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Reduced mixing generates oscillations and chaos in
the oceanic deep chlorophyll maximum
Jef Huisman1*, Nga N. Pham Thi2*, David M. Karl3 & Ben Sommeijer2

Deep chlorophyll maxima (DCMs) are widespread in large parts of
the world’s oceans1–7. These deep layers of high chlorophyll
concentration reflect a compromise of phytoplankton growth
exposed to two opposing resource gradients: light supplied
from above and nutrients supplied from below. It is often argued
that DCMs are stable features. Here we show, however, that
reduced vertical mixing can generate oscillations and chaos in
phytoplankton biomass and species composition of DCMs. These
fluctuations are caused by a difference in the timescales of two
processes: (1) rapid export of sinking plankton, withdrawing
nutrients from the euphotic zone and (2) a slow upward flux of
nutrients fuelling new phytoplankton production. Climate
models predict that global warming will reduce vertical mixing
in the oceans8–11. Our model indicates that reduced mixing will
generate more variability in DCMs, thereby enhancing variability
in oceanic primary production and in carbon export into the
ocean interior.

In oligotrophic waters, where the surface mixed layer is depleted of
nutrients, subsurface maxima in chlorophyll concentration and
phytoplankton biomass are often found (Fig. 1). Such deep chloro-
phyll maxima are permanent features in large parts of the tropical
and subtropical oceans1–5. Furthermore, seasonal DCMs commonly
develop in temperate regions4,6 and even in the polar oceans7 when
nutrients are depleted in the surface layer with the onset of the
summer season. It is generally believed that DCMs are stable features,
tracking seasonal changes in light and nutrient conditions. However,
here we extend recent phytoplankton models12–16 to show that the
phytoplankton populations of DCMs can show sustained
fluctuations.

Consider a vertical water column. Let z indicate the depth in the
water column. Let P denote the phytoplankton population density
(number of cells per m3). The population dynamics of the phyto-
plankton can be described by a reaction–advection–diffusion
equation12–17:
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where m(N,I) is the specific growth rate of the phytoplankton as an
increasing saturating function of nutrient availability N and light
intensity I, m is the specific loss rate of the phytoplankton, v is the
phytoplankton sinking velocity, and k is the vertical turbulent

diffusivity. The nutrient dynamics in the water column can be
described as12–14:
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where a is the nutrient content of the phytoplankton, and 1 is the
proportion of nutrient in dead phytoplankton that is recycled. We
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Figure 1 | Time course of the DCM at Station ALOHA, in the subtropical
Pacific Ocean, North of Hawaii. a, Chlorophyll a. b, Nitrate and nitrite.
Data were obtained from the Hawaii Ocean Time-series (HOT) program.
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assume that light intensity, I, decreases exponentially with depth
according to Lambert–Beer’s law, owing to light absorption by the
phytoplankton population, by water and by dissolved substances15,16.
To complete the model, we use zero-flux boundary conditions for the
phytoplankton. Furthermore, we assume a zero-flux boundary
condition for nutrients at the surface, while nutrients are replenished
from below with a fixed concentration NB at the bottom of the water
column. The model formulation and simulation methods are
described in further detail in the Supplementary Information. The
model is parameterized for clear ocean water, reflecting the North
Pacific subtropical gyre5,18 (Fig. 1).

In a first model simulation, with a turbulent diffusivity of
0.5 cm2 s21, nutrients in the top layer are gradually depleted by the
phytoplankton. The nutricline slowly moves downwards, tracked by
the phytoplankton population, until the population settles at a stable
equilibrium at which the downward flux of consumed nutrients
equals the upward flux of new nutrients (Fig. 2a). Thus, a stable DCM
develops. For lower values of turbulent diffusivity, however, the
model predicts that the phytoplankton population in the DCM
will oscillate. Depending on the parameter settings, fluctuations in
the DCM can range from mild oscillations (Fig. 2b) to pronounced
chlorophyll peaks (Fig. 2c). To investigate this phenomenon further,
we ran numerous simulations using a wide range of turbulent
diffusivities. For comparison, vertical turbulent diffusivities in the
ocean interior are typically on the order of 0.1 cm2 s21 to 1 cm2 s21

(refs. 19–21). The model simulations predict that the DCM becomes
unstable when turbulent diffusivity is in the lower end of the realistic
range (Fig. 3a). By a cascade of period doublings, reduced turbulent
mixing can even generate chaos in the DCM (Fig. 3b).

