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The core properties of microbial genomes, including GC con-
tent and genome size, are known to vary widely among dif-
ferent bacteria and archaea1,2. Several hypotheses have been 
proposed to explain this genomic variability, but the funda-
mental drivers that shape bacterial and archaeal genomic 
properties remain uncertain3–7. Here, we report the existence 
of a sharp genomic transition zone below the photic zone, 
where bacterial and archaeal genomes and proteomes undergo 
a community-wide punctuated shift. Across a narrow  range 
of increasing depth of just tens of metres, diverse microbial 
clades trend towards larger genome size, higher genomic GC 
content, and proteins with higher nitrogen but lower carbon 
content. These community-wide changes in genome features 
appear to be driven by gradients in the surrounding envi-
ronmental energy and nutrient fields. Collectively, our data 
support hypotheses invoking nutrient limitation as a central 
driver in the evolution of core bacterial and archaeal genomic 
and proteomic properties.

Major physicochemical features that distinguish the ocean’s twi-
light zone (mesopelagic zone, 200–1,000 m) from well-lit surface 
layers include lower light, temperature and oxygen levels, together 
with higher hydrostatic pressure and macronutrient concentra-
tions. Although some differences between surface and deeper-water 
microbes are now predictable8–11, the specific nature of genomic 
variability along the vertical depth continuum is less clear.

To gain a better understanding of the evolutionary and ecologi-
cal trends that shape the ocean microbiome, we conducted a time-
resolved deep metagenomic survey of bacterioplankton from the 
ocean’s surface to a depth of 1,000 m in the North Pacific Subtropical 
Gyre at Station ALOHA (Supplementary Fig. 1 and Supplementary 
Table 1)12. Taxa and genes clustered primarily by depth, consistent 
with previous reports of stratified microbial community depth dis-
tributions8,9,13 (Fig. 1 and Supplementary Fig. 2). Our analyses also 
revealed a marked vertical transition, where all samples above the 
deep chlorophyll maximum (DCM) clustered together (Fig.  1a,c 
and Supplementary Tables  2 and 3). Below the DCM, samples 
formed three distinct clusters: all 125 m samples, all 200 m samples 
and all those from 500 m and deeper.

The microbial taxonomic diversity also reflected a sharp dis-
continuity below the euphotic zone (below depths having <​1% of 
surface 475 nm blue light14). The largest differences were found 
between the 75–125 m, 125–200 m and 200–500 m depth inter-
vals (Fig. 1d). Similar trends in community richness were evident,  
with surface waters containing the lowest number of unique  

metagenomic operational taxonomic units (mOTUs, which are  
near-species-level sequence clusters of single-copy, univer-
sally conserved protein-coding genes. We used COG0012 in 
our analyses,   since it has been demonstrated to be a robust uni-
versally conserved phylogenetic marker for near-species-level  
determinations15,16). A peak in taxon richness was observed at 125 m 
and 200 m, followed by a drop in richness at depths of >​200 m 
(Fig. 1e). These shifts in microbial diversity coincided with changes 
in numerous physical and biogeochemical parameters (Fig. 1b)17.

Community transitions in the 75–200 m depth interval were 
accompanied by major changes in the genomic and proteomic 
properties of resident microbes across the genomic transition zone 
(GTZ). Notably, across the DCM there was an abrupt change in the 
aggregate microbiome GC content. Collectively, genes found above 
the DCM had a lower average GC content than those from below the 
DCM, with the transition occurring at ~35% GC content (Fig. 2a). 
The increasing GC content shift below the DCM was reflected in 
every gene in our universal single-copy gene set (Supplementary 
Fig. 3). This trend was also accompanied by a distinct bias towards 
lower GC codons and lower codon diversity in surface water micro-
biomes (Supplementary Fig. 4). Additional changes across the GTZ 
included significant shifts towards larger average bacterial and 
archaeal genome sizes (Supplementary Fig. 5a) and intergenic spacer 
regions (Supplementary Fig. 5b) below the DCM. (Because genome 
size estimates could be confounded by viruses and eukaryotes, we 
removed any sequences identified as such from this analysis.)

