
I. Introduction

OCN660 - Ocean Waves I

Even with the long history of the study of waves, there is no satisfactory general
definition of a "wave". A dictionary approach might be:

Waves are any recognizable disturbance which advances through a medium with a

A

finite speed.

lthough many key words are used (disturbance, medium, finite speed), this definition is

m
inadequate since it seems to exclude so-called ‘standing’ waves or ‘normal modes’, which are
edium vibrations. Rather than focussing on a dictionary definition it’s more useful to list

some of the main characteristics common to wave phenomena:

waves transport energy from point-to-point in a medium;

n
o
waves have momentum -- they exert a force when absorbed or reflected by a
bject;

waves move with a finite speed, which is usually different from the speed of
material particles comprising the medium;

most linear water waves do not transport mass (a notable exception being oceanic

‘

Kelvin waves).

Small amplitude’ waves are waves in which the wave speed is much greater than the
)

e
particle speeds. In the case of small amplitude waves, the governing (generally nonlinear
quations of motion can be replaced by linear approximations. An astonishing number of

f
wave phenomena exhibit the mathematical property of linearity even though it is exactly true
or only a few systems. The small amplitude assumption is frequently not a good one for

s
ocean waves (e.g., surface gravity waves), but the linear approximation is a tremendous
implification mathematically. The mathematical theory of linear waves is relatively complete,
whereas the nonlinear theory is in a more primitive state.

It is worth pointing out here that the great unification provided by the wave concept lies

d
in the mathematics -- not in the physics. Even though two wave systems may have entirely
ifferent physics (e.g., ocean waves and charge oscillations of an electron) their mathematics

-

may be quite similar.

- --



1

This course has two objectives:

- 2 - OCN660 - Luther

. to survey some of the principal types of ocean waves; and,

I

2. to teach mathematical methods used to study all waves.

t is my hope that this course, combined with a suitable introductory course on fluid mechan-
-

t
ics will provide the student with sufficient knowledge to readily access the detailed descrip
ions of oceanic wave types found in the books listed below.

:From a balance of forces point of view, the principal oceanic wave types are
acoustic

ycapillar
gravity
inertial or gyroscopic

E

Rossby or vorticity

ach of these wave types exists in a hypothetical homogeneous ocean without horizontal

q
boundaries or seafloor topography on a rotating spherical planet. These wave types can fre-
uently combine to form hybrids, such as capillary-gravity waves. Many of these wave types

s
s
have distinct additional forms upon the inclusion of more realistic oceanic features such a
tratification, continental boundaries, and bottom topography. For instance, in a homogeneous

-
t
ocean, gravity waves exist only through the gravitational restoring force acting on perturba
ions in sea surface height. But in a density stratified ocean, these surface gravity waves still

,
i
exist with little modification due to the stratification, while a whole new set of waves (i.e.
nternal gravity waves) appears due to the gravitational restoring force acting on water parcels
that have been displaced vertically from their equilibrium positions below the surface.

We will have time in this course only to recount the basic physics and kinematics of the
r

i
last three of the five types listed above. But before we get to these waves, we must review (o
ntroduce) some elementary mathematical & physical concepts. For additonal information on
oceanic waves and the mathematical methods to study them, see the following books:

General - Ocean Waves

LeBlond, P.H. and L.A. Mysak, 1978: Waves in the Ocean.

K

Gill, A.E., 1982: Atmosphere-Ocean Dynamics.

undu, P.K., 1990: Fluid Mechanics.

-

Lamb, H., 1932: Hydrodynamics.

- --
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sGeneral - Wave Motion & Mathematical Method

Johnson, R.S., 1997: A Modern Introduction to the Mathematical Theory of Water

L

Waves.

ighthill, J., 1978: Waves in Fluids.

.Whitham, G.B., 1974: Linear and Nonlinear Waves

Short Period Surface Gravity Waves

Kinsman, B., 1965: Wind Waves: Their generation and propagation on the ocean sur-

M

face.

ei, C.C., 1992: The Applied Dynamics of Ocean Surface Waves.

Long Period Surface Gravity Waves & Tides

Hendershott, M. C., 1981: Long waves and ocean tides, in Evolution of Physical

P

Oceanography, B.A. Warren & C. Wunsch, editors.

ugh, D.T., 1987: Tides, Surges and Mean Sea Level.

Parker, B.B. (ed.), 1991: Tidal Hydrodynamics.

Atmospheric Gravity Waves

Nappo, C.J., 2002: An Introduction to Atmospheric Gravity Waves.

Internal Gravity Waves

Munk, W., 1981: Internal waves and small-scale processes, in Evolution of Physical

P

Oceanography, B.A. Warren & C. Wunsch, editors.

hillips, O.M., 1977: The Dynamics of the Upper Ocean.

Turner, J.S., 1973: Buoyancy Effects in Fluids.

Low-Frequency Waves - Rossby, Kelvin, Shelf, Equatorial

Pedlosky, J., 1987: Geophysical Fluid Dynamics.

Wave Interactions

Craik, A.D.D., 1985: Wave Interactions and Fluid Flows.

Advanced Mathematics

Bender, C.M., and S.A. Orszag, 1978: Advanced Mathematical Methods for Scientists

-

and Engineers

- --
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[

II. The Simple Harmonic Oscillator (SHO

Additional Reading: Any good elementary text on classical mechanics, such as Mechanics by

A

Symon.]

