed using the numerical scheme
discussed in Chapter IV by choosing the Jacobian in the mapping (3.1.9) to be
identically one in the entire flow domain, that is, s=0 in (3.4.1). Equations (3.1.10)
and (3.1.11) become

Ow Ypow pow Pw Pw

—t 1 (——-——)-—(—+—) =0 (5.1.4)

at dy dx 0x Oy Rs ax2 3y2

and

Py Py

—t— = -w (5.1.5)
3)(2 3y2
where R is defined in (5.1.10). Equations (5.1.4) and (5.1.5) are the forms used in

the numerical computation. The boundary conditions are

Y
ay
and
o
-a—; =sgin 27t and ¢ =constant at Y=Y .. and t > 0. (5.1.7)

The initial condition is
p=w=0 forallx,y att=0. (5.1.8)

The following points should be noted:

i. There are no intrinsic length scales in the boundary profile, and we
define L in (3.1.4) and (3.1.8) as the excursion length L of a fluid particle in the

ambient flow. This gives

iT ¢
- (" (o Py = 0
L, _j('] dt, Uy 31n(27rT ) = : (5.1.9)
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The dimensionless parameters then become
U,T U,L, L
K =2 = . and R, = 2% =(-2)

-5)%, (5.1.10)
S L ° v 6p

§
where 5p is the oscillatory boundary layer thickness. If we replace L by LS in

(4.4.1), the ratio

1 1 JT | 1K, 1
63:—5p = —(—)2 = (———)2 = —, (5.1.11)
LS Ls T T RS JRS
i. The exact solution corresponding to the truncated flow domain defined

by (5.1.4) to (5.1.7) can also be easily obtained. However, its difference with (5.1.3)

is negligible.

iii.  For an initially quiescent semi-infinite fluid, the transient solution due
to an impulsively started oscillatory ambient flow differs from the periodic solution
by the last term in (5.1.2). In nondimensional variables, this equals

e—ﬂt

2+4 72

I(y.t) = -2](')wd0 sin(LSyﬂm . (5.1.12)

The rate of convergence can therefore be found from the asymptotic behavior of

I(y,t) at large t. From Watson's Lemma (Bender and Orszag, 1978), we get
lmgoys =1 "8 -5 4o, (5.1.13)

The time t, it takes for convergence to ¥, i.e. | 7(y,t)| <€ for all t>t, is therefore

given by
2 2
~ 1 y L 1 vy
t, = (——— )18 = (—T_p)'3 (5.1.14)
82 167r3 vT i€2 167r4
20T 2
for €< . For RS==100, y=1.23, and ¥=0.005, tczlﬁ.

Y73y?Lsg? - V7 y2Rs
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The velocity profile obtained from the numerial solution (with Rs=100 and
Ymax=1-23) is compared with the exact solution (5.1.2) at equal time intervals from
t=0.13 to 1 and from t=1.13 to 2 in Figs. V.1.1 and V.1.2 respeciively. There is
some discrepancy at small t due to the insufficient grid spacing near the bottom
boundary,! but the agreement for t>0.5 is excellent.

Further details on the parameters used in the computation will be given below:

i. The nondimensionalized boundary layer thickness is, from (5.1.11),
§=1/yR. Tt is shown in Fig. V.1.2 that Yiax/ =Y maxVRs¥12 is large enough to
simulate a semi-infinite flow domain. The spacing of grid points in the y-direction
follows an exponential type increase from the bottom boundary, as defined by
equations (4.3.3) to (4.3.7). Only five grid points within the thickness of boundary

layer § are sufficient to resolve the velocity profile, as claimed in §IV.4.ii.

ii. Despite the absence of convective terms, the critical time-step is still
Chosen to be the minimum Of Atcritica],convecitve a'nd At'CI'itiCB.laViSCOUS deflned il]
(4.5.1) and (4.5.2). This is to keep roundoff errors in the convective terms from

destabilizing the computation.

iii.  The flow is uniform in the x direction. The system is therefore a
function of two independent variables y and t only and the nonlinear convective
terms are identically zero in the vorticity equation. In the numerical solution,
variations in the x coordinate may be caused by roundoff and subsequent aliasing
errors.It is found tkat the amplitudes of the Fourier coefficients with nonzero

wavenumber is no more than 102, Since these computations are carried out on

IThe boundary layer thickness is infinitesimally small at the beginning of
computation.
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CRAY supercomputers with 14 significant figures for single precision computations
and that the streamfunction is of unit magnitude, aliasing error in this case is

therefore negligible.

§V.2. Impulsively started flow around a circular cylinder

The comparison with the exact solution of Stokes second problem presented in
the previous section offers validation of the numerical scheme for a simple case in
which nonlinear convective terms are absent in the vorticity equation. Since the
estimate on time-step (based on numerical stability criterion) is based on linear
analysis, the performance of the numerical scheme when nonlinear terms are of
comparable magnitudes with unsteady and viscous terms need to be further
vindicated. Unfortunately, no exact transient solutions to the fully nonlinear
Navier-Stokes equations are available. We therefore turn to a flow problem in
which well established numerical solutions to the full nonlinear Navier-Stokes
equations exist, namely, the flow around circular cylinders.

Many papers have appeared in the last thirty years on the numerical solution to
the two-dimensional laminar flow around circular cylinders. More recent ones
include Fornberg (1985) (for the case of steady translation of cylinder), Ta Phuoc
Loc and Bouard (1985) (for transient unsteady translation from rest), and Badr and
Dennis (1985) (for impulsively started translation and rotation). A review of the
more current work can be found in Lecointe and Piquet (1985).

The numerical scheme discussed in the previous chapter can be modified to
solve for the flow around circular cylinders by choosing a conformal mappiug such
that the circumference of the circle is mapped onto the x-axis. Let Z, and z be
complex coordinates in the physical and the mapped plane such that

z = X +iy (5.2.1)

p p p
and
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and let a be the radius of the circular cylinder. The mapping
1 .
P (5.2.3)
a p
used in conjunction with Fourier decomposition in x (with period 1) guarantees
periodicity for any principle arguments with a range of 27 in cylindrical coordinates

in the physical plane. With physical variables nondimensionalized as
a

t =—1t, (5.2.4)
p
Yo
qbp . UOa v, (5.2.5)
and
Yo
W, =—uw, (5.2.6)
P 3
and dimensionless parameters defined as
UOa
Rc =—, (5.2.7)
v
Kc =1, (5.2.8)
and
s=2, (5.2.9)

the governing equations (3.1.10) and (3.1.11) become
w Wow ow 2 Fw Fuw

—_—t————— = (—+—;) {5.2.10)
0t dy 0x Ox Oy Rc 6x2 By
and
iy &y
—t— = -Juw. (5.2.11)
0x2 6y2
The Jacobian of the mapping defined in (5.2.3) is given by
I(x,y) = 4r°exp(4ry) . (5.2.12)

The far field boundary conditions at Y=Y pax aT€
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oy
— = 4mcos 2mx sinh 27y (5.2.13)

and

Y
— = 47 sin 27x cosh 27Y ax (5.2.14)
dy

which is the potential flow solution at ( ). No-slip condition (3.1.15) on y=0

%5 Ymax
remains unchanged.