The GC content shift occurred within a wide variety of dispa-
rate clades, including Roseobacter, Actinobacteria, Prochlorococcus 
and Thaumarchaeota (Fig. 2b and Supplementary Fig. 6). Although 
GC content trends were similar among most clades, some taxon-
specific variability was observed. For example, the elevated GC 
content at depth in SAR11 populations spanned a much smaller 
range than was seen in other clades (Fig.  2b and Supplementary 
Figure  6). One bacterial clade (SAR324) showed an opposite GC 
trend below the GTZ. In aggregate, however, our data indicate  
that most pelagic, surface-dwelling bacterial clades have low-GC-
content genomes, consistent with earlier reports from cultivar and 
single-cell genomes18–21. Furthermore, members of those same 
diverse bacterial clades show elevated GC content below the DCM.

Previous studies have found that low-GC genomes tend to 
encode proteomes with lower nitrogen but higher carbon contents, 
while high-GC genomes exhibit the opposite trend22–24. Grzymski 
and Dussaq24 reported apparent differences in GC content between 
coastal and open ocean surface-water bacterioplankon in samples 
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separated by hundreds to thousands of kilometres. In surface 
waters, predicted protein nitrogen content was negatively correlated  
with distance from land, and appeared positively correlated with 
10 m depth annual global nitrate concentrations near sampling 
regions24. In our depth profiles, GC changes observed in microbial 
genes across just tens of metres in the GTZ corresponded to par-
allel shifts in predicted protein elemental composition (Fig. 2c,d). 
Specifically, the average number of nitrogen or carbon atoms per 
amino-acid-residue side chain (N-ARSC and C-ARSC) shifted in 
opposing directions across the GTZ. Bacteria and archaea below the 
DCM had high N-ARSC and low C-ARSC values, while the oppo-
site trend was observed in surface water (Fig.  2c,d). Analyses we 
conducted on Tara Ocean Project depth profiles25 revealed similar 
GC, N-ARSC and C-ARSC depth trends in all Atlantic and Pacific 
open ocean samples examined (Supplementary Fig. 7). Our analy-
ses suggest that the GTZ and its associated features are common 
throughout the open ocean.

To identify changes in community composition that co-occur 
with whole-genome transitions across the GTZ, we performed a 
weighted gene correlation network analysis using mOTU abun-
dances. This analysis revealed six primary sets of correlated mOTUs 
(termed modules) encompassing the majority of all identified 
taxa (Fig. 3a). Modules 1 and 6 contained mOTUs that dominated  

surface and deep mesopelagic waters, respectively, while the other 
modules showed well-defined abundance peaks between 125 and 
500 m (Fig.  3a). Module taxonomic composition captured well-
known distributions of high-light and low-light Prochlorococcus20,26 
and an increased abundance in Thaumarchaota at 125 m and deeper 
(Fig. 3b). Overall, the module variation trended similarly to patterns 
of whole-community GC content and N-ARSC, reflecting funda-
mental shifts in aggregate microbiome properties across the GTZ.

Nitrogen concentrations at a  depth of 125 m varied consider-
ably over the course of the time series. In tandem, microbial com-
munity composition, aggregate microbiome GC content, N-ARSC 
and C-ARSC varied with changing inorganic nitrogen at 125 m 
(Fig.  3c and Supplementary Fig.  8). Inorganic nitrogen avail-
ability was highly correlated with Module 3 in the mOTU net-
work analyses, consisting mainly of Thaumarchaeota, SAR11 and 
SAR324 (Rho =​ 0.9; Fig.  3d). Inorganic nitrogen concentration at 
125 m also correlated with community proteomic nitrogen content 
(N-ARSC), accounting for a large fraction of N-ARSC variation 
(Rho =​ 0.66) and suggesting a direct influence of ambient nitrate 
availability on community genomic properties (Fig. 3d). The abun-
dance of key genes in nitrogen metabolic pathways also changed 
across the GTZ. High-affinity inorganic nitrogen transporters 
and nitrilases were over-represented in nitrogen-depleted surface 
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Fig. 1 | Quantitative relationships of microbiome genes and taxa and as a function of depth, time and environmental variables at Station ALOHA.  
a, Dendrogram displaying the Bray–Curtis distances between sample mOTU abundance profiles across the time series. b, Environmental data represented 
by a heatmap, ranging from blue (low) to yellow (high). c, Non-metric multidimensional scaling (NMDS) plot of small subunit ribosomal RNA miTag OTU 
abundance profiles. d, Bray–Curtis distances of mOTU abundances between samples at adjacent depths. Grey triangles at 125 m represent comparisons 
between 75 m samples and 125 m samples located above the DCM. Whiskers (error bars) show the lowest datum still within the 1.5 interquartile range 
(IQR) of the lower quartile, and the highest datum still within 1.5 IQR of the upper quartile. e, mOTU richness coloured according to depth as in a, except 
for the grey triangles at 125 m, which represent samples located above the DCM. Whiskers are defined as in d. All figures are based on 79 samples.
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waters (Supplementary Fig.  9), while ammonia and nitrite oxida-
tion pathway genes were elevated in higher-nitrate, deeper waters 
(Supplementary Fig.  10). Collectively, our observations implicate 
nitrogen availability as a key driver of microbial community and 
genomic property shifts observed across the GTZ.