. Introduction

The most important problem in one-dimensional motion, and fortunately one of the easi-
est to solve, is the harmonic or linear oscillator. The simplest example is that of a mass m

k x e
r
fastened to a spring whose stiffness constant is (Figure II.1). If we measure from th
elaxed position of the spring, then the spring exerts a restoring force (which we have already
assumed is linear in )x

F = −k x . (2.1)

The equation of motion for the mass , assuming no other forces are acting, is given bym
F = m x

..
Newton’s Second Law, (where the dots indicate two differentiations with respect
to time), so that

(2.2)x 2 2..
+ σ x = 0 , σ ≡

m
k

-
t
Eqn. (2.2) describes the free harmonic oscillator. "Free" means that the oscillator is not dis
urbed by external factors such as forcing, dissipation, coupling to other oscillators, etc. The
solution to (2.2) can be written in complex notation as

(2.3)x iσt −iσt= Ae + Be ,

i = −1 A B2where . and determine the amplitude of the oscillation and are found by
e

m
requiring that the solution satisfies initial conditions. The solution in (2.3) is called a fre
ode of vibration with natural frequency . Note that a simple harmonic oscillator (SHO)

s
σ

uch as described above does not display "wave" motion as previously defined. At best, it is

t
analogous to a standing wave (or normal mode) in a two- or three-dimensional fluid (more on
his later).

The complex notation in (2.3) can be avoided (remember that exp( ) = cos + i
s σt

iσt σt
in ), but in general complex notation is much more convenient. Of course, in the real

i
world one has to use real numbers. For real world problems the solution in (2.3) is actually
ncomplete and should read

(2.4)x iσt −iσt= Re Ae + Be ,

B=A*in which case leads to the simplest solution where the imaginary terms identically

-

cancel (the asterisk denotes complex conjugate).

- --



 
 
 
 
 

                                
 

Figure II.1.  Physical set up for a simple harmonic oscillator (SHO). A mass, m, 
rests on rollers and is attached to a wall by a spring with stiffness constant k. The 
motion of the oscillator is measured by the displacement, x, of the mass from its 
resting position. 
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he energy of the oscillator is a conserved quantity because there is no friction. We can
prove this by multiplying (2.2) by and noticing thatmx

.

m x
.
x
..
+ k x

.
x =

dt
d
2
1 m x

.
+ k x = 0 .2 2 (2.5)

Thus is constant. is the total energy and is the sum of theE ≡ (1/2)(m x
.
+ k x ) E2 2
2 2 2k K ≡m x
.
/2 V ≡k x /inetic energy, , and potential energy, .

B. Forcing & Dissipation

Now we add some more physics to our model by including both forcing and dissipation.
The generalization of (2.2) is

(2.6)x 2..
+ εx

.
+ σ x = f .

r
t
The physical significance of these new terms can be appreciated by forming the equation fo
he energy. One finds from (2.6) that

(2.7)E 2.
= −εm x

.
+ m x

.
f .

t
i
The first term on the right hand side of (2.7) is dissipation - note how it systematically (tha
s, for all time) removes energy. For , the motion of the mass, at least for small damping,
c

f =0
onsists of a sinusoidal oscillation of gradually decreasing amplitude, as we’ll see later. The

tfrictional force in (2.6) is which is a resistance to motion proportional to velocity. A−εx
.

small speeds, particles moving through a fluid, such as air or water, experience a drag force
tproportional to their velocity and might be a simple representation of this rubbing againsεx

.

the air or water. This is almost the only kind of frictional force for which the problem can be
.

I
solved analytically. If the speed is large, the drag is proportional to the square of the velocity
n this case (2.6) is nonlinear:

(2.8)x 2..
+ α x

.
x
.
+ σ x = f ,

x
.
x
.

x
. 2where is used instead of so that the force acts in the correct direction, i.e., against

a
the motion. We’ll explore later ways to extract useful information about the motion from such
nonlinear equation without actually solving for the motion.

nThe second term on the right hand side of (2.7) is forcing: is a force that caf (t )
e f (t )xcite the oscillator. is some function of time that we specify, i.e., external forcing. If
f is a sinusoidally varying force, (2.6) can lead to the phenomenon of resonance, where(t )
the amplitude of oscillation becomes very large, when the frequency of the impressed force

-

equals the natural frequency of the undamped free oscillator.

- --
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ork is the application of a force over a distance. The rate of working of a force (or,

t
power) is the product of that force times the velocity with which the point of application of
he force moves. Both of the terms on the right hand side of (2.7) have this form.

B.1 Damped Oscillations

To illustrate the effects of damping, suppose that in (2.6). Then we can solve this
h x =exp(iωt )

f =0
omogeneous equation by substituting . This gives a quadratic equation for the
complex frequency :ω

ω − i εω − σ = 0 ,2 2 (2.9a)

so

For simplicity, let (2.9b)± √ √2
2

ε
2

2
,ε

4
. σ = σ −

ε
4

± σ −
ε

σ

ω = i
2

γ ≡ ε/2 γ < σa 2nd is defined in (2.2). The quantity is called the damping coefficient. For ,

t
σε is real and the oscillator is underdamped. With the two complex frequencies we can write
he general solution as

(2.10)+
+ −iω t

−
iω t −γt

ε ε ,x = Re B e + B e = e [P cos(σ t ) + R sin(σ t )]

B Pw +here the constants of integration , , etc. are determined by initial conditions. Figure II.2
c

i
illustrates how the oscillations in (2.10) decay under mild damping. In Figure II.2 the specifi
nitial conditions have been chosen so that (2.10) reduces to .x =−A e cos(σ t )ε

ε → 0

−γt

e
s

The solution (2.10) reduces to that in (2.4) when , but this limit is very subtl
ince even if the solutions in (2.4) and (2.10) differ significantly when ∼ , i.e., the
f

ε << 1 εt 1
riction is small but if it acts "long enough" it makes a significant difference.

fTo amplify this point consider an even more elementary example. The solution o

(2.11)

y

y
.
= −εy , y (0) = 1 ,

(t ,ε) = exp(−εt ) y (t ,0)=1 ε = 10 <<1−67 tis . Now , but if it is not true tha
≅ , at least not if . With these simple examples we glimpsey −67 67(t ,10 ) y (t ,0)=1 t =10

some of the difficulties confronting us if we neglect small terms in differential equations. The
-

r
resulting approximations may be adequate for some length of time but then become inaccu
ate. This is known as a secular error.