Our quantitative results for the case of impulsively started translation of a
circular cylinder is compared with the numerical results in Ta Phuoc Loc (1980) and
the laboratory measurements of Bouard and Coutanceau (1980). In the numerical
computation by Ta Phuoc Loc (1980), symmetry about the diameter in the
direction of translation motion was assumed. Fourth order compact differencing
was used in the streamfunction equation and a second order alternating direction
implicit scheme was used in the time-stepping in the vorticity equation. The
overall accuracy is therefore second-order in space and first-order in time. Further
details in the numerical scheme can be found in Ta Phuoc Loc and Daube (1977).
Note that our numerical scheme may have a higher accuracy since the time-stepping
scheme in Ta Phuoc Loc (1980) is first order while that in our present one is third
order. Furthermore, the time-step used in Ta Phuoc Loc (1980) is 0.033 while that
in ours is around 0.0004.

Visualizations of the flow field in Bonard and Coutanceau (1980) was
accomplished using magnesium cuttings in suspension and illuminated with a sheet
of intense light in a meridian section of the wave tank. Velocity estimates were
based on the lengths of trajectories of individual particles over the duration of
exposure.  Further details of the experimental techniques can be found in
Coutanceau and Bouard (1977a, b).

Comparisons are made at a Reynolds number of 550 for the time range 0<t<5.

The radial velocity along the downstream line of symmetry is plotted from t=1 to 5
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at time intervals of one. Results from our computation are plotted as broken lines
and compared with the laboratory measurements of Bouard and Coutanceau (1980)
in Fig. V.2.1i, and with the numerical solutions of Ta Phuoc Loc (1980) in
Fig. V.2.1.ii. All three results are very much the same at t=1. For 2<t<5 they also
show the same qualitative behavior but the actual values vary slightly. The
numerical solution of Ta Phuoc Loc, for example, are consistently higher than our
results for xp/a. beyond the value at which the velocity in the negative direction are.
The measurements of this radial velocity by Bouard and Coutanceau, on the other
hand, show a steeper rate of increase with xp/a, from less than the values we
obtained to above. Since no two data sets are found to agree better than with the
third, and all three results are very close, we shall not investigate the finite but
small discrepancies any further.

The vorticity distribution on the surface of the cylinder is shown in Fig. V.2.2.
Note that the vorticity function defined in (5.2.11) is opposite in sign to that in Ta
Phuoc Loc (1980). We plot the two sets of results separately for clarity, noting that
there are finite differences between them. The qualitative features are similar, and
the maximum discrepancy is less than 5% of the range of total variation.

The computed flow field around the cylinder (Fig. V.2.3) is compared with the
streak lines of Bouard and Coutanceau (1980) (Fig. V.2.4). Note that their time
unit is nondimensionalized with 2a/U instead of a/U as in (5.2.4) and therefore
their t;ime of 2.5 corresponds to t=>5 in our formulation. It is seen that the locations
of separation, the extent of separation zoues and the directions of velocity at all

locations are in very good agreement.

§V.3. Asymptotic solution to oscillatory flow over ripple bed
Further vindication of the numerical scheme presented in Chapter IV is

accomplished by comparing with an asymptotic solution to the oscillatory flow over
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rippled bed.

It has been discussed in Chapter II that asymptotic solutions of Lyne (1971)
and Kaneko and Honji (1979), valid in the limit of very small (7rsR/4K)% and s
respectively, do not depict separated flows. A different approach was made by Mei
and Hara (1987, personal communication) which extends the convergence of the
asymptotic solution to higher values of s, K, and R. Identical governing equations
and boundary conditions to those in §III.1 are solved by using a perturbation
approach for the same periodic ripples profiles defined in (3.4.2). The
streamfunction was written as an asymptotic series in orders of the ripple slope,

Y= Yy tey + e2¢2 + ot e o, (5.3.1)
where e=ms.

Substituting (5.3.1) into the governing vorticity equation and sorting out the
orders, they solved the increasing orders of streamfunction in succession. Each term
in the series is written in the form

m

b (1) = 5 @M 5 g (y) e 2(2kmx. (5.3.2)
N=-w k=0

8

The infinite series in n is truncated and the complex functions m\IInk(y), n=-M_,

m
—(Mm—l), .y M5 k = 0, ..., m; are then solved simultaneously with finite

m
differencing. The number of harmonics used was chosen such that further increase
in M~ will not change the solgtion significantly.  Note that writing the
streamfunction as (5.3.2) presumes a periodicity in time with the same period as
ambient flow.

This offers a direct comparison of numerical results with the semi-analytical

solution to the Navier-Stokes equation specifically for the flow over ripple beds.

Comparisons were made for the case of s=0.1, R=207=63, and K=4.2 The

2At K=4 and s=0.1, R=63 is near the upper limit at which (5.3.1) is found to
converge when computed up to m=6.

33



asymptotic solution (5.3.1) was computed up to sixth order (m=6) and twenty-four
time harmonics were used in (5.3.2) (M m=24). Variations with y at the two lowest
orders, qu and ¢1, are compared with the Fourier coefficients of the corresponding
wavenumbers at two time instants: when the magnitude of ambient velocity is at its
maximum or minimum. The results are shown in Figs. V.3.1 and V.3.2 for the
zeroth harmonic and Figs. V.3.3 and V.3.4 for the first harmonic. The solid curves
in the plots for the m-th harmonic are the coefficients for cos 2mmx of gl10+ qbl, and
the broken curves are for the coefficients for sin 2mmx. They correspond to
Re {\IJEJ} for m=0 and 2 Re {\I'rr:]j} and -2 Im {\I!;j} for m=1,2, or 3; where \I’Snj
are the Fourier coefficients of the streamfunction in our computation, and is
discussed in detail in §VI.1. Excellent agreement for the two cases is found.
Furthermore, it should be noted that both the vertical extent of computation
(ymaxz3) and the density of grid points used in y (min{Ay}=0.001) are larger in
the asymptotic solution (5.3.1) than those used in our numerical computation,
which are y , »1 and min{Ay}=0.007. The fact that our solution yield the same
result as a computation using a larger and more detailed grid lends further support

to the estimates proposed in §IV.6 and §IV.4 are adequate for an accurate

simulation of the flow field.
In view of the good performance of our numerical scheme for the three different

flow cases compared in this chapter, we shall move on to examine the solutions for

the flow over ripples at different dimensionless flow parameters.
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Chapter VI. Numerical Aspects of Results

Calculations were performed on a Cray-2 supercomputer at the Minnesota
Supercomputing Center in Minneapolis, Minnesota, and a Cray X-MP/24 at the
Naval Research Laboratory in Washington, District of Columbia, both with a single
precision accuracy of 48 binary digits (approximately 14 decimal digits).

A ripple profile defined by (3.4.2) with s=2a/L=0.1 was studied. Three types
of ambient flow were considered: (i) purely sinusoidal oscillation, (ii) steady current,
and (iii) combination of sinusoidal oscillation and current. Their results will be
discussed in Chapters VII, VIII, and IX, respectively. In this chapter we shall
examine the numerical aspects of the results for the case of a purely sinusoidal
ambient oscillation.