Elucidating the ecological and evolutionary factors that shape 
fundamental microbial genome properties is a central theme in 
comparative microbial genomics. Curiously, some microbes with 
strikingly similar global genomic properties (such as genome size or 
GC content), differ dramatically in their physiologies, life histories, 
population sizes and habitats1–3,20. For example, some open ocean 
surface-water cyanobacterial genomes share remarkably similar 
characteristics (low GC content, reduced genome size) with obli-
gate bacterial symbionts of aphids1–3,20. Several different hypotheses 
have been proposed as drivers of such genomic evolutionary trends. 
These include Muller’s ratchet27, adaptation to nutrient limitation24,28,  

high mutation rate29 and the ‘black queen hypothesis’30. A recent 
review of the various forces that might drive such trends concluded 
that nutrient limitation24,28 was currently the most parsimonious 
explanation3. The dynamic co-variation of nitrogen availability 
and the microbial genomic and proteomic properties we observed 
strongly support this hypothesis.

Bacteria and archaea employ a variety of strategies to minimize 
cellular demand for limiting nutrients. Our observations reveal that 
across a very narrow depth stratum, microbial communities have 
optimized their genomic and proteomic elemental stoichiometry 
in response to prevailing environmental conditions. Similar macro-
molecular adjustments probably occur in other environmental con-
texts, which may provide further insight into both universal as well 
as unique adaptive features that help shape the structure, function 
and evolution of microbial genomes in the wild.

Methods
Samples were collected at approximately monthly intervals over a 1.5 year sampling 
period and metagenomic DNA was extracted, sequenced, individually assembled 
and annotated using custom workflows (Supplementary Fig. 1 and Supplementary 
Table 1). Individual genes from all samples were consolidated into a non-redundant 
gene catalogue consisting of 8.9 million genes. The Station ALOHA gene catalogue 
was then used to explore the properties, variability and distributional patterns 
of genomic properties and gene functions of Station ALOHA oligotrophic ocean 
microbiomes. Taxonomic distributions over time and space were investigated using 
sequence clusters of universally conserved, single-copy protein-coding marker 
genes referred to as mOTUs as previously described15.

All samples were processed using the following procedure. Volumes of seawater 
(20 l) were collected and subsequently pre-filtered with a 1.6 μ​m, 42.5 mm Whatman 
GFA filter (cat. no. 1820-042). The filtrate was collected on 0.22 μ​m Sterivex GV filter 
for DNA (cat no. SVGV01015, Millipore). Cells were stored in 2 ml sucrose storage 
buffer (40 mM EDTA, 50 mM Tris (pH 8.3), 0.75 M sucrose) at −​80 °C. For cell 
lysis, 2 mg ml−1 of lysozyme was added and cells were incubated at 37 °C for 30 min. 
Final concentrations of 1% SDS and 0.75 mg ml−1 proteinase K were subsequently 
added and the solution was incubated for 2 h at 55 °C. Final DNA purification was 
performed using the FujiFilm Quick Gene instrument with the QuickGene DNA 
Tissue Kit (cat. no. DT-L, Life Science). Libraries were created using the Illumina 
TruSeq LT Nano kit set A (PN: FC-121-4001). Sequencing data were generated using 
Illumina MiSeq and NextSeq 500 systems (Supplementary Table 1).