For , in (2.9) is zero and (2.6) has only exponentially decaying solutions. Forσ = γ σε
εσ < γ σ -

i
this situation the oscillator is said to be critically damped. For , is imaginary, yield
ng two solutions to (2.6) that decay at different rates. One decays faster than the case for
σ , while the other decays slower. These solutions are called overdamped. Figure II.3= γ

-- --



                      
 

Figure II.2.  The green curve shows the motion of the mass in Figure II.1, as a function of 
time, after the mass was displaced to x = -5 cm, held for a moment and released (in this case, 
the rollers are considered to be frictionless). The parameters, k and m, were chosen so that the 
natural frequency of the oscillator is approximately one cycle in 10 seconds. The blue curve 
indicates the motion of the oscillator under the assumption that there is a weak friction 
associated with the rollers that acts as a resistance force working in the direction opposite to 
the direction of motion. 

 

                 
 
Figure II.3.  Motion of the SHO in Figure II.1, but under the additional influence of different 
amounts of friction in the rollers acting as a resistance to the motion of the oscillator. The initial 
condition of the oscillator just before the motion began is described in Figure II.2. The blue 
curve shows the motion with no friction; the green curve shows moderate friction (γ < σ ; the 
motion is under-damped); the cyan curve shows motion under critical damping (γ = σ ); and, the 
magenta curve shows the motion when the oscillator is over-damped (γ > σ).  Go to the 
following web site to experiment with an interactive applet simulating a damped harmonic 
oscillator:  http://www.lon-capa.org/~mmp/applist/damped/d.htm.  
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chematically illustrates the difference between underdamped, critically damped, and over-
,

t
damped motions. [An aside: For overdamped oscillations under continuing forcing in a fluid
he "wave" concept as defined in the Introduction is of minimal value, since the balance of

e
forces is principally between the forcing and friction and since the "wave" loses most of its
nergy within one free period (as we’ll see later). In this case, the time scale over which

f
t
significant changes in position or velocity occur has little to do with the natural frequencies o
he fluid, but rather is determined by the time scale over which the forcing varies.]

eThe non-dimensional ratio of divided by is commonly called the Q, or resonancσ ε
-

a
quality, of the oscillator. Q was originally defined to be a measure of the ratio of time
veraged stored energy in the oscillator to the energy loss per cycle. It so happens that at crit-

r
ical damping Q is then 1/2. The Q is generally employed in the literature to communicate the
elative importance of friction for the oscillations under consideration. A high Q implies weak

e
o
dissipation, although what is considered "weak" is relative. For instance, a high Q in th
cean is 25, which can occur for surface and internal gravity waves, whereas to a seismologist

e
that Q would be considered indicative of strong dissipation, since the seismic modes of the
arth typically have Q’s in the hundreds.

B.2 Forced Motion and Transients

As an example of the response of a SHO to forcing, let , (no friction), and
f (t )=H (t )

σ = 1 ε = 0
, where

(2.12)H (t ) = 1 if t > 0 , H (t ) = 0 if t < 0 ,

t =0.is the Heaviside step function. This is a constant force that switches on suddenly at

[N.b., there is no loss of generality in taking above, since the equation of motionσ = 1
σt̂ ≡σt ε̂≡ε/ ](2.6) can be non-dimensionalized by defining new variables and .

Under the assumption that the oscillator is at rest for , so that at thoset < 0 x =x
.
=0

-
g
times, the solution to this problem is found by adding the particular solution of the inhomo
eneous (2.6) to (2.6)’s homogeneous solutions, viz.,

(2.13)x (t ) = H (t )[1 − cos(t )] , x
.
= H (t )sin(t ) .

t >0 e
d

With the simple forcing function in (2.12) there is a new equilibrium when : th
ifferential equation has a steady solution . In fact, the solution in (2.13)
o

x
..
+x = 1 x = 1

scillates forever about this new equilibrium. In one of the homework problems you will
show that if we now include friction this oscillation is damped so that as .x → 1 t → ∞

T E (t )=mx (t )he energy of the forced oscillator is . Do you see why? Of course, you
r

-

can verify this by direct substitution, but if you think about (2.7) you’ll see there is a bette

- --
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ay. Note that the energy is zero when . Thus at these instants the external force
has done no net work on the oscillator.

t =0 , 2π ,...

One other point to note about the solution in (2.13) is that both and are continuous
a t =0 x

.. x x
.

t , but is discontinuous. This jump in the acceleration is required to balance the
rdiscontinuity in on the right hand side of (2.6). Recall the general principle that highef (t )

R (t )= tH (t ) -
t
derivatives of a function are increasingly singular. The "ramp" function is con
inuous but its derivative is discontinuous.