All computations were started at t=0 when both the streamiunction and the
vorticity function were defined to be zero at all grid points. The far field velocities

for the three types of ambient flow introduced above are deiined as

(i) Um(t) = H(t) sin 2#t, (6.0.1)
sint/r, 0 <t <4rm
(ii) U (t) ={ (6.0.2)
® 1, irmr <t
and

¢/Ugsint, 0 <t <7/2

(6.0.3)
c/UO, m[2 <t

(1)) U_(1) = H(t) sin 27t + {

where H(t) is the Heaviside step function and r is a constant. Throughout this
chapter, the acceleration (deceleration) phase of the wave cycle refers to the time
when the magnitude of the ambient velocity is increasing (decreasing).

All runs were performed over one ripple length. Increasing the horizontal
extent of computation to several ripples should not alter the spatial periodicity of

the solution unless asymmetries in the initial condition or in adjacent ripple profiles
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were introduced. This was confirmed in the purely oscillatory flow with R=250 and
K=4.5, where the flow fields above each ripple were found to remain the same when
computation was extended over two ripple lengths. Comparisons of these two flow
fields will be omitted here.

Since an increase in the Reynolds number increases the complexity of the flow
field, finer grids and smaller time-steps are also required. To limit computational
expense, the Reynolds numbers studied were limited to 500 and below. A series of
runs were then performed by varying either the Reynolds number or the
Keulegan-Carpenter number while keeping one of the parameters constant. These
dimensionless parameters are within the ranges 2.5<K<12 and 15<R<500, and are
listed in Table VI.1.1. The entries in parentheses are computations for flows with
identical dimensionless parameters but different grids, and serve as tests for
convergence. The case of R=500 and K=4.5 with M=128 is computed only up to
t=2 due to the huge computer cost required.

Further computational aspects of the numerical results will be discussed for the
case defined by (6.0.1). Specifically, the vertical extent of computation, the extent
of aliasing errors, the convergence to periodic solution, and energy balance_ will be
discussed. The discussion for the flows defined by (6.0.2) and (6.0.3) are very

similar and will be included in the corresponding chapters on the results.

§VL1. Vertical extent of computation

As discussed in §IV.6, the vertical extent of computation has to be large enough
such that both viscous effects and the velocity induced by vortical motion become
negligible at the top boundary. The upper boundary in our runs were chosen to be
approximately one ripple length above the mean bed elevation (y m ale), except for
the two extremes of Reynolds number (R=15, 250, and 500) in which y ..

chosen to be two.
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Numerical = confirmation that our choice is indeed sufficient will be
demonstrated by examining the spectra of Fourier coefficients q’r?xj of the

streamfunction 9 defined in (4.1.4) as a function of y, and write

n _ ,n N
‘I’mj = amj'Hbmj‘ (6.1.1)

Since the streamfunction is real, the relationship

Y = \pr‘;j* (6.1.2)
holds and (4.1.4) can be written as
1 M-1
gbﬁj = agj + m£1 (2arl:ljcos 2mmx —2bllrlljsin 2mmx) ) + (—l)k—la’;M’j :
(6.1.3)

The grid points x; and Y; have been defined in (4.1.1) and (4.1.2).

We plot the variables agj and 2ar1111. and -2b__., m=1,2, and 3 as functions of y,

n .

J mj

and refer to them as the cosine and sine coefficients of the m-th harmonic at time
t-! Coefficients of the zeroth harmonic agj are plotted in Fig. VI.1.0.i at a time
when U =1 and Fig. VI.1.0.ii when U =0 for the flow with R=250 and K=4.5.
Similarly the first to third harmonics are presented in Figs. VI.1.1.i,ii to VI.1.3.i,ii.
All harmonics except the zeroth indeed decay to zero at less than one ripple length
above the bed. At large y, the zeroth harmonic increases linearly with y when
Um=1 and approaches a constant wheu Uw=0, which corresponds respectively to a
constant velocity and a zero velocity. The vertical velocity near the upper

boundary therefore vanishes and the horizontal velocity is uniform in both

directions. The choice of Y max is therefore adequate.

IThese coefficients have also been plotted in §V.3 for the flow with R=63 and
K=4.5 in the verification of our numerical scheme with semi—analytical asymptotic
solutions.

91



§VI.2. Aliasing error

It is discussed in §IV.3 that grid spacing in the x direction has to be small
enough such that the aliasing error is small. Since the flow field becomes more
complex at higher Reynolds numbers, the amplitudes of the Fourier coefficients at
high wavenumbers increase accordingly. The number of grid points used therefore
increases from 16 for R<100 to 32 for 125¢R<250 and 64 at R=>500. This growth of
the Fourier coefficients at high wavenumbers is demonstrated in Fig V1.2.1 and
VI.2.2 for R=15 and 250 zespectively, both with K=4.5. The Fourier spectra of the
streamfunctions I\Prl;ljl defined in (4.1.4) at various values of y are plotted at two
instants: when the ambient velocity is at its peak and when it is instantaneously at
rest. The decay of Iq’rrrlljl with wavenumber is much slower at the higher Reynolds
number.

It was stated in §IV.3 that, when convergence is achieved, then, for fixed n and

j, the maximum of |(im27r)2

‘I'rrrlljl for wavenumbers 27m in the range (4Q,Q) is less
than 30% of that in (0,4Q), and that |Q2lI!§M’j| is less than 10% of the maximum
of |(im27r)2\1131j| for 27m in the range (0,4Q), where Q is the Nyquist frequency
(wavenumber). We now show the evidence. The magnitudes |m2\1131j| are used
because they correspond to IQrIrl1j| and are plotted in Fig. VI.2.3 for the flow with
R=250 and K=4.5 with M=32 (m=16). This observation is found to be common
for the five different values of y examined. As an evidence that aliasing error is
indeed small, we plot the new values of |m2\]?§lj| for M=64 at the same instancs
t:=19.75 and 20 and at approximately the same elevations yj in Fig. VI.2.4. The
magnitudes with m in the range (8,16), which corresponds to (%Q,Q) in the previous
case of M=32, are not any smaller than the results computed using M=64. As a
further demonstration, the shear stress on the ripple surface deduced from the two

results (with M=32, 64) is plotted in Figs. V1.2.5 and VI.2.6. The agreement is

excellent. The resolution using thirty-two grid points is therefore adequate for the
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flow with R=250 and K=4.5.

On the other hand, considerable differences are found between the results with
M=32 and 64 for the flow with R=500 and K=4.5, and the amplitudes of |m2lllr?1j|
are found to be of the same order of magnitude over the entire range 0<m<4{M in
the computation with the coarser grid. An accurate numerical solution for this flow
therefore requires at least 64 grid points in the x direction. The test on convergence
is carried only up to t=2 due to the huge computer cost in the computations with
M=128.2 Nevertheless, observations (i) and (ii) described in §IV.3 are found to hold
up to the end of computation at t=20 with M=64, and is shown in Fig. VI.2.7.
Although definite proof is lacking, this may suggest that the accuracy of the results

in this case is acceptable with M=64.

As an aside, Figs. VI.2.1 and VI.2.2 also serve as an estimate of the
convergence of the perturbation solution of oscillatory flow over ripple beds.
Although different smallness parameters have been used by earlier authors:
ay(m/vT) by Lyne (1971), 2ra/L by Sleath (1974), and UOT/Lvr by Kaneko and
Honji (1979), the m-th order solution always introduces a new m-th harmonic in x
of the form cos 2mmx and sin 2mmx, which corresponds to the m-th Fourier
coefficients of the streamfunction in (4.1.4). At a Reynolds number of 250, the
amplitude of the fifth harmonic is roughly one-tenth that of the first harmonic, and
therefore at least a fifth order solution is needed in the asymptotic solution such
that the first truncated term in the asymptotic expansion is less than one-tenth of
the zeroth-order term. At R=15, on the other hand, only a first-order solution is

needed for the same accuracy.