Metagenomic sequencing data were generated from 83 samples obtained 
between August 2010 and December 2011 at seven depths between 25 m and 
1,000 m at Station ALOHA on 11 HOT cruises of the Hawaii Ocean Time-series 
(HOT). Only four samples from 45 m were sequenced, so they were excluded 
from analyses comparing different depths. Physicochemical data for all cruises are 
available in Supplementary Table 2 and on the Hawaii Ocean Time-series Data 
Organization and Graphical System (HOT-DOGS) website (http://hahana.soest.
hawaii.edu/hot/hot-dogs/).

DNA samples for metagenomic sequencing and physicochemical data were 
obtained from separate hydrocasts. Data from different casts were matched 
using their potential density to account for internal waves (the inertial period of 
oscillation, which has a ~31 h period at Station ALOHA). In short, we interpolated 
measurements for all physicochemical data shown in Supplementary Table 2. 
DNA samples obtained in the mixed layer (depth calculated using HOT-DOGS 
applet) were matched to physicochemical data using the sampling depth. Samples 
from below the mixed layer were matched using their potential density (instead of 
depth) in order to account for the inertial oscillations.

Similarly, sample collection for metagenomes and chlorophyll determinations 
were performed on separate hydrocasts. To determine the position of the 
metagenomic samples relative to the DCM, we used the seawater potential 
density measurements taken during DNA sampling casts and calculated the 
corresponding density and depth in the chlorophyll cast. Next, we determined 
whether the metagenomic sample was located above or below the chlorophyll 
maximum. The results are summarized in Supplementary Table 3.

Meteorological data, including wind speed, precipitation and solar irradiance, 
were measured by the Upper Oceans Processes Group at the Woods Hole 
Oceanographic Institution with the WHOTS buoy located at Station ALOHA, and 
were retrieved from http://uop.whoi.edu/projects/WHOTS/whots.html  
(accessed 2 February 2016). Measurements during the 5 and 30 days leading up to 
sampling, all made at regular intervals, were averaged for subsequent analyses.

Assembly. Raw sequencing data were quality filtered using MIRA v. 4.9.5_2  
with the qc and pec options and standard parameters to retain a high  
confidence region (HCR) for every read. This step also included the removal of 
contamination by phiX31. MIRA was also used to assemble the sequencing data 
of each sequencing run into contigs using the standard workflow for accurate 
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Fig. 2 | Microbiome GC content, N-ARSC and C-ARSC versus depth at 
Station ALOHA. a, Weighted average GC content of all assembled genes in 
bulk microbial communities. Red triangles indicate 125 m samples collected 
during periods when the DCM was located below a depth of 125 m. The 
vertical grey line highlights the partitioning of GC values in samples located 
above (left) and below (right) the DCM. b, Average difference between the 
GC content of mOTU genes that map to select taxa at a given depth, and 
the overall GC mean across all samples. c,d, Weighted average of N-ARSC 
(c) and C-ARSC (d) values of all Station ALOHA genes as a function of 
their corresponding GC content across all samples. Samples to the left of 
the vertical grey line were collected above, and to the right were collected 
below the DCM, respectively. Sample points are coloured by depth of origin 
as in Fig. 1. All figures are based on 79 samples.
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de novo genome assembly. The assembly quality statistics are summarized in 
Supplementary Table 1.

ALOHA gene catalogue. Genes were predicted from the assembled contigs using 
Prodigal32, and only genes that were predicted to be complete were retained. This 
yielded a total of 39,436,252 protein-coding genes. We generated a non-redundant 
gene catalogue by clustering this set of genes using CD-HIT (95% nucleotide 
identity and 90% overlap of the shorter gene), resulting in the ALOHA gene 
catalogue, which encompasses 8,966,703 non-redundant gene clusters, each with a 
single representative sequence used for downstream annotation33,34.

Functional and taxonomic annotation of the gene catalogue. We annotated 
the non-redundant gene catalogue using multiple databases. For taxonomic 
annotations we used an augmented version of RefSeq release 75 (ref. 35), which was 
amended by a number of high-quality single-cell amplified genomes (SAGs) from 
marine environments. Functional annotations were generated using the KEGG35,36 
and eggNOG databases37.