N

R
.
(t )=H (t )

ow consider a slightly more complicated forcing function in (2.6) (we still persist with
σ and ). Suppose that= 1 ε = 0

f (t ) = H (t ) − H (t −T ) , (2.14)

so that the force switches on at and then switches off at . (Draw a graph oft =0 t =T f (t )
-

t
in (2.14) so you’re clear on its structure.) One of the delightful characteristics of linear equa
ions such as (2.6) is that we can use linear superposition. Thus the solution of (2.6) with the
forcing in (2.14) is

(2.15)x (t ) = H (t )[1 − cos(t )] − H (t −T )[1 − cos(t −T )] ,

t >T -
t
i.e., a linear superposition based on the solution in (2.13). When both of the step func
ions in (2.15) are equal to 1 and the solution in (2.15) is

(2.16)

T

x (t ) = cos(t −T ) − cos(t ) .

x (t )=0 T =2π , 4π ,... rDepending on the size of , we can arrange things so that (take ), o
(take ). Because there is no friction the total work done by the

f
x (t )=−2cos(t ) T =π , 3π ,...
orce is equal to the energy left in the oscillator after the force stops acting. Thus in the first

i
case the total work done by the force in (2.14) is zero, while in the second case the total work
s . By varying we can arrange things so that the total work done by the force is any-2m T

0≤E ≤2mwhere in between these two bounds: . The lesson from this example is that phase
e

d
relationships matter: the amount of energy that an oscillator extracts from an external forc
epends not just on the size of the force, but also on how the force changes with time. The

,
s
ocean provides some extraordinarily clear examples of this simple phenomenon. For example
urface winds force inertial-internal waves at the surface, and observations show how inertial

t
waves started by one strong wind event can be readily halted by another wind pulse, leaving
he ocean quiescent (see Pollard and Millard, Deep-Sea Res., 17, 813-821, 1970).

--- -



 
 
Extra Figure 1 - from Pollard & Millard (1970; Deep-Sea Res., 17, 813-821). This figure 
provides a real world example of how an oscillator’s motion can be stopped by appropriately 
timed forcing. This data was acquired from instruments moored in the ocean at 39o ︎20.5’︎N, 
69o ︎59’︎W. At the top is a wind record (speed and direction). At the bottom are the north and east 
currents at 7 m, both measured (light line) and modeled (heavy line). The model is a simple 
damped harmonic oscillator intended to simulate just the dominant oscillations forced by the 
wind. The dominant oscillations are inertial oscillations, the dynamics of which are described 
later in Chap. 5. Note how two wind events (on Oct. 6 & 8) generate strong inertial oscillations 
that last for ~10 days with little decay and are then abruptly reduced in amplitude on Oct. 17 by 
an “unfortunately” timed wind event. 



 
Extra Figure 2 - from Pollard & Millard (1970), with the same plotted variables as above, 
showing another example of how an appropriately timed wind forcing event (on Nov. 12) can 
halt the oscillation begun by an earlier wind event (on Nov. 10). 
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C. The Method of Averaging

In this subsection we use the energy equation in (2.7) to understand how "small" dissipa-

e
tion affects the free mode in (2.4). Of course we already know the answer to this question: the
xact solution is given in (2.9) & (2.10): dissipation causes the mode to decay and the -
f 2/ε e 1/ε

e
olding time of the amplitude is (consequently, the -folding time for the energy is ).

t
The process is illustrated in Figure II.2. Dissipation also changes the frequency of the oscilla-
ions. The frequency of the damped oscillations is and when (the damping is weak)σ σ >> εε

σε
2σ − (ε /8σ)we have ≅ . This slight shift in frequency is usually less important than the

decay of the amplitude.

In this subsection we discuss how to calculate the effects of "small" dissipation. We will

m
develop a simple technique for making approximate calculations and comparing these approxi-
ations with exact results such as (2.9)-(2.10). In the homework we discuss some more

-
f
difficult problems where exact results either aren’t available or are too complicated to be use
ul. The point of this is that it is possible to extract useful information from complicated equa-
tions without explicitly solving them.

What is meant by "small" dissipation? Note that there are two time scales in the prob-
.lem: there is the period of the oscillator, which is essentially , and the decay time2π/σ 2/ε
r

d
We suppose that these times are very different so that the oscillations are "fast" and thei
ecay is "slow". Thus we suppose that

(2.23)

s

σ >> π ε

o there are slowly decaying oscillations as shown in Figure II.2. Over one period of the

s
oscillation the undamped solution in (2.4) is a good approximation of the weakly damped
olution. But after many periods we have to adjust the amplitude to allow for the cumulative
effects of small dissipation.

If we integrate the energy equation in (2.7) with over a period, from to
t =T ≡2π/σ

f =0 t =0
, we get

(2.24)
T

0
∫
2E (T ) − E (0) = −εm x
.
dt .

TT < t <2 eOf course we can use exactly the same procedure in the next period, , to calculat
, and so on. In each period the decrease in energy will be proportional to theE (2T )−E (T )

n sintegrated kinetic energy in that period. Thus in the ’th period we can rewrite (2.24) a

(2.25)2 ,= − εm x
.)E (nT ) − E ((n − 1)T

T

-- --
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swhere we have defined the average over a period of a function af (t )

f (t )dt .1f (nT ) ≡
T ∫
(n −1)T

nT

1 1 (2.26)

Since changes only a little in the interval , then and the left hand sideE (t ) 0< t <T E ∼∼E
of (2.25) can be written

(2.27).)dE (nT
t

∼∼
d

)E (nT ) − E ((n −1)T
T

∼∼
)E (nT ) − E ((n − 1)T

T

x =A exp(iσt ) +A exp(−iσt ) A 0 < t <TI *f , and is almost constant in the interval ,
then

(2.28)
m

2 2 2 2 2 2 2 *E
=
2
1 x
.
+
2
1
σ x = x

.
= σ x = 2σ AA .