2For M=128 and N=96, over one CPU-hour is required per wave period of
computation.
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§VIL.3. Convergence to periodic solution

Before we examine the convergence to periodic solutions in the flows studied, it
should be noted that the dimensionless amplitude of fluctuation of the
streamfunction approximately equals the vertical extent Y max of computation,
which varies between one and two in our runs. It can be deduced from the flow rate
across any vertical cross section along the ripple profile, and a rough estimate can
be obtained from the potential flow solution which gives ¢szwy max- This gives
the datum for judging the departure from periodicity using the variation in the
streamfunction from one wave period to the next discussed in §4.7. Since Y max> !
and thus ||1,/)w||>1 in all our computations, difference in the streamfunction values
one wave period apart are insignificant if they are of a magnitude less than 0.001.
This suggests that the solutions can be considered periodic if & is smaller than
0.001.

The variables &, and & defined in (4.7.2), the mean and maximum of this
departure, are plotted in Figs. VI.3.1 and VI.3.2 for the cases R=63, K=4 and
R=250, K=4.5. As the Reynolds number increases, the computation has to be
extended to a larger t before convergence to a periodic solution is achieved. The
variable é’m has dropped below 10 3 after less than ten periods of computation for
the flow with R=63 and K=4, while thirty periods have elapsed before the same
convergence is reached in the flow with R=250 and K=4.5. This increase in the
time for convergence is considerably higher than the estimate of (4.7.3).

We have also compared the rates of energy dissipation and the shear stress on
the ripple for R=250 and K=4.5 in the intervals 19<t<20 and 29<t<30. They are
found to agree to within 1% of the magnitude of the functions. The rate of energy
dissipation between t=20 and 30 has been examined and found to be periodic.
From Fig. V1.3.2, the values of é’w in these two time intervals are approximately

0.01 and 0.001 respectively. This suggests that solutions at a time when ¢ <0.01
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are representative of the final periodic solutions. This condition is less restrictive
than the requirement of 8m<0.001 proposed at the beginning of this section.

For the flow at R=500, the difference in the streamfunction at two instants
exactly one period apart no longer decrease monotonously with time but remain at
some finite values. This departure is evident from Fig. VI.3.3, in which &, and g,
remain above 0.01 after twenty periods of computation and show no tendency of
decreasing. Aside from an earlier report by Sleath (1982) for an oscillatory flow
over a ripple bed,3 we are not aware of other reports of aperiodic solutions in
oscillatory flows. This phenomenon is therefore of much interest if it can be proved
beyond doubts. Unfortunately, the most reliable test of numerical accuracy, that of
convergence with decreasing grid size, has been performed for only two periods due
to the limitation on computer time for the case aperiodicity is observed. This,
together with the high frequency oscillations found in the rate of change in kinetic
energy in the test on the conservation of energy to be discussed in the next section,
force us to view this result with reservations.

In the results reported in Chapter VII, solutions at a time when é“w<0.01 are
accepted as final for cases in which 6’00 decreases monotonously. Otherwise we shall
present solutions after a time when 5’00 decreases no further. At R=500 and K=4.5,
this finite value of gw does not exceed 0.1. The variations of various integrated
values, for example the rate of energy dissipation and the pressure distribution
along the ripple surface, do not change by more than 5% of its mean value.

It is possible that b’w will increase further with R, leading ultimately to chaos or
turbulence. This agrees with the views expressed in some experimental studies on

flow over ripple beds, where turbulence is defined as variabilities in the flow fields

30ur reservations on the accuracy of the numerical solution reported by Sleath has
been discussed in §I1.3 and §VIL6.2.1. The aperiodic behavior may therefore not be
a true characteristic of the flows he examined.
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from one wave period to the next (for example Sleath, 1974 and Kemp and Simons,
1982). Since a great amount of computer time would be needed to explore these

possibilities, flows at higher Reynolds numbers will not be pursued here.

§VI.4. Energy balance

The numerical accuracy of the solution is checked by considering energy
conservation in the flow field. For an incompressible Newtonian fluid in the absence
of net changes in potential energy and net work done through shear stresses at the
boundaries, the rate of pressure work done £on a material volume equals the sum
of the rate of change in kinetic energy J¥and the rate of energy dissipation 2 In a
spatially periodic flow, the material volume can be replaced by a fixed control
volume spanning one ripple length, and the mathematical expression of these
quantities in terms of the streamfunction and vorticity function have been derived
in §I11.3. From (3.3.11), the equation for energy budget can be written as

du 1 d

1 y 1 S Ymax 1 9
—p —2— [y U + [Ty [ dx Ty -— dy [ dx Jw
K ®dt 2Kdt ®° f(; j(.) R‘/;J ‘/(;

=0 (6.4.1)
in which the first, second, and third term correspond to % %, and Zrespectively.
Since the values of £ and % are an order of magnitude larger than 2 and
increase monotonously with the vertical extent of the control volume, the
differences 5”1=9-5’p and .%1:;7&%[), where ﬂp and ¥ s are the values of Land ¥
in the corresponding potential flow, will be studied instead. The values of £and &

in potential flows are given by

P = = -2 - i 4.
b ‘Xp medt Kymax31n47n (6.4.2)
for U =sin 27t.

a

The functions .9’1, .%1, 9, and
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A = .5”1-.7{1-.9 (6.4.3)
are plotted for three flow cases with K=4.5 and R=50, 125, and 500 in Figs. VI1.4.1
to VI.4.3. The vertical scale is in units of ?ZS'=%,/(7rs/KR), which is the mean rate
of energy dissipation of the corresponding flow over a plane bed.

The agreement on energy balance is excellent for the case with the lowest
Reynolds numbers of 50, Fig. VI.4.1. When R is increased to 125, Fig. V1.4.2,
however, the value of A assumes finite values and varies from zero to up to 15% of
the amplitude of energy dissipation. The disagreement gets worse when R=500,
Fig. V1.4.3, in which the magnitude of the error A is comprable to the amplitude of
& This discrepancy is large at the same instants as high frequency oscillations in
.7?1, and since the magnitudes of the individual 'bursts' of finite A approximately
equal the "jaggedness" of Ju’l, the latter appears to be the cause of the discrepancy.

There are two likely reasons for the inaccuracy in computed values of .%1, or K
(i) error in taking the time derivative, and/or (ii) error in the two-dimensional
integration of the function Jyw in (3.3.10). A third-order one-sided difference
scheme has been used to approximate the time-derivative, and comparisons with
second-order and fourth-order time-derivatives show negligible differnces which are
much less than the magnitudé of the discepancy. The first possibility is therefore
ruled out.