The mechanism underlying these fluctuations is a difference in
timescale between the sinking flux of phytoplankton and the upward
diffusive flux of nutrients. This might be called an ‘advection–

diffusion instability’. At low diffusivity, the phytoplankton sink fast
compared to the slow upward flux of nutrients. Thereby, the light
conditions of the sinking phytoplankton deteriorate and the phyto-
plankton population declines. The declining phytoplankton popu-
lation loses control over the upward nutrient flux, allowing new
nutrients to diffuse further upwards. The upward flux of nutrients
reaches a depth at which light conditions are suitable for growth. This
fuels the next peak in the DCM. Indeed, model simulations indicate
that the sinking flux has an important role in these oscillations, as
oscillations were not observed with neutrally buoyant phytoplankton
(results not shown). The period and amplitude of the DCM oscilla-
tions increase with increasing phytoplankton sinking velocity
(Fig. 3c). The period and amplitude decrease with increasing vertical
diffusivity (Fig. 3d). Thus, the oscillations become more pronounced
if the timescale of sinking is fast compared to the timescale of the
upward flux of nutrients.

Detailed ocean time series indicate that seasonal changes in light
conditions have a large effect on the dynamics of DCMs5 (see also
Fig. 1). To add more realism to the model, we therefore forced
the model by seasonal changes in incident light intensity typical
for the North Pacific subtropical gyre5, with a winter minimum
of 30 mol photons m22 d21 and a summer maximum of
60 mol photons m22 d21. At high turbulent diffusivity, the DCM
tracks the seasonal changes in light conditions (Fig. 2d). When
turbulent diffusivity is reduced, the DCM exhibits a phenomenon
known as phase locking, in which oscillations are squeezed within the
seasonal cycle (Fig. 2e). For even lower turbulent diffusivities,
seasonal forcing generates irregular phytoplankton blooms with
chaotic multi-annual variability (Fig. 2f). Thus, similar to findings
for other nonlinear oscillators22,23, fluctuating DCMs show even
more complex dynamics in a seasonal environment than in a
constant environment.

Figure 2 | Model simulations at different intensities of vertical mixing.
a–c, Constant environment. a, Stable DCM (k ¼ 0.50 cm2 s21). b, Mild
oscillations in the DCM (k ¼ 0.20 cm2 s21). c, Large-amplitude oscillations
in the DCM, with double periodicity (k ¼ 0.12 cm2 s21). d–f, Seasonal
environment, in which the model is forced by seasonal changes in incident
light intensity5. d, DCM tracks seasonal variability (k ¼ 0.50 cm2 s21).

e, Double periodicity of DCM locked in a seasonal environment
(k ¼ 0.14 cm2 s21). f, Chaotic DCM in a seasonal environment
(k ¼ 0.08 cm2 s21). For a–f, the left panel shows phytoplankton dynamics
(P) and the right panel shows nutrient dynamics (N). See Supplementary
Information for parameter values.
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Figure 3 | Bifurcation patterns generated in a
constant environment. a, Bifurcation diagram
showing the local minima and maxima of the
phytoplankton population as a function of
turbulent diffusivity. b, Detail of the chaotic
region in the bifurcation diagram. c, The period
(blue line) and relative amplitude (red line) of the
oscillations increase with phytoplankton sinking
velocity. d, The period (blue line) and relative
amplitude (red line) of the oscillations decrease
with vertical turbulent diffusivity. In a and b
phytoplankton population density is integrated
over the upper 300 m of the water column. See
Supplementary Information for parameter
values.