0=)exp(iσt d[Fill in the steps in (2.28), noting that , an

, etc. Other properties of the average are collected[ * 2 *A exp(iσt ) +A exp(−iσt )] =2AA
t =nT sin the homework.] Hence at , (2.25) i

(2.29)
d 0

−εt
t
dE

= −εE , or E = E e ,

εe 1− eso that the energy decays exponentially with an -folding time of . This means that th
-folding time of the amplitude is , in agreement with (2.10).e 2ε−1

Notice that in (2.28) we showed by direct calculation that the time average of the kinetic
l

o
energy is equal to the time average of the potential energy. This result is known as the viria
r equipartition theorem. An alternative route to this important result is to multiply (2.6) by
x and then time average:(t )

xx
..
+ εxx

.
+ σx = xf .− 2−

(2.30)

Using the results from the homework, the equation above simplifies to

(2.31)− 2 2 2x
.
+ σ x = f x .

I f =0f then the time average of the potential energy is equal to the time average of the
kinetic energy.

The example above is a bit trivial - after all we can solve the problem exactly, so why
n

(
bother with averaging? Consider a more difficult example, viz., weak quadratic damping as i
2.8),

(2.32)x 2..
+ α x

.
x
.
+ σ x = 0 , x (0) = 0 , x

.
(0) = δ .

--- -
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.Notice that the dimensions of are (length) and the dimensions of are (length/time)α δ
First we non-dimensionalize (2.32)

−1

(2.33)−1 .= δ x
.ˆdx

ˆx ,
dt

σ
δ

, x̂ =
d
ˆ= σ
dt

d
t

I

t̂ = σt ,
d

n terms of non-dimensional variables the problem in (2.32) becomes

)
2

(2.342dt̂
d x̂

+ ε
dt̂
dx̂

dt̂
dx̂

+ x̂ = 0 , x̂ (0) = 0 ,
dt̂
dx̂ (0) = 1 ,

w εhere is non-dimensional and is given by

(2.35).δα
σ

ε ≡

.Henceforth, for simplicity the ˆ notation will be dropped

The introduction of dimensionless variables in (2.33) is merely a change of notation, but

t
it does tell us something very useful: the answer to the problem in (2.32) depends non-
rivially only on one parameter, , and not three, , and . Depending on the size of we
m

ε α σ δ ε
ay be able to approximately solve (2.34). In fact, we now consider the case when

)

a

ε << 1 , (2.36

nd use the method of averaging to calculate how the oscillations slowly decay in this weakly
damped limit.

The energy (per unit mass) equation for (2.34) is (returning to the notation for time
derivative)

.

(2.37)
d

2 2 2
t
dE

= −ε x
.
x
.
, E =

2
1 x
.
+
2
1 x .

The time average over one period of (2.37) is

(2.38)
d

2
t
dE

= −ε x
.
x
.
.

I ε = 0f the solution of (2.34) is

(2.39)
2
,A

2
A

x = A sin(t ) , E = E =

=1 0<ε << 1 A ,where . If then the amplitude is a function of time, i.e
with the initial condition . The time dependence of is calcu-

l
x (t ) = A (t )sin(t ) A (0)=1 A
ated from the energy balance in (2.38). To do this we have to express the right hand side of
(2.38) in terms of :A (t )

-- --
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(2.40)

∫

∫

2

3/2

3

3
−π/2

π/2
3

2

0

π
3 2 ,A (t ) cos(t ) cos (t )dt1

π2

,cos (t )dt1A
π

,A4
π3

.8√2E
π

=

=

∼∼

=

3

.
x
.
x

A (t ) n
p
Notice that in the manipulation above we have treated as a constant (i.e., it has bee
ulled outside the integral). This approximation is fine provided that the oscillations decay
slowly so that there is very little change in over one period.A (t )

Using (2.40), (2.38) is

(2.41)
d

3/2
0 0

1/2 −2
t
dE

= −c εE , or E = E [1 +
2
c ε t E ] ,

w c =8√2/3π ε t >> 1here . Thus, when the amplitude of the oscillations ultimately decays
like .t 1

D

−

. Forced Oscillations and Resonance

D.1 Sinusoidal Forcing Functions

In this section we discuss the solution of (2.6) with a particularly important forcing func-
tion; that is, we wish to solve

(2.42a)x 2..
+ εx

.
+ σ x = f ,

with the sinusoidal forcing

(2.42b)i f fω t * −iω t
f f .

F

f = Fe + F e = A cos(ω t ) + B sin(ω t )

or F = a + bi, A = 2a and B = -2b. To solve (2.42a) we look for a solution which is the sum
of a homogeneous and a particular solution

(2.43)x H P= x + x .

This works because (2.42a) is a linear system.

A particular solution can be found by substituting

(2.44)P
f f

P
iω t

P
* −iω tx = A e + A e

--- -
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into (2.42a). We find that the complex amplitude is

(2.45a)

2
f
2

f
χ

AP

i≡

=

F Λe ,

(σ − ω ) + i εω ,
F

so that

(2.45b)P
f fi (ω t +χ) * −i (ω t +χ) ,

where

x = Λ Fe + F e

(2.46a,b,c)
√

2

√ 2
f
2 2 2

f
2

2
f
2

2
f
2 2 2

f
2

2

f

f
2 2 2

f
2
,1

ω(σ − ω ) + ε

,
ω− ε

ω(σ − ω ) + ε

.
ωσ −

ω

Λ

=

=

=

(σ − ω ) + ε

χsin

χcos

χTherefore dissipation produces a phase lag, , between the forcing and the response. We

s
show below that this lag is essential in enabling the motion to extract energy from the forcing
o that the oscillation is sustained against the damping. Note that because the angle
χ −π<χ<0

sinχ<0
is in the interval .