The integral of function Jyw is computed with a numerical quadrature scheme
based on a bicubic spline intrapolation, implemented with an International

Mathematics and Statistics Library (IMSL) subroutine DBCQDU. For a natural

4The other possibility, of course, is that the computed values of ¢, and thus w, are
inaccurate. This is unlikely for two counts. Firstly, erratic behavior is limited only
to the computed values of J% but not the other two functions A and 2, even
though all three functions are computed from the values of ¢ and w. Secondly,
numerical instabilities and aliasing error and, to a lesser degree, truncation and
roundoff errors, usually grow in time. It is found, however, that the error A in the
very first period of computation is roughly of the same magnitude as that after
twenty periods of computation.
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X2
one-dimensional cubic spline, the error in f dx f(x) is bounded by
X1

X2 26204 o : ,
(xgx,)Ax{Ax f dx [d;] }? (Ralston & Rabinowitz, 1978). A sizable error is
X1

therefore possible if high frequency fluctuations are present in the integrand.

To demonstrate that the inaccuracy in the numerical quadrature in (3.3.10) is
indeed the cause of the discrepancy, we will show that a reduction in the grid sizc
leads to a smoother function Ju’l and decreases the error A, while leaving the other
hydrodynamic quantities unchanged. The error A for the flow with R=500 is
therefore computed from the values of 5"1, .7»’1, and 9 obtained, at a great expense
of computer time, and for 0<t<2 only using grid spacings in x one half of the
original. It is shown in Fig. VI.4.4 and the magnitude of the error estimate A
indeed diminishes considerably to under 8% of the amplitude of 21 Note that the
curves of A and Yremain unchanged.

To confirm that this improvement is due to better accuracy in the computed
values of J (or %)) but not different streamfunction values, the shear stresses on
the ripple surface from computations using grids of M=64, N=72 and M=128, N=96
are plotted in Figs. VI.4.5 and VI.4.6, and the agreement is excellent. This
comparison also serves to demonstrate the convergence of the numerical solutions.

As a further demonstration that the error in the computed values of the time
rate of change in the kinetic energy is not due to numerical inaccuracies in 9 and w,
the results from using M=64 are plotted in Fig. VI.4.7 after twenty periods of
computation. The amplitudes of these high frequency oscillations are found to be
no larger than those at the beginning of computation shown in Fig. VI1.4.3.

As a matter of fact, this problem is also found in the flow with R=250 and
K=4.5 using M=32, which has shown to be accurate in §V1.3. Similar oscillations
in % are found (Fig. VI1.4.8) at a time when the solution has become periodic in

time. Furthcr proofs that the solutions for R=250 and K=4.5 using M=32 is in

98



order here. The rates of pressure work .9’1, change in kinetic energy J»’l, and viscous
dissipation 9 at 18<t<20 from the two resulis, using M=32 and M=64, are plotted
in Figs. VI.4.9 and VI.4.10. Once again, both A and Zin the two computations
are the same, and the high frequency oscillations in .}5’1 from the results using M=32
are smoothed out at the corresponding instants in the results using M=64.

That energy balance is not satisfied at high R is therefore due to inaccuracies in
the numerical quadrature of J& but not errors in 9 or w and does not seem fatal.
Since % can be obtained from the difference between £ and 2, and that both
functions can be computed accurately by considering energy balance, no further
attempts will be made to improve the estimate of J& at higher Reynolds numbers

using (3.3.10).
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Table VI.1.1.  Computational data s =20.1

(1)
K

s e
o «ci W

R
Q—U‘

PO wW A O
gl oo ot OWw

B~ OO Ao

o oco*

—~~
N
N’

(3)

o
o w;

Purely oscillatory ambient flow

R M N Yoax AYmin

15 16 31 2.056 0.0124
50 16 29 1.11  0.0081
63 16 28 1.07  0.0069

100 16 29 1.11  0.0081
l 32 39 1.09  0.0058

125 32 39 1.08  0.0052
1.06  0.0050

—
-——
e
[y

150 32 39 1.10  0.0047

175 32 49 1.01  0.0036
38 1.02  0.0044
43 1.34  0.0052
37 1.31 0.0062
45 1.33  0.0071

250 32 51 1.06 0.0034
l o7 2.08  0.0036

64 62 2.00 0.0036

32 o0 2.08 0.0042

l 42 2.16 0.0052

500 64 72 2.03 0.0026
l 128 96 2.03 0.0026

Purely oscillatory ambient flow Rc = 250, 1000

M N Ay

Ymax min

32 a7 2.08 0.0036

Combination of wave and current

R M N yyaw AYmin

250 32 57  2.08 0.0036
| | 42  2.16  0.0052

100

Ayma.x

0.151

AY rax

0.151
0.223

¢/Ug

1,2,4
1
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Chapter VIL. Results for a Purely Oscillatory Ambient Flow

In this chapter we shall examine the results for a purely oscillatory ambient
flow over a ripple bed. A list of the flows studied has been given in Table VI.1,
from which only representative cases will be presented.

The solutions examined are chosen at a time after they have become periodic
for low Reynolds number flows, or after the transient effects of the impulsive start
have subsided for flows at high Reynolds numbers or Keulegan-Carpenter numbers.
Quantitatively, this criterion corresponds to when & defined in (4.7.2) has
‘decreased to less than 0.01 or has ceased to decrease, and has been discussed in
detail in §IV.7 and §VI.3. We should emphasize at this point that the results for
R=500 and K=4.5 are only tentative. This has been discussed at length in Chapter
VI

In §VII.1 and §VIL.2 we shall discuss the variations of the velocity field and the
rate of energy dissipation with dimensionless parameters R and K. In §VIL.3 to
§VIL5 the variations of hydrodynamic stresses on the ripple: the sheai stress, the
pressure force, and the horizontal force will be examined. In §VII.6 the computed
rate of energy dissipation and horizontal force will be used to deduce the friction
factor and compared with values in the literature.

Even though periodic solutions, if they do exist, have not been attained in flows
at high dimensionless numbers, the maximum variations of these hydrodynamic
stresses and energy dissipation are within 5% of their mean values. An example of
this fluctuation will be presented for the energy dissipation in a wave period in

§VIL2.

§VIL.1. The velocity field

Flow visualizations of separated flow over ripples have been reported in
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Bagnold (1946), Honji and Matsunaga (1979), and Honji et al (1980). Prominent
vortices of a size comparable to the length scale of the ripples are found during part
of the wave cycle in all three cases.

Velocity measurements in turbulent flows immediately above the ripple bed
have been made by Du Toit and Sleath (1981) for waves and Tanaka and Shuto
(1987) for combined wave and current over asymmetric ripples.

The velocity fields over a wave period have also been obtained from the
numerical solutions of Sleath (1973) et seq and Sato et al (1984) using finite
differencing schemes and Aydin and Shuto (1985) using a 'cloud-in—cell' formulation
based on a potential flow model. However, aside from a qualitative description on
the effects of varying the Keulegan-Carpenter number on vortex shedding in
Bagnold (1946), a systematic study on how the flow characteristics vary with the
dimensionless parameters K and R does not appear to have been presented.

In our computations, the velocity components at the grid points are calculated
from streamfunction values in the mapped plane using (3.1.12) and second-order
finite-differencing in both x and y derivatives. The beginning of all velocity vectors
(at the grid points) are marked by a dot.

Two different scales are used for the velocity vectors, and the magnitude of the
instantaneous far field velocity is drawn in the caption. Only the flow field
immediately above the ripples where there are noticeable differences from the
potential flow is plotted. The velocity fields above adjacent ripples are identical
due to periodicity.