For both RefSeq and KEGG annotations, all genes were aligned to the respective 
databases using LAST version 756 (ref. 38), with scoring parameters ‘-b 1 -x 15 -y 7 
-z 25’. Each gene was assigned to the most specific taxon common to all RefSeq hits 
scoring within 1% of the best hit. Genes were assigned to the KEGG orthologous 
group or groups represented by all KEGG genes scoring within 5% of the best hit. 
The HMM-based eggnog-mapper tool39 was used to obtain eggNOG annotations.

Clade designations. Reference genomes in NCBI were classified to well-known 
clades of marine microbial groups to assist with phylogenetic annotations of 
genes in the ALOHA catalogue. Some previous studies have provided clade-
level classifications of sequenced genomes11, but the affiliation of many publicly 
available genomes was not specified. To resolve these taxon affiliations in reference 
genomes, a concatenated phylogeny was constructed from a custom reference 
genome data set composed of 480 genomes found to be highly represented in the 
gene catalogue homology search annotations. We extracted the complete set of 
40 universal, single-copy marker genes40,41 from these genomes using fetchMGs16. 
These genes were then used to build a phylogenetic tree using the standard_fasttree 
workflow in ete3 (ref. 41) and FastTree42. Initial designations were provided via  

well-known genomes and previous designations, and subsequent classifications 
were propagated to genomes within the same monophyletic clade of the tree. Genes 
in the ALOHA gene catalogue that were taxonomically annotated to one of the 
clade-designated genomes were assigned to the respective clades.

mOTUs. mOTUs are near-species-level sequence clusters of a set of near-universal, 
single-copy, protein-coding genes15,16. These genes encompass multiple orthologous 
groups, each of which has a different speed of evolution and hence is clustered  
at an individualy optimized, near-species-level sequence identity cutoff. We 
established a customized version of the mOTUs using the data set accompanying 
this publication in combination with genes from the Tara Expedition25 and a 
custom database of select marine genomes. The fetchMGs tool15 was used to 
extract the universal, single-copy genes from all data sets. The nucleotide identities 
between all pairs of orthologous sequences were computed using vsearch (version 
v1.9.3) and only alignments with more than 20 aligned bases were retained43. The 
resulting distance matrix was used to generate an average linkage hierarchical 
clustering and the mOTU near-species-level clusters were extracted from this using 
optimized cutoffs43. Linking of different orthologous groups was not possible in 
this data set, probably due to the high degree of co-abundance between different  
phylogenetic groups, and we therefore focused our analyses of mOTU richness  
and beta diversity on individual mOTUs based on one gene, namely COG0012  
(a ribosome-associated GTPase) (Fig. 1a,d,e and Fig. 3). This gene was first noted 
to be a universal protein in bacteria and archaea by Galperin and Koonin44, and a 
recent survey confirmed that COG0012 was present in >​99% of 25,000 microbial 
genomes in single copy. For genome size estimates we used all ten universal, single-
copy mOTU genes (see section below). The mOTU abundances were calculated as 
described below (see section 'Mapping and abundance estimations').

mOTUs were designated to clades and other taxonomic levels (such as phyla 
and genera) using LAST v. 756 (ref. 38) alignments to the custom version of RefSeq 
release 75 (ref. 35), described above. The best alignment for each gene sequence of 
a mOTU was used to calculate a majority taxonomic assignment for the mOTU at 
all taxonomic levels.

mOTU richness. COG0012 mOTU richness was calculated from read mapping 
count data (for this purpose only uniquely mapping inserts were used). For 
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each sample, read counts were downsampled to the lowest total read count of all 
samples using the function rarefy of the R package Vegan45. COG0012 mOTU 
richness was calculated using the function specnumber, both from the R package 
Vegan. To further validate these patterns we performed the same analysis using 
another universal single-copy protein, COG0533, a metal-dependent protease 
with predicted chaperone activity. The results obtained with COG0533 were nearly 
identical to those using COG0012, and confirm all of the conclusions derived from 
the results using COG0012.