The homogeneous solution for (2.43) is the same as in (2.10):

)H
ε ε √ (2.47−εt /2

H
iσ t

H
* −iσ t

ε
2 2 ,

A

x = e [A e + A e ] , σ ≡ σ −ε /4

AH H
*where and are determined so that the initial conditions are satisfied. The most impor-

-
s
tant point to note is that the homogeneous solution decays exponentially after the initial impo
ition of the forcing so that at large times no matter what the initial conditions happenx∼∼xP

.to be. One says that the homogeneous solution is transient

If the dissipation is not too large, (2.45) exhibits a resonance when the frequency of the
-forcing, , is close to the frequency of the free mode, . Figure II.4 shows the energy (proω σf

2
fp Λ ωortional to ) of the response as a function of the forcing frequency . It is easy to

-
m
show that the width of the peak in Figure II.4, taken at the half-energy points, is approxi
ately . The important result to remember is that if the damping is weak (i.e., small and
Q
ε ε

Q σ/εhigh , where previously ∼ ) and the forcing frequency equals the natural frequency
e

-

then the forced vibration is very large, and the width of the peak is very narrow - th

- --



Figure II.4. Energy of SHO response versus forcing frequency. [To be added.] 
Go to the following web site to experiment with an interactive applet simulating a forced, 
damped harmonic oscillator: http://www.walter-fendt.de/ph14e/resonance.htm . 
 
================================================================= 
 
 
Extra Figure 3 - Sea Level power spectral density from Christmas Is. (now Kiritimati; 01°52′N 
157°24′W) in the Pacific Ocean. The prominent oscillations in sea level are indicated. In addition 
to the tides, the spectrum exhibits narrow-band spectral peaks at the expected pseudo-resonant 
periods (3-5 days) of equatorially-trapped internal waves. The resonant quality, Q, of these 
oscillations is estimated to be 8-19 (under-damped). The spectrum was estimated from ~12 years 
of hourly sea level data. The 95% confidence limits are the distances between the lines at the 
bottom and should be applied to independent points. Every other point plotted is independent. 
 



Extra Figure 4 - Sea Level power spectral density from Hilo, Hawaii. The prominent 
oscillations in sea level are indicated. In addition to the tides, the spectrum exhibits narrow-band 
spectral peaks at the expected pseudo-resonant periods (17 and 59 hrs) of coastally-trapped 
internal waves (Kelvin Waves) for the island of Hawaii. The resonant quality, Q, of these 
oscillations is estimated to be 4-7. The spectrum was estimated from ~24 years of hourly sea 
level data. The 95% confidence limits are the distances between the lines at the bottom and 
should be applied to independent points. Every other point plotted is independent. 



Extra Figure 5 - Sea Level power spectral density from Honolulu, Hawaii. In addition to the 
tides, the spectrum exhibits narrow-band spectral peaks at the expected pseudo-resonant periods 
(17, 35 and 47 hrs) of coastally-trapped internal waves (Kelvin Waves) for Oahu Is. The resonant 
quality, Q, of these oscillations is estimated to be 4-6. The spectrum was estimated from ~18 
years of hourly sea level data. The 95% confidence limits are the distances between the lines at 
the bottom and should be applied to independent points. Every other point plotted is independent. 
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resonance is sharp.
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.2 The Energy Balance in Forced Oscillations

Because the particular solution in (2.44)-(2.46) is the ultimate motion that is established
f

(
after the transient decays it is important to understand its energy balance. The time average o
2.7) over a period, , isT = 2π/ω f

2 (2.48),f

w

εx
.
= x
.

hich shows that forcing balances dissipation (overbar denotes time average). Given our exact
solution we can compute the terms in (2.48). Using (2.44)-(2.46), we have

(2.49)x *
f

.
f = −2ΛFF ω sinχ .

0F sinχ −π≤χ≤irst, we see that has to be negative (as anticipated), or equivalently , so that

b
the energy input is positive. We have already remarked on this in our discussion of (2.46b)
ut now we see that the sign of has an important physical significance. Because 0
t

χ −π≤χ≤
he maximum response (i.e., maximum displacement) occurs some time less than half a period

l
s
after the maximum forcing (using (2.44)-(2.46), convince yourself of this by creating a rea
olution from a real forcing). Second, from (2.46), we see that close to resonance so
t x

χ∼∼ −π/2
hat the forcing and the displacement, , are a quarter cycle out of phase, while the forcing

sand the velocity, , are in phase (the forcing is always acting in the direction of motion). Thix
.

sin −1 f
e
means that when the in (2.49) is very close to there is an efficient extraction o
nergy from the forcing. As a result the response is very large unless the dissipation is strong.

D.3 Periodic Forcing Functions and Resonance

Now that we can solve the oscillator equation with the sinusoidal forcing function in
e

a
(2.42b), we can use linear superposition and Fourier series to solve the equation for the larg
nd important class of periodic forcing functions. An example is the "square wave forcing"

)

s

f = F sqw(αt ) , (2.50

qw(x )where the function is defined in Fig. II.5. The first thing we do is simplify the nota-
tion by introducing non-dimensional variables

(2.51)t 2 −1ˆ = αt , x̂ = α F x , ε̂ = ε/α , σ̂ = σ/α .

The non-dimensional form of (2.42a) with (2.50) is then

(2.52)x 2..
+ εx

.
+ σ x = sqw(t ) ,

.

-

where we have now dropped all the ˆ’s. (They can be restored later if necessary)

- --



1 harmonic 

 
 
 
3 harmonics (1+3+5) 

 
 
 
6 harmonics (1+3+5+7+9+11) 

 
 
 
15 harmonics (1+3+5+7+9+11+13+15+17+19+21+23+25+27+29) 

 
 
Figure II.5. Square wave function representation as a sum of sinusoids. 
Go to the following web site to see a graphic demonstration of the reconstruction of a square 
wave with sinusoids: http://en.wikipedia.org/wiki/File:SquareWave.gif . 
 