In all velocity plots in this thesis, the domain is defined horizontally by two
adjacent crests, and vertically from the ripple surface to ypz0.4L. From the
periodicity in x, the right of the ripple crest on the left of the plot is the same as
that of the ripple crest on the right, and so on. Therefore, when we refer to 'the

crest', we mean any crest.
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As a reference, the sinusoidal ambient veloctiy Um(t)=sin 2wt is 0, 1, 0, -1 at
t=P, P+4, P+4, and P+3/4 respectively, where P is the number of wave periods
since the start of computation. At low Reynolds numbers the solutions are periodic,
that is,

Up(xp¥prtptT) = Up(p¥pitp)
and

= t 7.1.1

and except at the highest R's studied, the flow pictures in the two half periods are

symmetric, that is,

Yoot )

— 1 1l = -
up(L xp,y ,np+2T) up(x ptp

p p

and

vp(L-xp,yp,tp+§T) = vp(xp,yp,tp) . (7.1.2)
Hence we present only the velocity fields in the second half of the wave period when
the flow is from right to left (in the negative X, direction).

We first examine the effects of increasing the Reynolds number at a constant
Keulegan-Carpenter number. Specifically, the flows at R=15 and 175 with K=4.5
will be discussed. Two other Keulegan-Carpenter numbers, at K=2.5 and 12, will
also be presented.

For later reference, we recall the flow field over a plane bed under an oscillatory

far field velocity discussed in §V.1. The periodic horizontal velocity profile

immediately above the plane bed can be approximated from (5.1.1) to give
T

u(y, t) Py sin(27t + -) (7.1.3)
4
for
2mR | T
0 < fy=(—)"y << -.
sK 2

This near-bed velocity leads the phase of ambient flow by one-eighth of a wave

period, as is apparent in the velocity plots in Figs. V.1.1 and V.1.2.
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§VIL1.1. Flow field at R=15, K=4.5

This case serves to demonstrate that vortices are present at a very low
Reynolds number. The velocity field in the second half of the thirtieth wave period
from the start of computation, that is, from t=P+0.5 to t=P+1 with P=29 are
plotted at time intervals of 0.1 in Fig. VII.1.1. The ambient flow is from right to
left during this period.

At the beginning of the half period (t=P+0.5), a single weak residual vortex is
found over the trough and two ripple heights above the ripple crest. The velocity
profiles immediately above the bed are to the left and are similar along the ripple
profile and vanish as y increases, reminiscent of the phase lead in the oscillatory
flow over a plane bed (Fig. VILL.1.i). As the ambient flow U_(t) increases, the
residual vortex is overwhelmed by the ambient flow and disappears. Throughout
this accelerating phase, the velocity profiles extending away from the ripple bed
consist of three sections: a linear, a parabolic, and a uniform region (t=P+0.6 and
peak, a reverse flow immediately downstream of the ripple crest appears close to the
bottom boundary (t=P+0.8, Fig. VIL.1.1.iv) and develops into a distinct vortex
spanning three—quarters of the length of the ripple (t=P+0.9, Fig. VII.1.1.v), and
by t=P+1 this vortex has climbed above the ripple crests (Fig. VII.1.1.vi). The
velocity field is now exactly symmetric to the instant half a wave period earlier
(Fig. VII.1.1.i), and the flow picture continues to evolve in the same manner as in

the previous half period.

§VIL.1.2. Flow field at R=175, K=4.5
The flow field becomes more complex when the Reynolds number is increased to
175. The velocity field in the second half of the nineteenth period from the start of

computation is shown in Fig. VII.1.2 at one-twentieth of a wave period intervals.
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When the far field velocity is zero at t=P+0.5, where P=18, two distinct
vortices are present over the ripple (Fig. VIL.1.2.i). The stronger and lower of the
two, with a clockwise rotation, was generated in the preceeding half period when the
ambient flow was from left to right, and is one-third of a ripple length to the right
of the ripple crest. A high velocity gradient is found between its center and the
ripple surface. The weaker vortex with a counter-clockwise rotation is further away
from the bed above the trough. A phase lead in the velocity immediately above the
ripple surface similar to that of the oscillatory flow over a plane bed described in
§VIL.1.1 is found.

As the ambient flow increases leftward, the vortices become embedded in the
ambient flow, distorting the streamlines in their vicinity (Fig. VII.1.2.ii). As in the
previous case, the entire flow field has become unidirectional Dy t=P+0.6
(Fig. VIL1.2.ili). At t=P+0.65, sharp velocity gradients appear immediately
downstream of the crest indicating the beginning of a new vortex (Fig. VIL.1.2.iv).
The flow picture remains unchanged until past the peak in the ambient velocity at
t=P+0.75 (Figs. VIL.1.2.v, vi).

As the ambient flow decelerates, a distinct vortex appears at t=P+0.8 on the
downstream side of the ripple crest (Fig. VII.1.2.vii) which grows in size and moves
further downstream (Figs. VII.1.2.viii, ix). At around t=P+0.95 it has reversed its
movement back towards the crest while rising slightly from the ripple bed
(Fig. VIL.1.2.x). This new vortex has so far been the only vortex visible since the
beginning of the half cycle. The near bed velocity profiles away from the vortex
have also reversed in direction, leading the ambient velocity in phase reminiscent of
oscillatory flow over plane beds.

As the far field velocity diminishes to zero, this new vortex has risen above but
is still downstream of the ripple crest. A weaker counter-clockwise vortex appears

directly above the ripple crest (Fig. VII.1.2.xi). The asymmetry of the flow field in
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the two half periods is now most visible when the ambient flow is at rest, at
t-P=0.5 and 1. In each case the vortex generated in that half period is at about
one-third of a ripple length from the crest at which it develops, but the locations of
the 'free-vortices' are different. At t=P-+0.5 it is above the ripple trough while at
t=P+1 it is above the crest. The flow picture during the rest of the wave period,
however, are very much symmetrical.

The flow field becomes increasingly asymmetric when the Reynolds number is
increased to 250 due to the increased strengths of the vortices generated. The
evolution of the velocity field, however, remains qualitatively the same and

therefore will not be presented here.

Velocity difference from potential flow

It is clear from Fig. VIL.1.2 that, during most of the wave period, the velocity
gradient is high only in a thin boundary layer immediately above the ripple surface
where viscous diffusion is important. The vortices in the flow field, on the other
hand, are well above the ripple bed subsequent to the half periods they are
generated. Their dynamics are therefore essentially inviscid and dominated by
convection. Since the vortices induce velocities of a smaller magnitude than the
ambient flow, they are overwhelmed during most of the wave period. To help

visualize these vortices, we plot in Fig. VII.1.3 the difference between the computed

potential’ V_vpotentia])’ for the same instants

and the potential flow velocity, (i-u
as in Fig. VIL.1.2.
The potential flow velocity is given by

d(x+iy)

Upotential ~' Vpotential ~ U, (t)

— Uw(t) [(l—nse-zﬂcos 2mx) + i(7rse_27rysin 2mx)]

1+ wzs2e-4 ™_9 nse'2"ycos 27x

d(X+i§)
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(7.1.4)
for x, y, %, and ¥ defined in (3.4.1). This velocity difference will therefore display
the rotational part of the flow field as vortices with closed streamlines. However,
the vortices seen in the original velocity field will be distorted and displaced but the
sense of rotation, and hence tle qualitative features, should not be altered.