miTags and SSU rRNA GC. We assembled a SSU rRNA OTU database based on 
the miTag approach described by Logares et al.46, by using usearch v. 8.1 (ref. 47) 
to cluster all nearly full-length sequences in the SILVA SSU Ref NR99 database 
(release 123)48,49, and then compiled a set of genes that shared less than 97% 
sequence similarity to one another. SSU rRNA gene fragments were then extracted 
from our quality-filtered unassembled Illumina data sets using riboFrame50. 
Extracted fragments were aligned to our custom SSU rRNA OTU database 
using bowtie2 with the parameters ‘--local’, ‘--very-sensitive’ and ‘-k 100’51. This 
returned up to 100 distinct alignments, which was sufficient to identify fragments 
that hit equally well to multiple database sequences. Fragments were assigned to 
their top database OTU provided alignment lengths were greater than 70 bps and 
had a sequence identity of at least 97%. Reads with the top alignment score to 
multiple database sequences (ambiguous matches) were assigned to OTUs in equal 
proportions to that of unambiguous matches to each OTU in the same sample. 
This approach could in theory produce OTUs encompassing SSU rRNA fragments 
with 94% or greater sequence identities (roughly considered the family level). 
However, 99% of our SSU fragments had 99% or greater sequence identity to their 
assigned database OTU.

Reads aligning to multiple database sequences equally well were assigned 
to OTUs in equal proportions to unambiguous matches to each OTU in the 
same sample. A total of 6,990 SSU rRNA fragments assigned to OTUs were then 
randomly chosen from each sample. OTU relative abundances for the subsampled 
data set were used to generate an NMDS plot to visualize Bray-Curtis distances 
with the metaMDS command in the R package Vegan45.

Mapping and abundance estimations. Quality-trimmed sequencing reads were 
aligned to the ALOHA gene catalogue using BWA (mem algorithm, standard 
parameters)52. Results were filtered using a 95% identity cutoff and a minimum 
alignment length of 45 using msamtools53. For alignments that did not encompass 
a complete read, a more stringent minimum alignment length of 60 bp was applied. 
Alignment quality was assessed using BWA alignment scores. If both reads of an 
insert could be aligned to the same reference, a summed alignment score for the 
insert was calculated. The highest scoring alignment for each insert was kept for 
abundance counting. Inserts with multiple highest scoring alignments were flagged 
as multiple mappers. To estimate the abundance of each gene, we first counted 
all unique alignments to each of the genes (alignments not flagged as multiple 
mappers). In a second step, all multiple mappers were distributed among the 
different genes according to the abundance profiles of the unique alignments. Gene 
coverage was calculated by calculating the total number of bases mapping to a gene 
and then dividing this number by the length of the gene. To calculate an average-
per-genome-copy number, all coverages were divided by the average coverage of all 
10 universal, single-copy genes (mOTUs) found in the same sample.

Weighted gene co-abundance network analysis. Abundance profiles for the 
COG0012 mOTUs were used to create a weighted gene correlation network 
using methods similar to those previously described13,54,55. Total reads mapped to 
mOTUs was used as the abundance criterion, and counts were normalized using 
the variance stabilizing transformation implemented in DESeq2 (ref. 56). A soft-
threshold of 3 was chosen based on the scale-free network criterion57, and modules 
of co-abundant mOTUs were constructed using the blockwiseModules command 
(parameters: minModuleSize =​ 2, mergeCutHeight =​ 0.25). Module eigengenes, 
or first-principle components, were constructed using the moduleEigengenes 
command. Networks were visualized using igraph.

Hierarchical clustering cladogram. COG0012 mOTU abundances were calculated 
as coverage as described, and then normalized so the total sum equalled 1. The 
abundances were then used to calculate Bray-Curtis distances between all pairs of 
samples using the R package Vegan45. The distances were used to compute a complete 
linkage hierarchical clustering. The clustering was annotated with information about 
the sampling environment and the microbial communities (Fig. 1b).

Genome size estimation. We utilized all 10 mOTU genes (near single-copy, 
near universal marker genes)15 to estimate genome sizes. For this purpose, 
we normalized the total gene abundance in each sample so that the average 
abundance of the 10 mOTU genes was 1. We then subtracted the abundance of 
genes annotated as viral and eukaryotic. Even though these genes are usually 
found in low abundance in our samples, they could potentially influence the 
results. After these calculations, the total gene abundance represents an estimate 
for the average number of genes per genome. The results are displayed in 
Supplementary Fig. 5a.