 
 
 
========================================================== 
 
Figure II.6. Dissipation of forced, damped harmonic oscillator versus frequency. 
                     [To be added.] 
 
========================================================== 
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sNext we expand the forcing function, , in a Fourier seriesqw(t)

sqw(t ) =
2
1 a e , a =

π
1 e sqw(t )dt .

n
Σ ∫
= −∞

n =∞
n

int
m

−π

π
−imt )

The integral in (2.53b) is readily evaluated, yielding

(2.53a,b

(2.54)
m
Σ
odd

imtsqw(t ) = −
π
2i

m
1 e =

π
4 sint +

3
1 sin3t +

5
1 sin5t + . . . .

,Finally, the solution of (2.52) is simply a linear superposition of solutions like (2.45), viz.

(2.55)
m
Σ Σ
odd

2 2

imt

m odd
2 2

imt
.e

mσ − m + i ε
2, x

.
(t ) =

π
e

]m [σ − m + i εm
i2
π

x (t ) = −

sqw(t ) sNotice that the coefficients in the Fourier series for decay rather slowly - only a
- while the coefficients in the Fourier series for in (2.55) decay much more quicklym −1 x (t )
m −3- as . If you try to sum these series you’ll soon appreciate that as a result of this

-
t
difference the series in (2.55) converge much more rapidly than the series in (2.54). The func
ion is discontinuous and its Fourier coefficients decay slowly because it is difficultsqw(t )

exp(imt ) s
f
for a sum of smooth, infinitely-differentiable sinusoids like to equal a discontinuou
unction. Figure II.5 illustrates the convergence of the sum in (2.54) to . The solutionsqw(t ).

x
.

x
.

-
o
of (2.52) is continuous and, in fact, so is the first derivative - it is only that is discontinu
us! Thus is "smoother" than and consequently its Fourier series is more rapidlyx (t ) sqw(t )

.convergent

To calculate the rate at which the square wave forcing does work, as per (2.48), we com-
pute average dissipation over a period:

(2.56)∫

∫

Σ

Σ Σ

π
2

π−

tin

2

imt

n odd
22

π

m odd
2

π
3
−

2

ε 2

2
m odd 2 2 2 2

x
.

=

=

≡

π

4ε
(σ −m ) + ε m

1 .

π

2ε
(−m + i εm + σ )

e
(−n + i εn + σ )

e dt ,

2π
ε x

.
dt ,

σ e
p
The dissipation has been graphed as a function of in Figure II.6. Note the "resonanc
eaks" at etc. The Fourier series in (2.54) shows that the square wave forcingσ = 1, 3, 5,

T =2π T =2π/3 T =2π/5f 1 3 5unction is a sum of sinusoids with periods , , , etc. If the natural
period of the oscillator, , matches the period of any of these components in theT =2π/σ

-- --
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forcing then there is a very large response.
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. The Green’s Function of the Oscillator

nE.1 Impulse Response and Linear Superpositio

Up to this point we have solved (2.6) with a limited number of forcing functions. There
e

s
are several different and complementary approaches to finding a general representation of th
olution with an arbitrary . In this section we explain one of these: the Green’s function
a

f (t )
pproach. The following material is easier to understand if you have assimilated Exercises 1.3
and 1.4.

The basic idea of the Green’s function is to represent as a sum of "buildingf (t )
hblocks" as shown in Figure II.7. In this figure the time axis is divided into intervals of widt

centered on the points . In each of these intervals is approximated by . Pro-T i it f (t ) f (t )
v T T→0ided that is small (and eventually we take the limit ) this approximation is good.
Formally, we express asf (t )

f (t ) ∼∼ f (t )χ (t ) ,
i
Σ
= −∞

∞

i i (2.57)

where is the characteristic function of the interval :χ (t ) t −T /2< t < t +T /2i i i

i i i i )χ if and otherwise. (2.58(t ) = 1 t −
2
T
< t < t +

2
T

χ (t ) = 0

From Exercise 1.4 we know how to solve

(2.59)xi i
2
i i

..
+ εx

.
+ σ x = χ (t ) .

T <<σ ,ε−1 −1If then the solution of (2.59) is

(2.60)xi i(t ) = T G (t − t ) ,

where

(2.61)G ε
−1

ε
−εt /2(t ) = σ sin(σ t )e H (t ) .

I T→0n the limit the right hand side of (2.59) is called an impulsive forcing function and the
response in (2.61) is the impulse response or Green’s function.

Using linear superposition the solution with the forcing function in (2.57) is

)
i
Σ (2.62
= −∞

∞

i ix (t ) = f (t )T G (t − t ) .

tT→0 (t →i 1,

-

The final step is to take the limit so that (2.62) becomes an integral

- --



 
 
 
 
 
 
 
 

 
 
Figure II.7. A representation of the function f(t) in terms of a sum of building blocks with 
appropriate amplitudes, per equation 2.57. As T → 0, the accuracy of the representation 
improves. 



1, . The result is
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i 1 )T→dt f (t )→ f (t )

x (t ) = f (t )G (t − t )dt .
−
∫
∞

∞

1 1 1 (2.63)

b
Equation (2.63) is an integral representation of the solution of (2.6). You should check this
y direct substitution. (In your previous courses on differential equations you may have seen

E

(2.63) obtained using variation of parameters.)