Figure 4 | Competition between three
phytoplankton species in an oscillating DCM.
The model (with k ¼ 0.12 cm2 s21) is forced by
the same seasonal changes in incident light
intensity as in Fig. 2d–f. a, Initial time course of
the phytoplankton species. b, c, In the long run,
the nutrient concentration (b) and the
phytoplankton species (c) settle at a periodic
attractor. d, Phase plane illustrating the periodic
attractor of the phytoplankton species. e, Time
series of consecutive depth profiles within a single
period. Coloured lines show depth profiles of the
three phytoplankton species, dashed line shows
light intensity, black line shows nutrient
concentration. In a–d phytoplankton population
density and nutrient concentration are integrated
over the upper 300 m of the water column. See
Supplementary Information for parameter
values.
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In reality, DCMs consist of multiple phytoplankton species
with different growth rates, nutrient and light requirements, and
sinking velocities. How would such a diverse assemblage respond
to fluctuations in the DCM? To address this issue, we developed a
multi-species version of our DCM model, analogous to earlier
phytoplankton competition models16,24. The model is again forced
by seasonal changes in incident light intensity. An example is shown
in Fig. 4, where we assume that the blue species has a lower sinking
velocity (0.1 m d21; resembling pico- and nanoplankton) than the red
and green species (1 m d21; resembling sinking diatoms). Further-
more, the blue species is a better nutrient competitor, whereas the red
and green species are better competitors for light. Simulations show
that all three species persist in this non-equilibrium environment,
which confirms earlier notions that oscillations and chaos promote
phytoplankton biodiversity25. Periods with co-dominance of the
three species are alternated with periods in which either the blue
species or the red and green species dominate (Fig. 4e). Furthermore,
there is a subtle but consistent vertical zonation, with the blue species
(better nutrient competitor) inhabiting the nutrient-depleted upper
zone of the DCM, while the red and green species (superior light
competitors) peak several metres deeper in the light-deprived part of
the DCM. The model predicts that phytoplankton species with
relatively high sinking velocities (red and green species) show larger
fluctuations than small phytoplankton species with low sinking
velocities (blue species; Fig. 4c–e).

Although simple models can offer only abstractions of real-world
phenomena, our model adequately reproduces many features of
real-world DCMs. First, the model predicts that DCMs form at a
similar depth of ,100 m and span a similar depth range as observed
in clear ocean waters14 (Figs 1, 2). Second, consistent with obser-
vations, the model predicts that nutrients are depleted to near-zero
levels above the DCM while the nutrient concentration increases
linearly with depth below the DCM14 (Fig. 4e). Third, detailed ocean
time-series measurements from the subtropical North Pacific con-
firm the prediction of a vertical zonation of species, with different
species assemblages dominating at different depths26 (Supplemen-
tary Information). Fourth, these ocean time series confirm the
prediction that the seasonal light cycle gives rise to seasonal patterns
in chlorophyll and nutrient concentrations in the DCM5 (Fig. 1).
Fifth, the time series support the idea that plankton populations in
the DCM show additional fluctuations superimposed upon the
seasonal cycle, often with multi-annual variability in phytoplankton
biomass and species composition5,18,26 (Supplementary Information).
Sixth, as predicted by the model, the time series tentatively suggest that
phytoplankton species with relatively high sinking velocities show
larger variability than phytoplankton species with low sinking velo-
cities (Supplementary Information). In total, time-series data support
the theoretical prediction that deep chlorophyll maxima can show
sustained non-equilibrium dynamics, driven by a combination of
external forces and the complex internal dynamics of DCMs.

Climate models predict that global warming will increase the
stability of the vertical stratification in large parts of the oceans8,9.
This will reduce vertical mixing and suppress the upward flux of
nutrients, leading to a decline in oceanic primary production9–11. Our
model predicts that the same process of reduced vertical mixing may
induce oscillations and chaos in the phytoplankton of the DCM,
generated by the difference in timescale between the sinking flux of
phytoplankton and the upward flux of nutrients. Thus, counter-
intuitively, increased stability of the water column due to global
warming may destabilize the phytoplankton dynamics in the
DCM, with implications for oceanic primary production, species
composition and carbon export.
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