Gene characteristic calculations for GC, codon usage and encoded protein 
elemental composition (N-ARSC and C-ARSC). GC content was calculated using 
sequence utilities within biopython58. The effective codon number, which ranged 
from 20, where only one codon from each synonymous codon set is used, to 61, 
where all synonymous codons for each amino acid are used at even frequencies, 
was then calculated for each gene59. To quantify preferences for codon GC content, 
we developed a degenerate codon ranking scheme from 0 to 1, with 0 and 1 
indicating the codon(s) with highest or lowest G+​C content, respectively, relative 
to all codons encoding each amino acid. Codon rankings for each amino acid 
with degeneracies in the codon table were averaged across each assembled gene. 
N-ARSC and C-ARSC values for each gene were then calculated by translating 
DNA sequences into amino acids (NCBI codon table 11, as used by Prodigal), 
tallying the number of nitrogen and carbon atoms in the side chains of encoded 
amino acids residues and dividing N and C counts by the amino-acid length of 
the gene. GCs, effective codon number, codon GC ranks, N-ARSC and C-ARSC 
were averaged for all genes assembled within a sample. Abundance-weighted 
average gene GC, N-ARSC and C-ARSC values of all gene representatives from 
the non-redundant reference gene set (Figs. 2a,c,d and 4) and average GC for 
gene-catalogue representatives mapping to select clades (Supplementary Fig. 6) 
were calculated using gene coverage estimates as described above. The average 
of all assembled genes mapping to select clades (Supplementary Fig. 6), and all 
assembled mOTU sequences from each mOTU set (Supplementary Fig. 4), as well 
as all assembled COG0012 mOTUs that mapped to select clades (Fig. 2b), were 
also calculated.

GC and encoded protein elemental composition (N-ARSC and C-ARSC) in 
the Tara data set. Tara Ocean’s reference gene catalogue, gene abundance data 
and sample environmental data were downloaded from the Tara Ocean’s Project 
Companion website (http://ocean-microbiome.embl.de/companion.html, accessed 
15 October 2016). The Tara Ocean’s reference gene catalogue contains both full and 
partial genes. We selected full-length genes from the catalogue by screening each 
sequence for start and stop codons and calculated the GC, N-ARSC and C-ARSC 
of full-length sequences. Next, we calculated the weighted-average GC, N-ARSC 
and C-ARSC values for each sample using the sample abundances of the full-length 
genes reported by Tara. To compare these values among different Tara sampling 
depths, we selected 13 open ocean samples for which metagenomic data for all 
three depths (surface, DCM and mesopelagic) were available (stations 38, 64, 72, 
76, 78, 98, 100, 102, 112, 132, 133, 138 and 142).

Functional analysis of nitrogen metabolism. All functions annotated to the 
KEGG pathway for ‘Nitrogen Metabolism’ (map00910)36 were extracted from the 
KEGG orthologue abundance matrix. From these, the average abundance per 
depth as well as the correlation with nitrate +​ nitrite concentrations was calculated. 
KEGG orthologues that were either highly abundant (>​0.1 average gene copies per 
genome) or highly correlated or anticorrelated with nitrate +​ nitrite concentrations 
(Spearman correlation, Bonferroni corrected P value of <​0.01) were flagged as 
central genes in nitrogen metabolism at Station ALOHA. From these key functions 
in the nitrate +​ nitrite-poor surface and the nitrate +​ nitrite-rich deeper water 
layers, metabolic reconstructions were compiled by first collecting those functions 
that were highly abundant in 25 m and 75 m samples and/or highly anticorrelated 
with nitrate +​ nitrite. These KEGG orthologues were then mapped onto the KEGG 
pathway for ‘Nitrogen Metabolism’ (Supplementary Fig. 9). The same procedure 
was performed for deeper, nitrogen-rich samples (Supplementary Fig. 10).

Code availability. All custom code used in this study has been deposited on 
github.com. General scripts are available from https://github.com/pangenomics/
GTZ. Scripts for the calculation of C-ARSC and N-ARSC values are available 
at https://github.com/JessAwBryant/gene-characteristics. Scripts for taxonomic 
and KEGG annotations are available on https://github.com/jmeppley/py-
metagenomics.

Data availability. Data supporting the findings of this study that are not included 
in the manuscript are included in the Supplementary Figures and Supplementary 
Tables 1–4. Sequence data are available from the NCBI short read archive (SRA) 
under Bioproject no. PRJNA352737, as indicated in Supplementary Table 4. All 
other data products associated with this study are available from the corresponding 
author upon request.
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