.2 Construction of the -function as the Limit of a Sequence of Functions

T

δ

he route we took to (2.63) was well described in the 19th century. A more modern
aapproach uses the concept of a " -function". A -function is not really a function, but ratherδ δ

sequence of functions such as

or (2.64a,b)1
2 2−t /T

2
−1

0 .e δ (t ,T ) = T χ (t )1
π

χ

δ (t ,T ) ≡
T √

(t ) −T /2< t <T /2I 0n (2.64b), is the characteristic function of the interval . In both of the
fexamples in (2.64) there is a parameter that selects a different member of the sequence oT

f δunctions. A -function sequence has the property that

(2.65)
−
∫ δ(t ,T )dt = 1 ,
∞

i

∞

.e., the integral of each member of the sequence is independent of the parameter T. (The
sintegral in (2.65) is constant because the width of the peak is proportional to while itT

T −1height is proportional to so that the area, which is the product of width and height, is
independent of .)T

δ f (t ) -
t

The second property of a -sequence is called the sifting property. If is some arbi
rary function then

(2.66)∫ f (t )δ(t − t )dt ≡ lim f (t )δ(t − t ,T )dt = f (t ) .∫
− ∞

∞

1 1 1 T→0− ∞

∞

1 1 1

T T→0his works because as the functions in (2.64) become increasingly concentrated
around as illustrated in Figure II.8.t =0

δ δ(t ) δ T → 0 o
"

The " -function", , means the limit of a -sequence when . For instance, t
solve the equation"

(2.67)G 2
..
+ εG

.
+ σ G = δ(t )

-

really means to solve the sequence of equations

- --



 
 

             
 
 
 

           
 
 
 

Figure II.8.  Dirac delta function sequence:  

� 

δ (t, a) =
1

a π
e−t

2 a 2
 

Go to the following web site to see a graphic demonstration of this delta function sequence: 
http://en.wikipedia.org/wiki/Dirac_delta_function  
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(2.68)G 2
..
(t ,T ) + εG

.
(t ,T ) + σ G (t ,T ) = δ(t ,T ) ,

a T→0nd then take the limit . The solution of (2.67) is

(2.69)G
T → 0 ε

−1
ε

−εt /2(t ) = lim G (t ,T ) = σ sin(σ t )e H (t ) .

I G (t ) x (t )f is the solution of (2.67) it is also now obvious that in (2.63) is the solution of
(2.6). Check it by substitution; you’ll need to use the sifting property of -functions in (2.66).δ

δ :Here is a list of some of the more useful properties of the -function

(2.70a)f 1 1 1(t )δ(t − t ) = f (t )δ(t − t ) , t δ(t ) = 0 , δ(−t ) = δ(t ) ,

.[δ(t −a ) + δ(t +a )]1
δ(at ) = a δ(t ) , δ(t −a ) =

2 a
−1 2 2 (2.70b)

δ-functions have the inverse dimension of their argument, i.e., has the dimensionδ(t )
) δ−1(time . Integration by parts shows that the derivative of the -function has the property

)
−
∫ f (t )δ′(t )dt = − f ′(0) . (2.71
∞

∞

:You should also think about the following

(2.72a,b)= δ(t ) .)dH (t
t

= H (t ) ,
d

)d(H (t )t
td

:Are equations (2.72a,b) consistent with the product rule

(2.73)?)dH (t
t

H (t ) + t
d

td
t

[tH (t )] =
d

d
t

E.3 Jump Conditions

d

Recall how we calculated (2.61): we solved (2.68) and then took . Fortunately, it
δ

T→0
t

e
is not necessary to do this every time you see a -function - there are certain techniques tha
nable you to go directly to the limit of the sequence without explicitly computing every

gmember of it, and then taking the limit. But conceptually a -function is defined by a limitinδ
s

o
process and every equation containing it can be interpreted in this way. This interpretation i
ften an aid to our physical visualization of -functions as sudden impulsive forces. The
a δ

δ
mazing thing is that -functions and Green’s functions can be used as building blocks to

)
a
construct any smooth, slowly varying function: this is the content of equations (2.57), (2.62
nd their continuous analogs (2.63) and (2.66).

To solve (2.67) directly we first note that the forcing term on the right hand side is zero
-except in the neighborhood of . Thus the solution when is simplyt = 0 t < 0 G (t )=0

--- -
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there is no forcing to excite the oscillator. Then at the oscillator gets an impulsive kickt =0
f δrom the -function. The effect of the kick is calculated by integrating (2.67) over a small
time interval that surrounds , say . Because the result oft = 0 −τ< t <τ G

.
(−τ)=G (−τ)=0

this integration is

(2.74)2 ∫
−τ

G
τ.

(τ) + εG (τ) + σ G (t )dt = 1 .

N τ→0ow as one of the three terms on the left hand side must balance the one on the right
hand side. Some thought shows that it must be since the other two terms vanish asG

.
(τ)

)τ→0 G
.

t =0 G (t ) G
.
(t. This means there is a jump in at : is continuous, is discontinuous

fat and has a -function component at . (As (2.72b) shows, the derivative ot =0 G
..
(t ) δ t = 0

a δdiscontinuous function is a -function.) [Once again note the general principle that higher

t
derivatives of a function become increasingly singular: in an equation like (2.67) it is always
he most highly differentiated term (in this case ) that balances the -function. The -G

..
δ δ

δf G
.

G
..

unction cannot be balanced by since then would be a -function derivative and there is
nothing left in the equation to balance this horrible singularity.]

To summarize this argument: the effect of -function forcing on the right hand side of
G
.
(t ) t =0

δ
:(2.67) is to produce a jump in at

(2.75)G − + − +(0 ) = 0 , G (0 ) = 0 , G
.
(0 ) = 0 , G

.
(0 ) = 1 .

t =0+The conditions at can then be used as "effective initial conditions" for the homogene-
fous equation and the solution of this problem is given by (2.61). Thus iG

..
+ εG

.
+σ G =0

y

2

ou understand how to derive jump conditions such as (2.75) then there is no need to go
dthrough all of the intermediate steps of solving the differential equation for a -sequence anδ

-

taking limits, etc.

- --