The scale of velocity vectors in Fig. VIL.1.3 is twice that in Fig. VIL.1.2. The
vortex with an anti-clockwise rotation (labeled 1) above the ripple trough at
t=P+0.5, while subsequently obscured by the ambient flow in the original plots of
velocity vectors in Figs. VII.1.2.ii to x, can now be seen in Fig. VIL.1.3 throughout
the entire half period. It moves steadily in the direction of the ambient flow, and is
at the next trough downstream by t=P+0.8 (Figs. VII.1.3.i to vii). By the end of
the half period it has travelled to the left by over one and a half ripple length to the
far crest of the ripple downstream.

Also present at the start of the half period, vortex 2 has a clockwise circulation,
is closer to the ripple bed, and exhibits a similar type of movement downstream. It
appears distorted and displaced because of the removal of the corresponding
potensial velocity. Between t=P+0.6 and t=P+0.65 (Figs. VIL.1.3.iii and iv) it
climbs over the ripple crest where it developed and continues to move horizontally
downstream.

A third vortex (labeled 3) is generated immediately downstream of the ripple
crest at t=P+0.8 when the ambient velocity starts to decrease (Fig. VII.1.3.vii).
This vortex can also be found in Fig. VIL.1.2.vii. By t=P+0.85 this new vortex has
grown considerably in size while moving away from the crest. Vortex 2 has now
disappeared. The newly generated vortex is found furthest away from the crest at
t=P+0.9 (Fig. VIL.1.3.ix), and drifts back towards the crest as the ambient flow
decreases to zero (Figs. VII.1.3.x and xi). This backward drift is analogous to the

velocity induced by a clockwise image vortex on the other side of the solid
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boundary.

§VIL.1.3. Flow fielu at R=500, K=4.5 (tentativ~)

At R=500 the velocity field is both asymmetric and aperiodic.! Despite that
the detailed {lcw field increases in complexity as the Reynolds number increases, the
evolution of vortices remains qualitatively similar to the flow at R=175. Therefore,
only six snapshots of the flow picture, two each at the same instants during
deceleration of the ambient flow over three consecutive half periods, are presented
for R=500 and K=4.5 in Fig. VII.1.4.

Figures. VII.1.4.i and VII.1.4.v are both taken at the same phase of two
successive wave periods, at t-P=0.875 in which P=18 and 19 respectively. The
shapes of the vortices generated downstream of the ripple crests are noticeabfy
different, and the one in Fig. VII.1.4.i is flatter and further away from the crest.
The distortions in the streamlines further away from the ripple surface are also
found at different locations.2

The aperiodicity is most significant when the ambient velocity is
instantaneously at rest, and are plotted in Figs. VIL.1.4.ii and vi at t-P=1, P=18
and 19 respectively. The locations of the two vortices immediately above the ripple
bed are further away from the crest on the right in Fig. VIL.1.4.vi. In addition, a
third vortex is found about one-fifth a ripple length to the right and three ripple
heights above the ripple crest on the left in Fig. VIL.1.4.ii, while none is found in
VIL.1.4.vi. There are indications in both figures that there are more vortices further
away from the bed, but they are considerably weaker.

Similarly, asymmetries in the flow field are apparent when we compare

The definitions for a periodic and a symmetric flow field are given in (7.1.1) and
(7.1.2) respectively.

2These distortions are, from the discussion of Fig. VII.1.3, due to the presence of
vortices generated earlier.
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Figs. VIL.1.4.iii and VII.1.4.iv with Figs. VII.1.4.v and VII.1.4.vi. The first two are
in the first half of the twentieth period and the last two are at exactly half a wave
period later. In particular, the flow picture at t-P=0.5 is drastically different from

a mirror image of the one at t=1.

§VII.1.3. Flow field at R=250, K=2.5

In §VIL.1.1 we showed that vortical flows are present even at a very low
Reynolds number. = We shall now show that the same is true when the
Keulegan-Carpenter number is small. Two snapshots of the flow field at t=P+0.9
and P+1, where P=10, with K=2.5 and R=250 are plotted in Fig. VII.1.5. The
vortex, even though much smaller and weaker than the ones generated in flows at

higher K's, is clearly visible.

§VIL.1.4. Flow field at R=175, K=12

The vortices in flows with higher Keulegan-Carpenter numbers develop earlier
in the wave period and moves further downstream away from the crest during its
generation. This is shown in Fig. VIL.1.6 for t=P+0.7 and t=P+0.9, P=9. As a
comparison, recall from §VII.1.2 that reverse flows at the lee of the ripple crests do
not appear until t=P+0.8, and the vortices do not drift further than one-third of a
ripple length from the crest. In the present case, on the other hand, a vortex has
appeared by t=P+0.7 and is found at about two-thirds of a ripple length
downstream from the crest at t=P+0.9 before it moves back towards the crest

upstream.

Summary
We have shown that vortical flows are present during part of the period in all

the flow cases discussed, even at the very low Reynolds number of 15 and
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Keulegan-Carpenter number of 2.5 for ripples with a mild slope of 0.1. The velocity
immediately above the bed leads the ambient velocity in phase along the entire
ripple profile, and this phase lead becomes especially prominent when the far field
velocity is near zero, when the flow immediately above the ripple has reversed.

At a moderately large Reynolds number, new vortices are generated on the lees
of the ripple crests during the deceleration of the ambient velocity. These vortices
are then convected horizontally by the ambient flow and rise above the ripple
surface. The horizontal excursions can be greater than a ripple length in subsequent
wave periods before they eventually dissipate.

Only one vortex is generated per half period, and for K<6, this vortex first
appears during the deceleration of the ambient flow. The flow pattern reported as
vortex-pairing in visualization experiments (Bagnold, 1946; Tunstall and Inman,
1975), in which two vortices generated in succeeding half periods get into close
vicinity and moves away from the bed together, is not observed for the range of R
and K studied. Instead, vortices already present at the beginning of the half periods
(at t=P or t=P+4} where P is an integer) are overwhelmed by the ambient flow as
the latter increases from rest. Embedded in the ambient flow, they can move
horizontally over a considerable distance over a half period and dissipate within a
couple of wave periods. The newly created vortices are confined to immediately
downstream of the crest during their development stages.

As R increases, the flow increases in complexity and the vortices generated
increase in strengths. At the highest Reynolds numbers studied, the flow appears
both aperiodic and asymmetric over succeeding half periods. If confirmed by more
refined calculations, we envision that these fluctuations would increase further with
Reynolds number, leading eventually to turbulent flows.

As K increases, the vortices generated at the ripple crest move further

downstream and occupy a bigger portion of the trough, and the new vortices appear
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earlier in the wave period. These observations are expected, since increasing K

while keeping R constant can be viewed as increasing the wave period alone.

§VII.2. Energy dissipation

The sharp velocity gradient associated with vortical flow fields increases the
rate of viscous dissipation, and an estimate of this energy loss is essential in the
study of wave attenuation over ripples in water of finite depth., Experimental
measurements of this energy dissipation have also been used to estimate the friction
factor, an empirical parameter widely used in the study of flows over rough bottoms
and will be discussed in §VIIL.6.

The rate of energy dissipation over one ripple length of the flow domain is, from

(3.3.9), given by

5 . Ymax 1 9
9 = — dy [ dxJw”, (7.2.1)
wh v

and the double integral is calculated using an IMSL bicubic spline quadrature
subroutine, DBCQDU. The variations in the rate of energy dissipation for R=15,
100, 175, 250, and 500 at K=4.5, and the variation of & for K=4.5 and 9 at R=250
are presented below.

As a comparison, the rate of energy dissipation in the oscillatory flow over a

plane bed, given by

I 7s | 1 m
_@S = E(EIZ)Q {1 + ESIH [27{'(2t) "Z]}
1
= 7, {1 +;2—sin [21r(2t.)-;—r]}, (7.2.2)

is plotted as a broken curve in plots of the computed rate of energy dissipation.
Equation (7.2.2) is obtained by substituting wg = (6up/6yp)2 from (5.1.2) into the

integral

128



g = 1—fwdyp pv wp2. (7.2.3)
pU03 0
The maxima and minima of 9. lead the maxima and the minima in the magnitude
of ambient velocity by one-sixteenth of a wave period, and fluctuates up to £71% of
its mean value of F=4/m[RK .

When the Reynolds number is low (R=15 and K=4.5. Fig. VII.2.1), the rate of
energy dissipation & varies very nearly sinusoidally, with its maxima and minima
occuring at the same instants but with a magnitude 10% (at the maxima) to 21%
(at the minima) higher than the maxima and minima in flows over a plane bed. As
can be seen from the velocity field discussed in §VIIL1, the higher rate of energy
dissipation of flow over ripples during the accelerating phase of the ambient flow is
due to the higher velocity gradient above the ripple crests (Fig. VIL.1.1.ii). When
the ambient flow is small, @ is higher than 9. due to the vortical flow
(Fig. VIL1.Liv). The rate of energy dissipation at low Keulegan-Carpenter
numbers, for example at K=2.5 and R=250, is very much similar, with the ratios of
the magnitudes of 9 and <, higher at 1.15 and 1.79 at their maxima and minima,

As the Reynolds number increases, the rate of energy dissipation begins to
deviate from a sinusoidal variation with time. At R=100 and K=4.5 (Fig.VIL2.2),
the phase lead between the maxima in .9 and the maxima in the ambient velocity
has increased to one-eighth of a wave period, while the minima in @ occur
one-sixteenth of a period before the instants of zero ambient velocity as in the case
of Z. The magnitude of @ also increases to from 21% (at their maxima) to 113%
(at their minima) larger than .. This difference is due to the stronger vortices
generated with increasing Reynolds number and will be examined further at the end
of this section.

The rate of energy dissipation in the two half periods becomes different with

further increase in Reynolds number to 175 (and K=4.5, Fig. VI.2.3), and the
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asymmetry increases when R=250 and K=4.5 (Fig. VII.2.4). Nevertheless, & is
periodic in both cases. The difference between & and 9, increases especially at
their minima, where & is three times that of Z in both cases. Even though this
difference in & between the two half periods depends on the initial condition
imposed in our calculation, a qualitative prediction of this asymmetry is not
apparent. For example, the total dissipation in the second half period 0.5<t-P<1 is
slightly lower than the first half period for R=175 while it is noticeably higher for
R=250.

At still higher Reynolds numbers (R=500 and K=4.5, Fig. VII.2.5) or
Keulegan-Carpenter numbers (R=250 and K=9, Fig. VIL.2.6), the rate of energy
dissipation is no longer periodic and becomes very irregular.3 Muitiple maxima in
are found in the same half period. The difference between & and A is directly
related to the strengths of the vortices in the separated flow field.4 We have seen in
§VIL1 that the strengths and trajectories of the vortices vary from period to period
at high Reynolds number, and the flow field they induce therefore varies
accordingly, leading to a highly irregular behavior in the rate of energy dissipation.
The difference bctween & and .@js also becomes more pronounced.

To demonstrate further the aperiodicity at high R or K, the mean energy

dissipation over one wave period is plotted as a function of time. The value of

3Both figures are for values after only twenty periods of computation, which is even
less than the thirty periods it takes for the flow at R=250 to reach a periodic
solution. The reason for not extending the computation has been explained in
length in §VI.3. Furthermore, the results for R=500 and K=4.5 have to be taken
with reservation since the convergence test using a finer grid has not been
performed to a long time, and the tests on the energy balance for this case suggests
a possibility of inaccuracy. The discussion in §V1.4, however, shows evidences that
the results are accurate.

4The ratio of the two energy dissipations over a wave period, & /@, which equals
fe/fg as discussed in §VII.6, is listed in Table VII.6.2.
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P+1
T (P+4) =j; it 9, (7.2.4)

where P is the number of periods from the beginning of computation, for flows with
K=4.5 and R increasing from 100 to 500 is shown in Fig. VIL.2.7, and those for
flows with R=250 and K increasing from 2.5 to 9 is presented in Fig. VII.2.8. The

fluctuation of @ with time increase with R and K, up to nearly 10% of their mean

values at the highest Reynolds number studied.

§VIL.3. Shear stress on ripple surface

In the following three sections we shall examine the hydrodynamic forces acting
on the ripple surface: the shear stress, the pressure (§VIL.4), and the horizontal
force on a ripple (§VIL5).

The distribution of tangential shear stress at the ripple surface is of primary
interest in the study of sediment transport in ripple beds, and is the determining
factor in the bed load transport. Furthermore, since the shear stress is proportional
to the velocity gradient at the ripple surface, sign changes in the shear stress
indicate the locations of separation. Despite its significance, a detailed exposition
on how the shear stress distribution varies within a wave period for different
combinations of dimensionless parameters does not appear to have been reported in
the literature.

The nondimensional shear stress 7 defined in (3.2.17) will be plotted. For
comparison, the shear stress above a plane bed under an oscillatory ambient

velocity can be obtained from (5.1.2),

du TS y 27ty T
ov—L = pU % (2—) exp(- ) sin(—L -2 + ) (7.3.1)
by, RK b, T 8, 4

after a periodic solution is reached, and the parameter 5p has been defined in

(5.1.11). On the plane bed yp=0, we have, in nondimensional variables,
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pv Gu TS T
ro = i (2_)% sin(2n+z) = |I7,ll sin(27t+4m) (7.3.2)
K
pU02 By, R

and therefore the bottom shear stress leads the ambient velocity in phase by

one-eighth of a wave period.

The instantaneous distributions of 7 along the ripple profile, normalized with
||1-S|| defined in (7.3.2), are plotted at one-tenth of a wave period intervals. We
shall examine the variation of 7 with increasing Reynolds number at a constant
Keulegan-Carpenter number of 4.5 for R=15, 175, and 500. The variation of 7 with
K at constant R are studied by comparing cases K=4.5 and 12 at R=175. The
shear stress distribution at the lowest Keulegan-Carpenter number studied, K=2.5
and R=250, is very similar to that at the lowest Reynolds number and will not be
presented. The shear stress for K=6 and R=250 will also be discussed as an
example of flows at higher values of K. The data points plotted outside the right

margin are the corresponding values 7 =||7 ||sin(27t+4) at the same instants of r.

§VIL3.1. R=15, K=4.5

The distribution of the shear stress over one ripple length is plotted in
Fig. VIL.3.1.i from t=P+0.6 to t=P+1 where P=29, during which the ambient
velocity is negative. The distribution of 7 over the first half of the wave period
(t=P to t=P+0.5) is exactly symmetr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>